1
|
Hasnain A, Thompson LL, Hoppman NL, Hovanes K, Liu J, Hashemi B. Constitutional Chromothripsis on Chromosome 2: A Rare Case with Severe Presentation. Case Rep Genet 2024; 2024:6319030. [PMID: 38322183 PMCID: PMC10846923 DOI: 10.1155/2024/6319030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Chromothripsis is characterized by shattering and subsequent reassembly of chromosomes by DNA repair processes, which can give rise to a variety of congenital abnormalities and cancer. Constitutional chromothripsis is a rare occurrence, reported in children presenting with a wide range of birth defects. We present a case of a female child born with multiple major congenital abnormalities including severe microcephaly, ocular dysgenesis, heart defect, and imperforate anus. Chromosomal microarray and mate pair sequencing identified a complex chromosomal rearrangement involving the terminal end of the long arm of chromosome 2, with two duplications (located at 2p25.3-p25.1 and 2q35-q37.2 regions) and two deletions (located at 2q37.2-q37.3 and 2q37.3 regions) along with structural changes including inverted segments. A review of the literature for complex rearrangements on chromosome 2 revealed overlapping features; however, our patient had a significantly more severe phenotype which resulted in early death at the age of 2 years. Breakpoints analysis did not reveal the involvement of any candidate genes. We concluded that the complexity of the genomic rearrangement and the combined dosage/structural effect of these copy number variants are likely explanations for the severe presentation in our patient.
Collapse
Affiliation(s)
- Afia Hasnain
- Genomics Laboratory, Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Laura L. Thompson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L. Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Jing Liu
- Genomics Laboratory, Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Bita Hashemi
- Genetics and Metabolism Program, Shared Health, Winnipeg, MB, Canada
- Department of Pediatrics, Division of Genetics and Metabolism, Saskatchewan Health Authority, Saskatoon, SK, Canada
| |
Collapse
|
2
|
De Falco A, Iolascon A, Ascione F, Piscopo C. New Insights in 9q21.13 Microdeletion Syndrome: Genotype-Phenotype Correlation of 28 Patients. Genes (Basel) 2023; 14:genes14051116. [PMID: 37239476 DOI: 10.3390/genes14051116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The implementation of array comparative genomic hybridisation (array-CGH) allows us to describe new microdeletion/microduplication syndromes which were previously not identified. 9q21.13 microdeletion syndrome is a genetic condition due to the loss of a critical genomic region of approximately 750kb and includes several genes, such as RORB and TRPM6. Here, we report a case of a 7-year-old boy affected by 9q21.13 microdeletion syndrome. He presents with global developmental delay, intellectual disability, autistic behaviour, seizures and facial dysmorphism. Moreover, he has severe myopia, which was previously reported in only another patient with 9q21.13 deletion, and brain anomalies which were never described before in 9q21.13 microdeletion syndrome. We also collect 17 patients from a literature search and 10 cases from DECIPHER database with a total number of 28 patients (including our case). In order to better investigate the four candidate genes RORB, TRPM6, PCSK5, and PRUNE2 for neurological phenotype, we make, for the first time, a classification in four groups of all the collected 28 patients. This classification is based both on the genomic position of the deletions included in the 9q21.3 locus deleted in our patient and on the different involvement of the four-candidate gene. In this way, we compare the clinical problems, the radiological findings, and the dysmorphic features of each group and of all the 28 patients in our article. Moreover, we perform the genotype-phenotype correlation of the 28 patients to better define the syndromic spectrum of 9q21.13 microdeletion syndrome. Finally, we propose a baseline ophthalmological and neurological monitoring of this syndrome.
