1
|
Hill MC, Simonson B, Roselli C, Xiao L, Herndon CN, Chaffin M, Mantineo H, Atwa O, Bhasin H, Guedira Y, Bedi KC, Margulies KB, Klattenhoff CA, Tucker NR, Ellinor PT. Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation. Nat Commun 2024; 15:10002. [PMID: 39562555 PMCID: PMC11576987 DOI: 10.1038/s41467-024-54296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, yet the molecular basis of AF remains incompletely understood. To determine the cell type-specific transcriptional changes underlying AF, we perform single-nucleus RNA-seq (snRNA-seq) on left atrial (LA) samples from patients with AF and controls. From more than 175,000 nuclei we find that only cardiomyocytes (CMs) and macrophages (MΦs) have a significant number of differentially expressed genes in patients with AF. Attractin Like 1 (ATRNL1) was overexpressed in CMs among patients with AF and localized to the intercalated disks. Further, in both knockdown and overexpression experiments we identify a potent role for ATRNL1 in cell stress response, and in the modulation of the cardiac action potential. Finally, we detect an unexpected expression pattern for a leading AF candidate gene, KCNN3. In sum, we uncover a role for ATRNL1 which may serve as potential therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Matthew C Hill
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline N Herndon
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ondine Atwa
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harshit Bhasin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Guedira
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nathan R Tucker
- Departments of Pharmacology and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Sivakumaran TA, Grebe TA. 15q26.3 deletions distal to IGF1R cause growth retardation, congenital heart defect and skeletal anomalies: Case report and review of literature. Am J Med Genet A 2023; 191:2392-2397. [PMID: 37434556 DOI: 10.1002/ajmg.a.63350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
15q26 deletion is a rare genomic disorder characterized by intrauterine and postnatal growth retardation, microcephaly, intellectual disability, and congenital malformations. Here, we report a 4-month-old female with intrauterine growth retardation, short stature, pulmonary hypertension, atrial septal defect and congenital bowing of long bones of the legs. Chromosomal microarray analysis showed a de novo deletion of approximately 2.1 Mb at 15q26.3 region that does not include IGF1R. Our analysis of patients documented in the literature and the DECIPHER database with 15q26 deletions distal to IGF1R, including 10 patients with de novo pure deletions, allowed us to define the smallest region of overlap to 686 kb. This region includes ALDH1A3, LRRK1, CHSY1, SELENOS, SNRPA1, and PCSK6. We propose haploinsufficiency of one or more genes, besides IGF1R, within this region may contribute to the clinical findings in patients with 15q26.3 deletion.
Collapse
Affiliation(s)
- Theru A Sivakumaran
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
- Department of Pathology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
- Department of Pathology, Creighton University School of Medicine, Phoenix, Arizona, USA
| | - Theresa A Grebe
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Chaves TF, Oliveira LF, Ocampos M, Barbato IT, de Luca GR, Barbato Filho JH, de Camargo Pinto LL, Bernardi P, Maris AF. Long contiguous stretches of homozygosity detected by chromosomal microarrays (CMA) in patients with neurodevelopmental disorders in the South of Brazil. BMC Med Genomics 2019; 12:50. [PMID: 30866944 PMCID: PMC6417136 DOI: 10.1186/s12920-019-0496-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 01/14/2023] Open
Abstract
Background Currently, chromosomal microarrays (CMA) are recommended as first-tier test in the investigation of developmental disorders to examine copy number variations. The modern platforms also include probes for single nucleotide polymorphisms (SNPs) that detect homozygous regions in the genome, such as long contiguous stretches of homozygosity (LCSH) also named runs of homozygosity (ROH). LCHS are chromosomal segments resulting from complete or segmental chromosomal homozygosity, which may be indicative of uniparental disomy (UPD), consanguinity, as well as replicative DNA repair events, however also are common findings in normal populations. Knowing common LCSH of a population, which probably represent