1
|
Kuo YT, Câmara AS, Schubert V, Neumann P, Macas J, Melzer M, Chen J, Fuchs J, Abel S, Klocke E, Huettel B, Himmelbach A, Demidov D, Dunemann F, Mascher M, Ishii T, Marques A, Houben A. Holocentromeres can consist of merely a few megabase-sized satellite arrays. Nat Commun 2023; 14:3502. [PMID: 37311740 DOI: 10.1038/s41467-023-38922-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
The centromere is the chromosome region where microtubules attach during cell division. In contrast to monocentric chromosomes with one centromere, holocentric species usually distribute hundreds of centromere units along the entire chromatid. We assembled the chromosome-scale reference genome and analyzed the holocentromere and (epi)genome organization of the lilioid Chionographis japonica. Remarkably, each of its holocentric chromatids consists of only 7 to 11 evenly spaced megabase-sized centromere-specific histone H3-positive units. These units contain satellite arrays of 23 and 28 bp-long monomers capable of forming palindromic structures. Like monocentric species, C. japonica forms clustered centromeres in chromocenters at interphase. In addition, the large-scale eu- and heterochromatin arrangement differs between C. japonica and other known holocentric species. Finally, using polymer simulations, we model the formation of prometaphase line-like holocentromeres from interphase centromere clusters. Our findings broaden the knowledge about centromere diversity, showing that holocentricity is not restricted to species with numerous and small centromere units.
Collapse
Affiliation(s)
- Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| | - Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Simone Abel
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Evelyn Klocke
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Frank Dunemann
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
2
|
de Jong H, van de Belt J, Fransz P. Critical Steps in DAPI and FISH Imaging of Chromosome Spread Preparations. Methods Mol Biol 2023; 2672:247-256. [PMID: 37335481 DOI: 10.1007/978-1-0716-3226-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The final step in a long period of chromosome slide experiments is the publication of DAPI and multicolor fluorescence images. Quite often the result of published artwork is disappointing due to insufficient knowledge of image processing and presentation. In this chapter we describe some errors of fluorescence photomicrographs and how to avoid them. We include suggestions of processing chromosome images with simple examples of image processing in Photoshop® or the like, without the need of complex knowledge of the software programs.
Collapse
Affiliation(s)
- Hans de Jong
- Wageningen University & Research, Laboratory of Genetics, Wageningen, The Netherlands.
| | - José van de Belt
- Wageningen University & Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Paul Fransz
- Wageningen University & Research, Laboratory of Genetics, Wageningen, The Netherlands
- Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yao Q, Gao J, Chen F, Li W. Development and application of an optimized drop-slide technique for metaphase chromosome spreads in maize. Biotech Histochem 2019; 95:276-284. [PMID: 31762324 DOI: 10.1080/10520295.2019.1686167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chromosome spreads are important for complex molecular cytogenetic studies. An adequate chromosome spreading method for identification and isolation of the maize B chromosome, however, has not been reported. We used the maize inbred lines, B73 and Mo17, the hybrid YD08 line and the landrace DP76 to develop an optimized chromosome spreading method. We investigated the effects of four treatment factors on the quality of metaphase chromosome spreads using a factorial analysis of variance. Optimal conditions for metaphase spreading were identified using regression analysis based on multifactor orthogonal design of four treatment factors with five levels for each factor. We developed optimal conditions for metaphase spreading as follows: nitrous oxide treatment for 2 h, glacial acetic acid fixation for 2 h, enzyme hydrolysis for 6.0 h, and a drop height of 35 cm for cell suspension. We obtained high quality metaphase chromosome spreads with large metaphase areas, large numbers of chromosomes, few chromosome overlaps and high frequency of intact metaphases. Our optimized drop-slide procedure was markedly better than the traditional flame smear technique. We identified 487 B chromosomes in three forms from maize landraces from Southwest China. We found no relation between the C-band number and B chromosome. Single B chromosomes also were isolated directly from a metaphase chromosome drop-slide using a micromanipulator. Our optimized method provides a simple, efficient and reproducible procedure for preparing high quality plant chromosome spreads.
