1
|
Tufail M. PTEN-mediated resistance in cancer: From foundation to future therapies. Toxicol Rep 2025; 14:101987. [PMID: 40129883 PMCID: PMC11930710 DOI: 10.1016/j.toxrep.2025.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
In cancer resistance, phosphatase and tensin homolog deleted (PTEN) has emerged as a prominent protagonist. PTEN exerts its influence by regulating crucial signaling pathways that govern cell proliferation, survival, and differentiation. This comprehensive review article investigates deeply into the complex realm of PTEN-mediated drug resistance mechanisms in cancers. Our journey begins by exploring PTEN's foundational role of PTEN, unveiling its significance as a molecular conductor that intricately coordinates vital cellular pathways. We thoroughly dissected the intricate milieu of PTEN alterations, including mutations, deletions, and epigenetic silencing, and elucidated their profound implications for fueling cancer growth and evading treatment. As we navigate the complex network of PTEN, we unravel the intricate interplay between PTEN and pivotal signaling pathways, such as PI3K/AKT, MAPK/ERK, and Wnt/β-catenin, further complicating the resistance landscape. This expedition, through these intricately intertwined signaling cascades, provides insight into the multifaceted mechanisms driving resistance, thereby revealing potential exploitable weaknesses. In our quest for therapeutic strategies, we need to explore innovative approaches to restore PTEN function, encompassing genetic therapies, pharmacological agents, and precision medicines tailored to PTEN status. The concept of combination therapy has emerged as a potent tool to overcome PTEN-associated resistance, offering promising synergistic interactions with standard treatments, targeted therapies, or immunotherapy. This review offers a comprehensive overview of PTEN-mediated drug resistance mechanisms in cancer and elucidates intricate interactions within this complex landscape. This underscores the central role of PTEN in drug resistance and provides valuable insights into promising strategies with the potential to reshape the future of cancer treatment.
Collapse
|
2
|
Gao J, Wang X, Wan Q. One nanoparticle delivers two different neuroprotective amino acids into ischemic brain and protects against neuronal death in rat cerebral ischemia injury. Mol Cell Neurosci 2025; 133:104009. [PMID: 40194569 DOI: 10.1016/j.mcn.2025.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Previous studies have proven that glycine and proline are neuroprotective but have very low permeability through the blood-brain barrier (BBB), which is a major barrier to the application of these neuroprotective amino acids in the therapy of brain injury. In this study, we aimed to develop a therapeutic strategy by which one chitosan nanoparticle could deliver two different neuroprotective amino acids, glycine and proline, into the rat ischemic brain to confer neuroprotection in a rat model of cerebral ischemia-reperfusion (I/R) injury. Using the ion cross-linking method, we developed a preparation in which one chitosan nanoparticle was simultaneously loaded with glycine and proline (AA-NPs). We evaluated the therapeutic potential of AA-NPs in both cell and animal models of cerebral ischemic stroke. We found that the levels of glycine and proline were decreased in the brain tissues of I/R rats. AA-NPs delivered both glycine and proline into the ischemic brain and reduced ischemic neuronal death in both in vitro and in vivo. These results indicated that the dual delivery of glycine and proline via AA-NPs mediated neuroprotective effects, as evidenced by the reduction of neuronal death in both cellular and animal models of ischemic stroke. AA-NPs provide an efficient and potential delivery strategy by which multiple neuroprotective amino acids can be transported into the ischemic brain simultaneously for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jingchen Gao
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Xiyuran Wang
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Qi Wan
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China.