ancestral haplotypes of low-recombination regions in the genome, facilitates the interpretation of LCSH found in patients, allowing to prioritize those with possible clinical significance. However, population records of ancestral haplotype derived LCSH by SNP arrays are still scarce, particularly for countries such as Brazil where even for the clinic, microarrays that include SNPs are difficult to request due to their high cost. Methods In this study, we evaluate the frequencies and implications of LCSH detected by Affymetrix CytoScan® HD or 750 K platforms in 430 patients with neurodevelopmental disorders in southern Brazil. LCSH were analyzed in the context of pathogenic significance and also explored to identify ancestral haplotype derived LCSH. The criteria for considering a region as LCSH was homozygosis ≥3 Mbp on an autosome. Results In 95% of the patients, at least one LCSH was detected, a total of 1478 LCSH in 407 patients. In 2.6%, the findings were suggestive of UPD. For about 8.5% LCSH suggest offspring from first to fifth grade, more likely to have a clinical impact. Considering recurrent LCSH found at a frequency of 5% or more, we outline 11 regions as potentially representing ancestral haplotypes in our population. The region most involved with homozygosity was 16p11.2p11.1 (49%), followed by 1q21.2q21.3 (21%), 11p11.2p11.12 (19%), 3p21.31p21.2 (16%), 15q15 1q33p32.3 (12%), 2q11.1q12.1 (9%), 1p33p32.3 (6%), 20q11.21q11.23 (6%), 10q22.1q23.31 (5%), 6p22.2p22 (5%), and 7q11.22q11.23 (5%). Conclusions In this work, we show the importance and usefulness of interpreting LCSH in the results of CMA wich incorporate SNPs.
Collapse
Affiliation(s)
- Tiago Fernando Chaves
- Biologist, PhD Student in Cell Biology and Development, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Luan Freitas Oliveira
- Biomedic, PhD Student in Cell Biology and Development, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maristela Ocampos
- Biologist, PhD in Biotechnology and Molecular Biology, Laboratory Neurogene, Florianópolis, SC, Brazil
| | - Ingrid Tremel Barbato
- Biologist and MSc in Chemical Engineering, Laboratory Neurogene, Florianópolis, SC, Brazil
| | - Gisele Rozone de Luca
- Medical Neuropediatrist, Children's Hospital Joana de Gusmão, Florianópolis, SC, Brazil
| | | | | | - Pricila Bernardi
- Medical Geneticist, University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | - Angelica Francesca Maris
- Biologist, PhD in Molecular Biology and Genetics, University Professor in the Department of Cell Biology, Embryology and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Quintela I, Eirís J, Gómez-Lado C, Pérez-Gay L, Dacruz D, Cruz R, Castro-Gago M, Míguez L, Carracedo Á, Barros F. Copy number variation analysis of patients with intellectual disability from North-West Spain. Gene 2017; 626:189-199. [PMID: 28506748 DOI: 10.1016/j.gene.2017.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Intellectual disability (ID) is a complex and phenotypically heterogeneous neurodevelopmental disorder characterized by significant deficits in cognitive and adaptive skills, debuting during the developmental period. In the last decade, microarray-based copy number variation (CNV) analysis has been proved as a strategy particularly useful in the discovery of loci and candidate genes associated with these phenotypes and is widely used in the clinics with a diagnostic purpose. In this study, we evaluated the usefulness of two genome-wide high density SNP microarrays -Cytogenetics Whole-Genome 2.7M SNP array (n=126 patients; Group 1) and CytoScan High-Density SNP array (n=447 patients; Group 2)- in the detection of clinically relevant CNVs in a cohort of ID patients from Galicia (NW Spain). In 159 (27.7%) patients, we detected 186 rare exonic chromosomal imbalances, that were grouped into the following classes: Clinically relevant (67/186; 36.0%), of unknown clinical significance (93/186; 50.0%) and benign (26/186; 14.0%). The 67 pathogenic CNVs were identified in 64 patients, which means an overall diagnostic yield of 11.2%. Overall, we confirmed that ID is a genetically heterogeneous condition and emphasized the importance of using genome-wide high density SNP microarrays in the detection of its genetic causes. Additionally, we provided clinical and molecular data of patients with pathogenic or likely pathogenic CNVs and discussed the potential implication in neurodevelopmental disorders of genes located within these variants.