Collapse
Affiliation(s)
- Qilun Yao
- Department of Life Sciences, Yangtze Normal University, Fuling 408100, P. R. China.,Centre for Green Development and Collaborative Innovation in Wuling Mountain Region, Yangtze Normal University, Fuling, 408100, P. R. China
| | - Jian Gao
- Department of Life Sciences, Yangtze Normal University, Fuling 408100, P. R. China.,Centre for Green Development and Collaborative Innovation in Wuling Mountain Region, Yangtze Normal University, Fuling, 408100, P. R. China
| | - Fabo Chen
- Department of Life Sciences, Yangtze Normal University, Fuling 408100, P. R. China.,Centre for Green Development and Collaborative Innovation in Wuling Mountain Region, Yangtze Normal University, Fuling, 408100, P. R. China
| | - Wenbo Li
- Department of Life Sciences, Yangtze Normal University, Fuling 408100, P. R. China.,Centre for Green Development and Collaborative Innovation in Wuling Mountain Region, Yangtze Normal University, Fuling, 408100, P. R. China
| |
Collapse
|
4
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s00425-00018-03033-00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 05/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s10577-019-09607-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Kuo YT, Chao YT, Chen WC, Shih MC, Chang SB. Segmental and tandem chromosome duplications led to divergent evolution of the chalcone synthase gene family in Phalaenopsis orchids. ANNALS OF BOTANY 2019; 123:69-77. [PMID: 30113635 PMCID: PMC6344096 DOI: 10.1093/aob/mcy136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/22/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Orchidaceae is a large plant family, and its extraordinary adaptations may have guaranteed its evolutionary success. Flavonoids are a group of secondary metabolites that mediate plant acclimation to challenge environments. Chalcone synthase (CHS) catalyses the initial step in the flavonoid biosynthetic pathway. This is the first chromosome-level investigation of the CHS gene family in Phalaenopsis aphrodite and was conducted to elucidate if divergence of this gene family is associated with chromosome evolution. METHODS Complete CHS genes were identified from our whole-genome sequencing data sets and their gene expression profiles were obtained from our transcriptomic data sets. Fluorescence in situ hybridization (FISH) was conducted to position five CHS genes to high-resolution pachytene chromosomes. KEY RESULTS The five Phalaenopsis CHS genes can be classified into three groups, PaCHS1, PaCHS2 and the tandemly arrayed three-gene cluster, which diverged earlier than those of the orchid genera and species. Additionally, pachytene chromosome-based FISH mapping showed that the three groups of CHS genes are localized on three distinct chromosomes. Moreover, an expression analysis of RNA sequencing revealed that the five CHS genes had highly differentiated expression patterns and its expression pattern-based clustering showed high correlations between sequence divergences and chromosomal localizations of the CHS gene family in P. aphrodite. CONCLUSIONS Based on their phylogenetic relationships, expression clustering analysis and chromosomal distributions of the five paralogous PaCHS genes, we proposed that expansion of this gene family in P. aphrodite occurred through segmental duplications, followed by tandem duplications. These findings provide information for further studies of CHS functions and regulations, and shed light on the divergence of an important gene family in orchids.