| |
Collapse
|
3
|
Wei L, Chen S, Deng X, Liu Y, Wang H, Gao X, Huang Y. Metabolomic discoveries for early diagnosis and traditional Chinese medicine efficacy in ischemic stroke. Biomark Res 2024; 12:63. [PMID: 38902829 PMCID: PMC11188286 DOI: 10.1186/s40364-024-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Ischemic stroke (IS), a devastating cerebrovascular accident, presents with high mortality and morbidity. Following IS onset, a cascade of pathological changes, including excitotoxicity, inflammatory damage, and blood-brain barrier disruption, significantly impacts prognosis. However, current clinical practices struggle with early diagnosis and identifying these alterations. Metabolomics, a powerful tool in systems biology, offers a promising avenue for uncovering early diagnostic biomarkers for IS. By analyzing dynamic metabolic profiles, metabolomics can not only aid in identifying early IS biomarkers but also evaluate Traditional Chinese Medicine (TCM) efficacy and explore its mechanisms of action in IS treatment. Animal studies demonstrate that TCM interventions modulate specific metabolite levels, potentially reflecting their therapeutic effects. Identifying relevant metabolites in cerebral ischemia patients holds immense potential for early diagnosis and improved outcomes. This review focuses on recent metabolomic discoveries of potential early diagnostic biomarkers for IS. We explore variations in metabolites observed across different ages, genders, disease severity, and stages. Additionally, the review examines how specific TCM extracts influence IS development through metabolic changes, potentially revealing their mechanisms of action. Finally, we emphasize the importance of integrating metabolomics with other omics approaches for a comprehensive understanding of IS pathophysiology and TCM efficacy, paving the way for precision medicine in IS management.
Collapse
Affiliation(s)
- Liangzhe Wei
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Siqi Chen
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuchun Liu
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
4
|
Hu W, Kong X, Cui Y, Wang H, Gao J, Wang X, Chen S, Li X, Li S, Che F, Wan Q. Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:2033-2048. [PMID: 37843800 DOI: 10.1007/s12035-023-03687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, 27 East Jiefang Road, Linyi, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China.
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao High-tech Industrial Development District, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
5
|
Chen J, Zhuang Y, Zhang Y, Liao H, Liu R, Cheng J, Zhang Z, Sun J, Gao J, Wang X, Chen S, Zhang L, Che F, Wan Q. A synthetic BBB-permeable tripeptide GCF confers neuroprotection by increasing glycine in the ischemic brain. Front Pharmacol 2022; 13:950376. [PMID: 36046828 PMCID: PMC9420865 DOI: 10.3389/fphar.2022.950376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: We and others have previously demonstrated that glycine is neuroprotective in cerebral ischemia-reperfusion injury. But glycine has low permeability to the blood–brain barrier (BBB). To deliver glycine into the ischemic brain to confer neuroprotection, we designed a novel glycine-containing and BBB-permeable tripeptide, the H-glycine-cysteine-phenylalanine-OH (GCF). Methods: For the synthesis of GCF, phenylalanine was included to increase the BBB permeability of the tripeptide. Cysteine was conjugated with glycine to enable the release of glycine from GCF. With the use of immunofluorescence labeling and HPLC assays, we measured the distribution and level of GCF. We used TTC labeling, LDH release, and MTT assays to evaluate the neuroprotective effect of GCF. Results: Following intravenous injection in a rat model of cerebral ischemia-reperfusion injury, GCF was intensively distributed in the ischemic neurons. Intravenous injection of GCF, but not the non-cleavable acetyl-GCF, resulted in the elevation of glycine in the ischemic brain. GCF but not acetyl-GC conferred neuroprotection in ischemic stroke animals. Conclusion: GCF protects against cerebral ischemia-reperfusion injury in the rat. In contrast to peptide drugs that exert therapeutic effect by interfering with signaling interaction, GCF acts as a BBB shuttle and prodrug to deliver glycine to confer neuroprotection, representing a novel therapeutic strategy for acute ischemic stroke.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Huabao Liao
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Rui Liu
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Zhifeng Zhang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jiangdong Sun
