1
|
Budisteanu M, Papuc S, Erbescu A, Iliescu C, Dobre M, Barca D, Tarta‑arsene O, Motoescu C, Dica A, Sandu C, Anghelescu C, Craiu D, Arghir A. Clinical and genomic findings in brain heterotopia: Report of a pediatric patient cohort from Romania. Exp Ther Med 2021; 23:101. [PMID: 34976143 PMCID: PMC8674960 DOI: 10.3892/etm.2021.11024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
Brain heterotopia is a group of rare malformations with a heterogeneous phenotype, ranging from asymptomatic to a severe clinical picture (drug-resistant epilepsy, severe developmental delay). The etiology is multifactorial, including both genetic and environmental factors. In the present study, a cohort of 15 pediatric patients with brain heterotopia were investigated by clinical examination, electroencephalographic studies, brain imaging, and genomic tests. Most of the patients had epileptic seizures, often difficult to control with one antiepileptic drug; another frequent characteristic in the cohort was developmental delay or intellectual disability, in some cases associated with behavioral problems. The genomic studies revealed an interstitial 22q11.2 microduplication, an anomaly not reported previously in heterotopia patients. Comparing the cohort of the present study with that of a previous series of heterotopia patients, both adult and pediatric, similar aspects, such as the high frequency of drug-resistant epilepsy were observed as well as some differences, such as no systemic malformations and no cases with fatal evolution. The current findings add new data to existing knowledge on a rare heterogeneous disorder. The detailed clinical description, including the epilepsy phenotypes, and genomic profiles bring new insights into a group of disorders, yet to be fully understood.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Sorina Papuc
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Alina Erbescu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Catrinel Iliescu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Maria Dobre
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Diana Barca
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Oana Tarta‑arsene
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Cristina Motoescu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Alice Dica
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Carmen Sandu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Cristina Anghelescu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Dana Craiu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Aurora Arghir
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
2
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Corona-Rivera JR, Corona-Rivera A, Zepeda-Romero LC, Rios-Flores IM, Rivera-Vargas J, Orozco-Vela M, Santana-Bejarano UF, Torres-Anguiano E, Pinto-Cardoso M, David D, Bobadilla-Morales L. Ring chromosome 6 in a child with anterior segment dysgenesis and review of its overlap with other FOXC1 deletion phenotypes. Congenit Anom (Kyoto) 2019; 59:174-178. [PMID: 30225942 DOI: 10.1111/cga.12309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
Here, we report a patient with ring chromosome 6 [r(6)], associated with anterior segment dysgenesis (ASD) and other anomalies. The phenotype was due to a 1880 kb microdeletion at 6p25.3 identified by whole-genome array analysis, and was mainly attributable to a FOXC1 haploinsufficiency. Currently 37 patients with r(6) have been reported. We found that facial dysmorphism, ASD, heart anomalies, brain anomalies, and hearing loss are constant features only in severe cases of r(6), mainly related to hemizygosity of FOXC1. Thus, overlaps with other FOXC1 related phenotypes, such as the 6p25 deletion syndrome, Axenfeld-Rieger syndrome type 3, and ASD type 3. Contrarily, those patients whose r(6) does not disrupt FOXC1, have mild or moderate phenotypes and do not exhibit ASD.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Luz Consuelo Zepeda-Romero
- Service of Ophthalmology, Division of Pediatrics, 'Fray Antonio Alcalde' Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Izabel Maryalexandra Rios-Flores
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico
| | - Jehú Rivera-Vargas
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Mireya Orozco-Vela
- 'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Uriel Francisco Santana-Bejarano
- 'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Elizabeth Torres-Anguiano
- 'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Manuela Pinto-Cardoso
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Dezső David
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Lucina Bobadilla-Morales
- Center for Registry and Research on Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Division of Pediatrics, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Mexico.,'Dr. Enrique Corona-Rivera' Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
4
|
Sheth F, Liehr T, Shah V, Shah H, Tewari S, Solanki D, Trivedi S, Sheth J. A child with intellectual disability and dysmorphism due to complex ring chromosome 6: identification of molecular mechanism with review of literature. Ital J Pediatr 2018; 44:114. [PMID: 30305128 PMCID: PMC6180451 DOI: 10.1186/s13052-018-0571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Ring chromosome 6 (r(6)) is a rare disorder that mainly occurs as a ‘de novo’ event. Nonetheless, a wide phenotypic spectrum has been reported in r(6) cases, depending on breakpoints, size of involved region, copy number alterations and mosaicism of cells with r(6) and/or monosomy 6 due to loss of r(6). Case presentation An 11-year-old male was referred with developmental delay, intellectual disability and microcephaly. Physical examination revealed additionally short stature and multiple facial dysmorphisms. Banding cytogenetic studies revealed a karyotype of mos 46,XY,r(6)(p25.3q27)[54]/45,XY,-6[13]/46,XY,r(6)(::p25.3→q27::p25.3→q27::)[13]/46,XY[6]/47,XY,r(6)(p25.3q27)×2[2]dn. Additionally, molecular karyotyping and molecular cytogenetics confirmed the breakpoints and characterized a 1.3 Mb contiguous duplication at 6p25.3. Conclusion The present study has accurately identified copy number alterations caused by ring chromosome formation. A review of the literature suggests that hemizygous expression of TBP gene in 6q27~qter, is likely to be the underlying cause of the phenotype. The phenotypic correlation and clinical severity in r(6) cases continue to remain widely diverse in spite of numerous reports of genomic variations.