Collapse
Affiliation(s)
- Yi-Tzu Kuo
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- For correspondence. E-mail:
| |
Collapse
|
7
|
Chao Y, Chen W, Chen C, Ho H, Yeh C, Kuo Y, Su C, Yen S, Hsueh H, Yeh J, Hsu H, Tsai Y, Kuo T, Chang S, Chen K, Shih M. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2027-2041. [PMID: 29704444 PMCID: PMC6230949 DOI: 10.1111/pbi.12936] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 05/04/2023]
Abstract
The Orchidaceae is a diverse and ecologically important plant family. Approximately 69% of all orchid species are epiphytes, which provide diverse microhabitats for many small animals and fungi in the canopy of tropical rainforests. Moreover, many orchids are of economic importance as food flavourings or ornamental plants. Phalaenopsis aphrodite, an epiphytic orchid, is a major breeding parent of many commercial orchid hybrids. We provide a high-quality chromosome-scale assembly of the P. aphrodite genome. The total length of all scaffolds is 1025.1 Mb, with N50 scaffold size of 19.7 Mb. A total of 28 902 protein-coding genes were identified. We constructed an orchid genetic linkage map, and then anchored and ordered the genomic scaffolds along the linkage groups. We also established a high-resolution pachytene karyotype of P. aphrodite and completed the assignment of linkage groups to the 19 chromosomes using fluorescence in situ hybridization. We identified an expansion in the epiphytic orchid lineage of FRS5-like subclade associated with adaptations to the life in the canopy. Phylogenetic analysis further provides new insights into the orchid lineage-specific duplications of MADS-box genes, which might have contributed to the variation in labellum and pollinium morphology and its accessory structure. To our knowledge, this is the first orchid genome to be integrated with a SNP-based genetic linkage map and validated by physical mapping. The genome and genetic map not only offer unprecedented resources for increasing breeding efficiency in horticultural orchids but also provide an important foundation for future studies in adaptation genomics of epiphytes.
Collapse
Affiliation(s)
- Ya‐Ting Chao
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wan‐Chieh Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Chun‐Yi Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Hsiu‐Yin Ho
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Chih‐Hsin Yeh
- Department of AgronomyNational Taiwan UniversityTaipeiTaiwan
- Taoyuan District Agricultural Research and Extension StationCouncil of Agriculture, Executive YuanTaoyuanTaiwan
| | - Yi‐Tzu Kuo
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Chun‐Lin Su
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Shao‐Hua Yen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Hao‐Yen Hsueh
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Jen‐Hau Yeh
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Hui‐Lan Hsu
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Hui Tsai
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Tzu‐Yen Kuo
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Song‐Bin Chang
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Kai‐Yi Chen
- Department of AgronomyNational Taiwan UniversityTaipeiTaiwan
| | - Ming‐Che Shih
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
8
|
Rodríguez-Domínguez JM, Ríos-Lara LL, Tapia-Campos E, Barba-Gonzalez R. An improved technique for obtaining well-spread metaphases from plants with numerous large chromosomes. Biotech Histochem 2017; 92:159-166. [PMID: 28418749 DOI: 10.1080/10520295.2017.1288927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Preparations that contain well-spread metaphase chromosomes are critical for plant cytogenetic analyses including chromosome counts, banding procedures, in situ hybridization, karyotyping and construction of ideograms. Chromosome spreading is difficult for plants with large and numerous chromosomes. We report here a technique for obtaining cytoplasm-free, well-spread metaphases from two Amaryllidaceae species: Sprekelia formosissima (2n = 120) and Hymenocallis howardii (2n = 96). The technique has three main steps: 1) pretreatment to cause chromosome condensation, 2) dripping onto tilted slides coated with a thin layer of pure acetic acid and 3) application of steam and acetic acid to produce cytoplasmic hydrolysis, which spreads the chromosomes.
Collapse
Affiliation(s)
- J M Rodríguez-Domínguez
- a Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , A.C. Unidad de Biotecnología Vegetal , Guadalajara , Jalisco , México
| | - L L Ríos-Lara
- a Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , A.C. Unidad de Biotecnología Vegetal , Guadalajara , Jalisco , México
| | - E Tapia-Campos
- a Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , A.C. Unidad de Biotecnología Vegetal , Guadalajara , Jalisco , México
| | - R Barba-Gonzalez
- a Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco , A.C. Unidad de Biotecnología Vegetal , Guadalajara , Jalisco , México
| |
Collapse
|