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Jingchen Gao
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiyuran Wang
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Shujun Chen
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Liang Zhang
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People’s Hospital, Qingdao University, Linyi, China
- *Correspondence: Qi Wan, ; Fengyuan Che,
| | - Qi Wan
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co., Ltd., Qingdao, China
- *Correspondence: Qi Wan, ; Fengyuan Che,
| |
Collapse
|
6
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
7
|
Gan Z, Zhang M, Xie D, Wu X, Hong C, Fu J, Fan L, Wang S, Han S. Glycinergic Signaling in Macrophages and Its Application in Macrophage-Associated Diseases. Front Immunol 2021; 12:762564. [PMID: 34675940 PMCID: PMC8523992 DOI: 10.3389/fimmu.2021.762564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidences support that amino acids direct the fate decision of immune cells. Glycine is a simple structural amino acid acting as an inhibitory neurotransmitter. Besides, glycine receptors as well as glycine transporters are found in macrophages, indicating that glycine alters the functions of macrophages besides as an inhibitory neurotransmitter. Mechanistically, glycine shapes macrophage polarization via cellular signaling pathways (e.g., NF-κB, NRF2, and Akt) and microRNAs. Moreover, glycine has beneficial effects in preventing and/or treating macrophage-associated diseases such as colitis, NAFLD and ischemia-reperfusion injury. Collectively, this review highlights the conceivable role of glycinergic signaling for macrophage polarization and indicates the potential application of glycine supplementation as an adjuvant therapy in macrophage-associated diseases.
Collapse
Affiliation(s)
- Zhending Gan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Donghui Xie
- Nanchang Academy of Agricultural Sciences, Nanchang, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Changming Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian Fu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijuan Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Sufang Han
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Servetti M, Pisciotta L, Tassano E, Cerminara M, Nobili L, Boeri S, Rosti G, Lerone M, Divizia MT, Ronchetto P, Puliti A. Neurodevelopmental Disorders in Patients With Complex Phenotypes and Potential Complex Genetic Basis Involving Non-Coding Genes, and Double CNVs. Front Genet 2021; 12:732002. [PMID: 34621295 PMCID: PMC8490884 DOI: 10.3389/fgene.2021.732002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous class of brain diseases, with a complex genetic basis estimated to account for up to 50% of cases. Nevertheless, genetic diagnostic yield is about 20%. Array-comparative genomic hybridization (array-CGH) is an established first-level diagnostic test able to detect pathogenic copy number variants (CNVs), however, most identified variants remain of uncertain significance (VUS). Failure of interpretation of VUSs may depend on various factors, including complexity of clinical phenotypes and inconsistency of genotype-phenotype correlations. Indeed, although most NDD-associated CNVs are de novo, transmission from unaffected parents to affected children of CNVs with high risk for NDDs has been observed. Moreover, variability of genetic components overlapped by CNVs, such as long non-coding genes, genomic regions with long-range effects, and additive effects of multiple CNVs can make CNV interpretation challenging. We report on 12 patients with complex phenotypes possibly explained by complex genetic mechanisms, including involvement of antisense genes and boundaries of topologically associating domains. Eight among the 12 patients carried two CNVs, either de novo or inherited, respectively, by each of their healthy parents, that could additively contribute to the patients’ phenotype. CNVs overlapped either known NDD-associated or novel candidate genes (PTPRD, BUD13, GLRA3, MIR4465, ABHD4, and WSCD2). Bioinformatic enrichment analyses showed that genes overlapped by the co-occurring CNVs have synergistic roles in biological processes fundamental in neurodevelopment. Double CNVs could concur in producing deleterious effects, according to a two-hit model, thus explaining the patients’ phenotypes and the incomplete penetrance, and variable expressivity, associated with the single variants. Overall, our findings could contribute to the knowledge on clinical and genetic diagnosis of complex forms of NDD.