Collapse
Affiliation(s)
- Alessandro De Falco
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy
- Dipartimento di Medicina Molecolare di Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Achille Iolascon
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy
- Dipartimento di Medicina Molecolare di Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80136 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Flora Ascione
- Hospital Directorate, A.O.R.N. "Antonio Cardarelli", 80100 Naples, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, A.O.R.N. "Antonio Cardarelli", 80100 Naples, Italy
| |
Collapse
|
3
|
Arya P, Hodge JC, Matlock PA, Vance GH, Breman AM. Two Patients with Complex Rearrangements Suggestive of Germline Chromoanagenesis. Cytogenet Genome Res 2021; 160:671-679. [PMID: 33535208 DOI: 10.1159/000512898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
Chromoanagenesis, a phenomenon characterized by complex chromosomal rearrangement and reorganization events localized to a limited number of genomic regions, includes the subcategories chromothripsis, chromoanasynthesis, and chromoplexy. Although definitions of these terms are evolving, constitutional chromoanagenesis events have been reported in a limited number of patients with variable phenotypes. We report on 2 cases with complex genomic events characterized by multiple copy number gains and losses confined to a single chromosome region, which are suggestive of constitutional chromoanagenesis. Case 1 is a 43-year-old male with intellectual disability and recently developed generalized tonic-clonic seizures. Chromosomal microarray analysis identified a complex rearrangement involving chromosome region 14q31.1q32.2, consisting of 16 breakpoints ranging in size from 0.2 to 6.2 Mb, with 5 segments of normal copy number present between these alterations. Interestingly, this case represents the oldest known patient with a complex rearrangement indicative of constitutional chromoanagenesis. Case 2 is a 2-year-old female with developmental delay, speech delay, low muscle tone, and seizures. Chromosomal microarray analysis identified a complex rearrangement consisting of 28 breakpoints localized to 18q21.32q23. The size of the copy number alterations ranged from 0.042 to 5.1 Mb, flanked by 12 small segments of normal copy number. These cases add to a growing body of literature demonstrating complex chromosomal rearrangements as a disease mechanism for congenital anomalies.
Collapse
Affiliation(s)
- Priyanka Arya
- IU Genetic Testing Laboratories, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennelle C Hodge
- IU Genetic Testing Laboratories, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peggy A Matlock
- IU Genetic Testing Laboratories, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gail H Vance
- IU Genetic Testing Laboratories, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amy M Breman
- IU Genetic Testing Laboratories, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA,
| |
Collapse
|
4
|
Nazaryan-Petersen L, Bjerregaard VA, Nielsen FC, Tommerup N, Tümer Z. Chromothripsis and DNA Repair Disorders. J Clin Med 2020; 9:jcm9030613. [PMID: 32106411 PMCID: PMC7141117 DOI: 10.3390/jcm9030613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Chromothripsis is a mutational mechanism leading to complex and relatively clustered chromosomal rearrangements, resulting in diverse phenotypic outcomes depending on the involved genomic landscapes. It may occur both in the germ and the somatic cells, resulting in congenital and developmental disorders and cancer, respectively. Asymptomatic individuals may be carriers of chromotriptic rearrangements and experience recurrent reproductive failures when two or more chromosomes are involved. Several mechanisms are postulated to underlie chromothripsis. The most attractive hypothesis involves chromosome pulverization in micronuclei, followed by the incorrect reassembly of fragments through DNA repair to explain the clustered nature of the observed complex rearrangements. Moreover, exogenous or endogenous DNA damage induction and dicentric bridge formation may be involved. Chromosome instability is commonly observed in the cells of patients with DNA repair disorders, such as ataxia telangiectasia, Nijmegen breakage syndrome, and Bloom syndrome. In addition, germline variations of TP53 have been associated with chromothripsis in sonic hedgehog medulloblastoma and acute myeloid leukemia. In the present review, we focus on the underlying mechanisms of chromothripsis and the involvement of defective DNA repair genes, resulting in chromosome instability and chromothripsis-like rearrangements.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (L.N.-P.); (N.T.)