Collapse
Affiliation(s)
- Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India.
| | - Thomas Liehr
- University Clinic Jena, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Viraj Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Hillary Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Stuti Tewari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Dhaval Solanki
- Mantra Child Neurology & Epilepsy Hospital, 3rd floor, Oarnate complex, Kalubha road, Kalanala, Bhavanagar, 364001, India
| | - Sunil Trivedi
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| |
Collapse
|
5
|
Liu S, Wang Z, Wei S, Liang J, Chen N, OuYang H, Zeng W, Chen L, Xie X, Jiang J. Gray Matter Heterotopia, Mental Retardation, Developmental Delay, Microcephaly, and Facial Dysmorphisms in a Boy with Ring Chromosome 6: A 10-Year Follow-Up and Literature Review. Cytogenet Genome Res 2018; 154:201-208. [DOI: 10.1159/000488692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Ring chromosome 6, r(6), is an extremely rare cytogenetic abnormality with clinical heterogeneity which arises typically de novo. The phenotypes of r(6) can be highly variable, ranging from almost normal to severe malformations and neurological defects. Up to now, only 33 cases have been reported in the literature. In this 10-year follow-up study, we report a case presenting distinctive facial features, severe developmental delay, and gray matter heterotopia with r(6) and terminal deletions of 6p25.3 (115426-384174, 268 kb) and 6q26-27 (168697778-170732033, 2.03 Mb) encompassing 2 and 15 candidate genes, respectively, which were detected using G-banding karyotyping, FISH, and chromosomal microarray analysis. We also analyzed the available information on the clinical features of the reported r(6) cases in order to provide more valuable information on genotype-phenotype correlations. To the best of our knowledge, this is the first report of gray matter heterotopia manifested in a patient with r(6) in China, and the deletions of 6p and 6q in our case are the smallest with the precise size of euchromatic material loss currently known.
Collapse
|
6
|
Pristyazhnyuk IE, Menzorov AG. Ring chromosomes: from formation to clinical potential. PROTOPLASMA 2018; 255:439-449. [PMID: 28894962 DOI: 10.1007/s00709-017-1165-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Ring chromosomes (RCs) are circular DNA molecules, which occur rarely in eukaryotic nuclear genomes. Lilian Vaughan Morgan first described them in the fruit fly. Human embryos very seldom have RCs, about 1:50,000. Carriers of RCs may have varying degrees of symptoms, from healthy phenotype to serious pathologies in physical and intellectual development. Many authors describe common symptoms of RC presence: short stature and some developmental delay that could be described as a "ring chromosome syndrome." As a rule, RCs arise de novo through the end-joining of two DNA double-strand breaks, telomere-subtelomere junction, or inv dup del rearrangement in both meiosis and mitosis. There are family cases of RC inheritance. The presence of RCs causes numerous secondary chromosome rearrangements in vivo and in vitro. RCs can change their size, become lost, or increase their copy number and cause additional deletions, duplication, and translocations, affecting both RCs and other chromosomes. In this review, we examine RC inheritance, instability, mechanisms of formation, and potential clinical applications of artificially created RCs for large-scale chromosome rearrangement treatment.
Collapse
Affiliation(s)
- Inna E Pristyazhnyuk
- Sector of Genomic Mechanisms of Ontogenesis, Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 630090.
| | - Aleksei G Menzorov
- Sector of Cell Collections, Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 630090
- Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia, 630090
- Research Institute of Medical Genetics, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia, 634050
| |
Collapse
|
7
|
Pace NP, Maggouta F, Twigden M, Borg I. Molecular cytogenetic characterisation of a novel de novo ring chromosome 6 involving a terminal 6p deletion and terminal 6q duplication in the different arms of the same chromosome. Mol Cytogenet 2017; 10:9. [PMID: 28344652 PMCID: PMC5364590 DOI: 10.1186/s13039-017-0311-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ring chromosome 6 is a rare sporadic chromosomal abnormality, associated with extreme variability in clinical phenotypes. Most ring chromosomes are known to have deletions on one or both chromosomal arms. Here, we report an atypical and unique ring chromosome 6 involving both a distal deletion and a distal duplication on the different arms of the same chromosome. CASE PRESENTATION In a patient with intellectual disability, short stature, microcephaly, facial dysmorphology, congenital heart defects and renovascular disease, a ring chromosome 6 was characterised using array-CGH and dual-colour FISH. The de-novo ring chromosome 6 involved a 1.8 Mb terminal deletion in the distal short arm and a 2.5 Mb duplication in the distal long arm of the same chromosome 6. This results in monosomy for the region 6pter to 6p25.3 and trisomy for the region 6q27 to 6qter. Analysis of genes in these chromosomal regions suggests that haploinsufficiency for FOXC1 and GMDS genes accounts for the cardiac and neurodevelopmental phenotypes in the proband. The ring chromosome 6 reported here is atypical as it involves a unique duplication of the distal long arm. Furthermore, the presence of renovascular disease is also a unique feature identified in this patient. CONCLUSION To the best of our knowledge, a comparable ring chromosome 6 involving both a distal deletion and duplication on different arms has not been previously reported. The renovascular disease identified in this patient may be a direct consequence of the described chromosome rearrangement or a late clinical presentation in r(6) cases. This clinical finding may further support the implicated role of FOXC1 gene in renal pathology.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Frideriki Maggouta
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Melissa Twigden
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Isabella Borg
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Department of Pathology, Medical Genetics Unit, Mater Dei Hospital, Msida, Malta
| |
Collapse
|