1
|
Balvert M, Cooper-Knock J, Stamp J, Byrne RP, Mourragui S, van Gils J, Benonisdottir S, Schlüter J, Kenna K, Abeln S, Iacoangeli A, Daub JT, Browning BL, Taş G, Hu J, Wang Y, Alhathli E, Harvey C, Pianesi L, Schulte SC, González-Domínguez J, Garrisson E, Snyder MP, Schönhuth A, Sng LMF, Twine NA. Considerations in the search for epistasis. Genome Biol 2024; 25:296. [PMID: 39563431 PMCID: PMC11574992 DOI: 10.1186/s13059-024-03427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Epistasis refers to changes in the effect on phenotype of a unit of genetic information, such as a single nucleotide polymorphism or a gene, dependent on the context of other genetic units. Such interactions are both biologically plausible and good candidates to explain observations which are not fully explained by an additive heritability model. However, the search for epistasis has so far largely failed to recover this missing heritability. We identify key challenges and propose that future works need to leverage idealized systems, known biology and even previously identified epistatic interactions, in order to guide the search for new interactions.
Collapse
Affiliation(s)
| | | | | | - Ross P Byrne
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Juami van Gils
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Sanne Abeln
- Utrecht University, Utrecht, The Netherlands
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
- NIHR BRC SLAM NHS Foundation Trust, London, UK
| | | | | | - Gizem Taş
- Tilburg University, Tilburg, The Netherlands
- UMC Utrecht, Utrecht, The Netherlands
| | - Jiajing Hu
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Yan Wang
- UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Sara C Schulte
- Algorithmic Bioinformatics and Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | - Letitia M F Sng
- Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia.
| | - Natalie A Twine
- Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia.
| |
Collapse
|
2
|
Veyssiere M, Rodriguez Ordonez MDP, Chalabi S, Michou L, Cornelis F, Boland A, Olaso R, Deleuze JF, Petit-Teixeira E, Chaudru V. MYLK* FLNB and DOCK1* LAMA2 gene-gene interactions associated with rheumatoid arthritis in the focal adhesion pathway. Front Genet 2024; 15:1375036. [PMID: 38803542 PMCID: PMC11128622 DOI: 10.3389/fgene.2024.1375036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease caused by a combination of genetic and environmental factors. Rare variants with low predicted effects in genes participating in the same biological function might be involved in developing complex diseases such as RA. From whole-exome sequencing (WES) data, we identified genes containing rare non-neutral variants with complete penetrance and no phenocopy in at least one of nine French multiplex families. Further enrichment analysis highlighted focal adhesion as the most significant pathway. We then tested if interactions between the genes participating in this function would increase or decrease the risk of developing RA disease. The model-based multifactor dimensionality reduction (MB-MDR) approach was used to detect epistasis in a discovery sample (19 RA cases and 11 healthy individuals from 9 families and 98 unrelated CEU controls from the International Genome Sample Resource). We identified 9 significant interactions involving 11 genes (MYLK, FLNB, DOCK1, LAMA2, RELN, PIP5K1C, TNC, PRKCA, VEGFB, ITGB5, and FLT1). One interaction (MYLK*FLNB) increasing RA risk and one interaction decreasing RA risk (DOCK1*LAMA2) were confirmed in a replication sample (200 unrelated RA cases and 91 GBR unrelated controls). Functional and genomic data in RA samples or relevant cell types argue the key role of these genes in RA.
Collapse
Affiliation(s)
- Maëva Veyssiere
- Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | | | - Smahane Chalabi
- GenHotel—Univ Evry, University of Paris Saclay, Evry, France
| | - Laetitia Michou
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - François Cornelis
- Génétiqe-Oncogénétique Adulte-Prévention, Institut National de la Santé et de la Recherche Médicale, Clermont-Auvergne University and CHU, Clermont-Ferrand, France
| | - Anne Boland
- Commissariat à l'Energie Atomique, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France
| | - Robert Olaso
- Commissariat à l'Energie Atomique, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Commissariat à l'Energie Atomique, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, Evry, France
| | | | - Valérie Chaudru
- Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
- GenHotel—Univ Evry, University of Paris Saclay, Evry, France
| |
Collapse
|
3
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|