- Center for Genomic Medicine, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Victoria Alexandra Bjerregaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | | | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (L.N.-P.); (N.T.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-292-048-55
| |
Collapse
|
5
|
Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front Genet 2019; 10:393. [PMID: 31114609 PMCID: PMC6503150 DOI: 10.3389/fgene.2019.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the present review, we focus on the phenomenon of chromothripsis, a new type of complex chromosomal rearrangements. We discuss the challenges of chromothripsis detection and its distinction from other chromoanagenesis events. Along with already known causes and mechanisms, we introduce aberrant epigenetic regulation as a possible pathway to chromothripsis. We address the issue of chromothripsis characteristics in cancers and benign tumours, as well as chromothripsis inheritance in cases of its occurrence in germ cells, zygotes and early embryos. Summarising the presented data on different phenotypic effect of chromothripsis, we assume that its consequences are most likely determined not by the chromosome shattering and reassembly themselves, but by the genome regions involved in the rearrangement.
Collapse
Affiliation(s)
- Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Tatyana V Kuznetzova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
6
|
Zepeda-Mendoza CJ, Morton CC. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders. Am J Hum Genet 2019; 104:565-577. [PMID: 30951674 DOI: 10.1016/j.ajhg.2019.02.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
Structural variation, composed of balanced and unbalanced genomic rearrangements, is an important contributor to human genetic diversity with prominent roles in somatic and congenital disease. At the nucleotide level, structural variants (SVs) have been shown to frequently harbor additional breakpoints and copy-number imbalances, a complexity predicted to emerge wholly as a single-cell division event. Chromothripsis, chromoplexy, and chromoanasynthesis, collectively referred to as chromoanagenesis, are three major mechanisms that explain the occurrence of complex germline and somatic SVs. While chromothripsis and chromoplexy have been shown to be key signatures of cancer, chromoanagenesis has been detected in numerous cases of developmental disease and phenotypically normal individuals. Such observations advocate for a deeper study of the polymorphic and pathogenic properties of complex germline SVs, many of which go undetected by traditional clinical molecular and cytogenetic methods. This review focuses on congenital chromoanagenesis, mechanisms leading to occurrence of these complex rearrangements, and their impact on chromosome organization and genome function. We highlight future applications of routine screening of complex and balanced SVs in the clinic, as these represent a potential and often neglected genetic disease source, a true "iceberg under water."
Collapse
Affiliation(s)
- Cinthya J Zepeda-Mendoza
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Manchester Center for Audiology and Deafness, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
7
|
Nazaryan-Petersen L, Eisfeldt J, Pettersson M, Lundin J, Nilsson D, Wincent J, Lieden A, Lovmar L, Ottosson J, Gacic J, Mäkitie O, Nordgren A, Vezzi F, Wirta V, Käller M, Hjortshøj TD, Jespersgaard C, Houssari R, Pignata L, Bak M, Tommerup N, Lundberg ES, Tümer Z, Lindstrand A. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization. PLoS Genet 2018; 14:e1007780. [PMID: 30419018 PMCID: PMC6258378 DOI: 10.1371/journal.pgen.1007780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/26/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
Clustered copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) are often reported as germline chromothripsis. However, such cases might need further investigations by massive parallel whole genome sequencing (WGS) in order to accurately define the underlying complex rearrangement, predict the occurrence mechanisms and identify additional complexities. Here, we utilized WGS to delineate the rearrangement structure of 21 clustered CNV carriers first investigated by CMA and identified a total of 83 breakpoint junctions (BPJs). The rearrangements were further sub-classified depending on the patterns observed: I) Cases with only deletions (n = 8) often had additional structural rearrangements, such as insertions and inversions typical to chromothripsis; II) cases with only duplications (n = 7) or III) combinations of deletions and duplications (n = 6) demonstrated mostly interspersed duplications and BPJs enriched with microhomology. In two cases the rearrangement mutational signatures indicated both a breakage-fusion-bridge cycle process and haltered formation of a ring chromosome. Finally, we observed two cases with Alu- and LINE-mediated rearrangements as well as two unrelated individuals with seemingly identical clustered CNVs