Collapse
Affiliation(s)
- Martina Servetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Livia Pisciotta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Elisa Tassano
- Human Genetics Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Boeri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Giulia Rosti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Margherita Lerone
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Patrizia Ronchetto
- Human Genetics Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
9
|
Li Z, Ma Y, Zhou F, Jia X, Zhan J, Tan H, Wang X, Yang T, Liu Q. Identification of MicroRNA-Potassium Channel Messenger RNA Interactions in the Brain of Rats With Post-traumatic Epilepsy. Front Mol Neurosci 2021; 13:610090. [PMID: 33597846 PMCID: PMC7882489 DOI: 10.3389/fnmol.2020.610090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dysregulated expression of microRNAs and potassium channels have been reported for their contributions to seizure onset. However, the microRNA–potassium channel gene interactions in traumatic brain injury-induced post-traumatic epilepsy (PTE) remain unknown. Methods: PTE was induced in male rats by intracranial injection with ferrous chloride (0.1 mol/L, 1 μl/min) at the right frontal cortex. Electroencephalography was recorded at 60 min, as well as day 1, 7, and 30, and the behavioral seizures were assessed before injection and at different time points after injection. Rats were killed on day 30 after injection. The right frontal cortex samples were collected and subjected to high throughput messenger RNA (mRNA) and microRNA sequencing. A network of differentially expressed potassium channel mRNAs and microRNAs was constructed using OryCun2.0 and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The differential mRNA and microRNA expressions were verified using quantitative real-time-PCR. The microRNA–mRNA was subject to the Pearson correlation analysis. Results: A PTE rat model was successfully established, as evidenced by behavioral seizures and epileptiform discharges on electroencephalography in PTE rats compared with sham rats. Among the 91 mRNAs and 40 microRNAs that were significantly differentially expressed in the PTE rat brain, 4 mRNAs and 10 microRNAs were associated with potassium channels. Except for potassium calcium-activated channel subfamily N member 2, the other three potassium channel mRNAs were negatively correlated with seven microRNAs. These microRNA–mRNA pairs were enriched in annotations and pathways related to neuronal ion channels and neuroinflammation. Quantitative real-time-PCR and correlation analysis verified negative correlations in miR-449a-5p-KCNH2, miR-98-5p-KCNH2, miR-98-5p-KCNK15, miR-19b-3p-KCNK15, and miR-301a-3p-KCNK15 pairs. Conclusion: We identified microRNA–potassium channel mRNA interactions associated with PTE, providing potential diagnostic markers and therapeutic targets for PTE.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Yixun Ma
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Fengjuan Zhou
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xiao Jia
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Jingjing Zhan
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Huachao Tan
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xu Wang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Tiantong Yang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Quan Liu
- Hubei University of Police, Wuhan, China
| |
Collapse
|
10
|
Zhao D, Qin XP, Chen SF, Liao XY, Cheng J, Liu R, Lei Y, Zhang ZF, Wan Q. PTEN Inhibition Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury Through PTEN/E2F1/β-Catenin Pathway. Front Mol Neurosci 2019; 12:281. [PMID: 31866820 PMCID: PMC6906195 DOI: 10.3389/fnmol.2019.00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with highest mortality and morbidity. We have previously demonstrated that dipotassium bisperoxo (picolinato) oxovanadate (V), (bpV[pic]) inhibits phosphatase and tensin homolog (PTEN) and activates extracellular signal-regulated kinase (ERK)1/2. In this study, we examined the effect of bpV[pic] in the rat ICH model in vivo and the hemin-induced injury model in rat cortical cultures. The rat model of ICH was created by injecting autologous blood into the striatum, and bpV[pic] was intraperitoneally injected. The effects of bpV[pic] were evaluated by neurological tests, Fluoro-Jade C (FJC) staining, and Nissl staining. We demonstrate