Collapse
Affiliation(s)
- Inés Quintela
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Jesús Eirís
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Carmen Gómez-Lado
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Laura Pérez-Gay
- Hospital Universitario Lucus Augusti, Unidad de Neurología Pediátrica, Departamento de Pediatría, Lugo, Spain
| | - David Dacruz
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Manuel Castro-Gago
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Luz Míguez
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain; King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia
| | - Francisco Barros
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Carreira IM, Ferreira SI, Matoso E, Pires LM, Ferrão J, Jardim A, Mascarenhas A, Pinto M, Lavoura N, Pais C, Paiva P, Simões L, Caramelo F, Ramos L, Venâncio M, Ramos F, Beleza A, Sá J, Saraiva J, de Melo JB. Copy number variants prioritization after array-CGH analysis - a cohort of 1000 patients. Mol Cytogenet 2015; 8:103. [PMID: 26719768 PMCID: PMC4696247 DOI: 10.1186/s13039-015-0202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/17/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Array-based comparative genomic hybridization has been assumed to be the first genetic test offered to detect genomic imbalances in patients with unexplained intellectual disability with or without dysmorphisms, multiple congenital anomalies, learning difficulties and autism spectrum disorders. Our study contributes to the genotype/phenotype correlation with the delineation of laboratory criteria which help to classify the different copy number variants (CNVs) detected. We clustered our findings into five classes ranging from an imbalance detected in a microdeletion/duplication syndrome region (class I) to imbalances that had previously been reported in normal subjects in the Database of Genomic Variants (DGV) and thus considered common variants (class IV). RESULTS All the analyzed 1000 patients had at least one CNV independently of its clinical significance. Most of them, as expected, were alterations already reported in the DGV for normal individuals (class IV) or without known coding genes (class III-B). In approximately 14 % of the patients an imbalance involving known coding genes, but with partially overlapping or low frequency of CNVs described in the DGV was identified (class IIIA). In 10.4 % of the patients a pathogenic CNV that explained the phenotype was identified consisting of: 40 class I imbalances, 44 class II de novo imbalances and 21 class II X-chromosome imbalances in male patients. In 20 % of the patients a familial pathogenic or potentially pathogenic CNV, consisting of inherited class II imbalances, was identified that implied a family evaluation by the clinical geneticists. CONCLUSIONS As this interpretation can be sometimes difficult, particularly if it is not possible to study the parents, using the proposed classification we were able to prioritize the multiple imbalances that are identified in each patient without immediately having to classify them as pathogenic or benign.
Collapse
Affiliation(s)
- Isabel Marques Carreira
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal ; CIMAGO - Centro de Investigação em Meio Ambiente, Genética e Oncobiologia, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; CNC, IBILI - Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Susana Isabel Ferreira
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Eunice Matoso
- CIMAGO - Centro de Investigação em Meio Ambiente, Genética e Oncobiologia, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; Laboratório de Citogenética, Hospital Pediátrico de Coimbra, Coimbra, Portugal
| | - Luís Miguel Pires
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - José Ferrão
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Ana Jardim
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Alexandra Mascarenhas
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Marta Pinto
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Nuno Lavoura
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Cláudia Pais
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Patrícia Paiva
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Lúcia Simões
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Francisco Caramelo
- Laboratório de Bioestatística e Informática Médica, IBILI - Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Lina Ramos
- Laboratório de Bioestatística e Informática Médica, IBILI - Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Margarida Venâncio
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; Serviço de Genética Médica, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fabiana Ramos
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; Serviço de Genética Médica, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Beleza
- Serviço de Genética Médica, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joaquim Sá
- Serviço de Genética Médica, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jorge Saraiva
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; Serviço de Genética Médica, Hospital Pediátrico - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joana Barbosa de Melo
- Laboratório de Citogenética e Genómica - Faculdade de Medicina, Universidade de Coimbra, Pólo Ciências da Saúde, Sub-Unidade 1 - Piso 2, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal ; CIMAGO - Centro de Investigação em Meio Ambiente, Genética e Oncobiologia, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal ; CNC, IBILI - Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|