on 2p25.3, possibly a rare European founder rearrangement. In conclusion, through detailed characterization of the derivative chromosomes we show that multiple mechanisms are likely involved in the formation of clustered CNVs and add further evidence for chromoanagenesis mechanisms in both “simple” and highly complex chromosomal rearrangements. Finally, WGS characterization adds positional information, important for a correct clinical interpretation and deciphering mechanisms involved in the formation of these rearrangements. Clustered copy number variants (CNVs) as detected by chromosomal microarray are often reported as germline chromoanagenesis. However, such cases might need further investigation by whole genome sequencing (WGS) to accurately resolve the complexity of the structural rearrangement and predict underlying mutational mechanisms. Here, we used WGS to characterize 83 breakpoint-junctions (BPJs) from 21 clustered CNVs, and outlined the rearrangement connectivity pictures. Cases with only deletions often had additional structural rearrangements, such as insertions and inversions, which could be a result of multiple double-strand DNA breaks followed by non-homologous repair, typical to chromothripsis. In contrast, cases with only duplications or combinations of deletions and duplications, demonstrated mostly interspersed duplications and BPJs enriched with microhomology, consistent with serial template switching during DNA replication (chromoanasynthesis). Only two rearrangements were repeat mediated. In aggregate, our results suggest that multiple CNVs clustered on a single chromosome may arise through either chromothripsis or chromoanasynthesis.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agne Lieden
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jesper Ottosson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jelena Gacic
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Valtteri Wirta
- SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Duelund Hjortshøj
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Cathrine Jespersgaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Rayan Houssari
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Laura Pignata
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- * E-mail: (AL); (ZT)
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (AL); (ZT)
| |
Collapse
|
8
|
Siu WK, Lam CW, Mak CM, Lau ETK, Tang MHY, Tang WF, Poon-Mak RSM, Lee CC, Hung SF, Leung PWL, Kwong KL, Yau EKC, Ng GSF, Fong NC, Chan KY. Diagnostic yield of array CGH in patients with autism spectrum disorder in Hong Kong. Clin Transl Med 2016; 5:18. [PMID: 27271878 PMCID: PMC4896892 DOI: 10.1186/s40169-016-0098-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
Background Chromosomal microarray offers superior sensitivity for identification of submicroscopic copy number variants (CNV) and it is advocated to be the first tier genetic testing for patients with autism spectrum disorder (ASD). In this regard, diagnostic yield of array comparative genomic hybridization (CGH) for ASD patients is determined in a cohort of Chinese patients in Hong Kong. Methods A combined adult and paediatric cohort of 68 Chinese ASD patients (41 patients in adult group and 27 patients in paediatric group). The genomic DNA extracted from blood samples were analysed by array CGH using NimbleGen CGX-135K oligonucleotide array. Results We identified 15 CNV and eight of them were clinically significant. The overall diagnostic yield was 11.8 %. Five clinically significant CNV were detected in the adult group and three were in the paediatric group, providing diagnostic yields of 12.2 and 11.1 % respectively. The most frequently detected CNV was 16p13.11 duplications which were present in 4 patients (5.9 % of the cohort). Conclusions In this study, a satisfactory diagnostic yield of array CGH was demonstrated in a Chinese ASD patient cohort which supported the clinical usefulness of array CGH as the first line testing of ASD in Hong Kong. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0098-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai-Kwan Siu
- Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.,Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| | - Chloe Miu Mak
- Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Elizabeth Tak-Kwong Lau
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Mary Hoi-Yin Tang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wing-Fai Tang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | - Chi-Chiu Lee
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China
| | - Se-Fong Hung
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China
| | | | - Karen Ling Kwong
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong, China
| | - Eric Kin-Cheong Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Grace Sui-Fun Ng
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Nai-Chung Fong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Kwok-Yin Chan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| |
Collapse
|