that bpV[pic] attenuates ICH-induced brain injury in vivo and hemin-induced neuron injury in vitro. The expression of E2F1 was increased, but β-catenin expression was decreased after ICH, and the altered expressions of E2F1 and β-catenin after ICH were blocked by bpV[pic] treatment. Our results further show that bpV[pic] increases β-catenin expression through downregulating E2F1 in cortical neurons and prevents hemin-induced neuronal damage through E2F1 downregulation and subsequent upregulation of β-catenin. By testing the effect of PTEN-siRNA, PTEN cDNA, or combined use of ERK1/2 inhibitor and bpV[pic] in cultured cortical neurons after hemin-induced injury, we provide evidence suggesting that PTEN inhibition by bpV[pic] confers neuroprotection through E2F1 and β-catenin pathway, but the neuroprotective role of ERK1/2 activation by bpV[pic] cannot be excluded.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Feng Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Xin-Yu Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Jing Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Lei Y, Zhang ZF, Lei RX, Wang S, Zhuang Y, Liu AC, Wu Y, Chen J, Tang JC, Pan MX, Liu R, Liao WJ, Feng YG, Wan Q, Zheng M. DJ-1 Suppresses Cytoplasmic TDP-43 Aggregation in Oxidative Stress-Induced Cell Injury. J Alzheimers Dis 2019; 66:1001-1014. [PMID: 30372676 DOI: 10.3233/jad-180460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DJ-1 (also called PARK7) is a multifunctional redox-sensitive protein that is protective against oxidative stress-induced cell death. TAR DNA-binding protein 43 (TDP-43) is a major protein component of pathological inclusions in amyotrophic lateral sclerosis and frontotemporal dementia. Reducing aberrant aggregation of TDP-43 is a potential approach to prevent cell death. To investigate whether DJ-1 might inhibit TDP-43 aggregation to exert a protective effect in oxidative stress-induced injury, we tested the protein level and subcellular localization of TDP-43 and DJ-1 in SH-SY5Y cells transfected with wild-type DJ-1, DJ-1 mutant (L166P) cDNA, or DJ-1 siRNA. We show that oxidative stress induced by paraquat leads to the formation of cytosolic TDP-43 aggregation in SH-SY5Y cells. DJ-1 overexpression decreases paraquat-induced cytoplasmic accumulation of TDP-43 in SH-SY5Y cells and protects against paraquat-induced cell death. Transfection of DJ-1 L166P mutant or DJ-1 siRNA leads to increased cytosolic aggregation of TDP-43 in paraquat-treated SH-SY5Y cells and promotes cell death. These data suggest that DJ-1 may protect against oxidative stress-induced cell death through the suppression of cytoplasmic TDP-43 aggregation.
Collapse
Affiliation(s)
- Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rui-Xue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Shu Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - An-Chun Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yan Wu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Wei-Jing Liao
- Center for Brain Clinic, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Yu-Gong Feng
- Research Institute of Neuroregeneration & Neurorehabilitation, and Department of Neurosurgery, Qingdao University, Qingdao, China
| | - Qi Wan
- Research Institute of Neuroregeneration & Neurorehabilitation, and Department of Neurosurgery, Qingdao University, Qingdao, China
| | - Mei Zheng
- Department of Neurology, Beijing University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Wang H, Zhai R, Sun Q, Wu Y, Wang Z, Fang J, Kong X. Metabolomic Profile of Posner-Schlossman Syndrome: A Gas Chromatography Time-of-Flight Mass Spectrometry-Based Approach Using Aqueous Humor. Front Pharmacol 2019; 10:1322. [PMID: 31780941 PMCID: PMC6855217 DOI: 10.3389/fphar.2019.01322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023] Open
Abstract
The Posner-Schlossman syndrome (PSS) is a disease with clinically recurrent unilateral anterior uveitis with markedly elevated intraocular pressure (IOP) and subsequent progression to optic neuropathy. Retrospective studies have reported increased annual incidence of PSS, especially in China. While currently, the clinical management of PSS is still challenging. Metabolomics is considered to be a sensitive approach for the development of novel targeted therapeutics because of its direct elucidation of pathophysiological mechanisms. Therefore, we adopted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) technology-based non-targeted metabolomics approach to measure comprehensive metabolic profiles of aqueous humor (AH) samples obtained from patients with PSS, with an aim to demonstrate the underlying pathophysiology, identify potential biomarkers specific to PSS, and develop effective treatment strategies. A comparative analysis was used to indicate the distinct metabolites of PSS. Pathway analysis was conducted using MetaboAnalyst 4.0 to explore the metabolic reprogramming pathways involved in PSS. Logistic regression and receiver-operating characteristic (ROC) analyses were employed to evaluate the diagnostic capability of selected metabolites. Comparative analysis revealed a clear separation between PSS and control groups. Fourteen novel differentiating metabolites from AH samples obtained from patients with PSS were highlighted. Pathway analysis identified 11 carbohydrate, amino acid metabolism and energy metabolism pathways as the major disturbed pathways associated with PSS. The abnormal lysine degradation metabolism, valine-leucine-isoleucine biosynthesis, and citrate circle were considered to weigh the most in the development of PSS. The ROC analysis implied that the combination of glycine and homogentisic acid could serve as potential biomarkers for the discrimination of control and PSS groups. In conclusion, these results revealed for the first time the identity of important metabolites and pathways contributing to the development/progression of PSS, enabled the better understanding of the mechanism of PSS, and might lead to the development of metabolic biomarkers and novel therapeutic strategies to restrict the development/progression of PSS.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ruyi Zhai
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ying Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhujian Wang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangmei Kong
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
13
|
MicroRNA-26b/PTEN Signaling Pathway Mediates Glycine-Induced Neuroprotection in SAH Injury. Neurochem Res 2019; 44:2658-2669. [DOI: 10.1007/s11064-019-02886-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
14
|
Liu R, Liao XY, Tang JC, Pan MX, Chen SF, Lu PX, Lu LJ, Zhang ZF, Zou YY, Bu LH, Qin XP, Wan Q. BpV(pic) confers neuroprotection by inhibiting M1 microglial polarization and MCP-1 expression in rat traumatic brain injury. Mol Immunol 2019; 112:30-39. [PMID: 31075560 DOI: 10.1016/j.molimm.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of motor and cognitive impairment in young adults. It is associated with high mortality rates and very few effective treatment options. Bisperoxovanadium (pyridine-2-carboxyl) [bpV(pic)] is an commercially available inhibitor of Phosphatase and tensin homolog (PTEN). Previous studies have shown that bpV(pic) has protective effects in central nervous system. However, the role of bpV(pic) in TBI is unclear. In this study we aimed to investigate the neuroprotective role of bpV(pic) in rat TBI model. We found that injection of bpV(pic) significantly reduces brain edema and neurological dysfunction after TBI and this is mediated by AKT pathway. TBI is known to promote the M1 pro-inflammatory phenotype of microglial polarization and this effect is inhibited by bpV(pic) treatment which, instead promotes M2 microglial polarization in vivo and in vitro. We also found evidence of bpV(pic)-regulated neuroinflammation mediated by AKT activation and NF-κB p65 inhibition. BpV(pic) treatment also suppressed microglia in the peri-TBI region. MCP-1 is known to recruit monocytes and macrophages to promote inflammation, we show that bpV(pic) can inhibit TBI-induced up-regulation of MCP-1 via the AKT/NF-κB p65 signaling pathway. Taken together, our findings demonstrate that bpV(pic) plays a neuroprotective role in rat TBI, which may be achieved by inhibiting M1 microglia polarization and MCP-1 expression by modulating AKT/NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China; Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Song-Feng Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Pei-Xin Lu
- School of Information Management, Wuhan University, Wuhan, Hubei, 430072, China
| | - Long J Lu
- School of Information Management, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Li-Hong Bu
- PET-CT/MRI Center & Molecular Imaging Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang district, Wuhan, Hubei, 430060, China.
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
15
|
Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, Bu LH, Wan Q. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:1704-1714. [DOI: 10.4049/jimmunol.1801166] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
|
16
|
Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 2018; 37:223. [PMID: 30217221 PMCID: PMC6138891 DOI: 10.1186/s13046-018-0898-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) triggers a battery of intracellular signaling pathways, especially PI3K/Akt, playing important roles in the pathogenesis of multiple diseases, such as cancer, neurodevelopmental disorders, cardiovascular dysfunction and so on. Therefore PTEN might be a biomarker for various diseases, and targeting the abnormal expression level of PTEN is anticipated to offer novel therapeutic avenues. Recently, noncoding RNAs (ncRNAs) have been reported to regulate protein expression, and it is definite that PTEN expression is controlled by ncRNAs epigenetically or posttranscriptionally as well. Herein, we provide a review on current understandings of the regulation of PTEN by ncRNAs, which could contribute to the development of novel approaches to the diseases with abnormal expression of PTEN.
Collapse
Affiliation(s)
- Wang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| |
Collapse
|
17
|
ERK 1/2 Activation Mediates the Neuroprotective Effect of BpV(pic) in Focal Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2018; 43:1424-1438. [PMID: 29882124 PMCID: PMC6006215 DOI: 10.1007/s11064-018-2558-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
Bisperoxovanadium (pyridine-2-carboxyl) [bpV(pic)] is a commercially available PTEN inhibitor. Previous studies from us and others have shown that bpV(pic) confers neuroprotection in cerebral ischemia injury. We set up to determine whether ERK 1/2 activation plays a role in bpV(pic)-induced neuroprotective effect in cerebral ischemia injury. We found that the phosphorylation levels of Akt (p-AKT) and ERK1/2 (p-ERK 1/2) were down-regulated after cerebral ischemia–reperfusion injury. The injection of bpV(pic) after injury not only increased the level of p-AKT but also the level of p-ERK 1/2. While the inhibition of PTEN mediated the up-regulatation of p-AKT and p-ERK 1/2 by bpV(pic). Interestingly, the ERK 1/2 activation induced by bpV(pic) was also independent of the inhibition of PTEN. Our results indicate that bpV(pic) protects against OGD-induced neuronal death and promotes the functional recovery of stroke animals through PTEN inhibition and ERK 1/2 activation, respectively. This study suggests that the effect of bpV(pic) on ERK 1/2 signaling should be considered while using bpV(pic) as a PTEN inhibitor.
Collapse
|
18
|
Zhao D, Chen J, Zhang Y, Liao HB, Zhang ZF, Zhuang Y, Pan MX, Tang JC, Liu R, Lei Y, Wang S, Qin XP, Feng YG, Chen Y, Wan Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem Biophys Res Commun 2018; 501:85-91. [PMID: 29698679 DOI: 10.1016/j.bbrc.2018.04.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 01/12/2023]
Abstract
Glycine has been shown to protect against ischemic stroke through various mechanisms. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) which antagonize Akt-dependent cell survival has been linked to neuronal damage. However, whether glycine has a neuroprotective property in intracerebral hemorrhage (ICH) was unknown. This study aimed to determine the protective effect of glycine in rats ICH. Adult male Sprague-Dawley (SD) rats were subjected to left striatum infusion of autologous blood. ICH animals received glycine (0.2-3 mg/kg, icv) at 1 h after ICH with or without pre-injection of Akt Inhibitor IV (100 μM, 2 μl, icv) 0.5 h prior to glycine treatment. Our results showed that in the perihematomal area PTEN was up-regulated in the early stage after ICH. However, glycine treatment decreased PTEN protein level and increased the phosphorylation level of AKT (p-AKT) in the perihematomal area. With the administration of glycine, neuronal death was significantly reduced and Evans blue leakage was alleviated as well as the brain edema after ICH. Moreover, hematoma volume was decreased and neurobehavioral outcome was improved. Nevertheless, Akt Inhibitor IV abolished the neuroprotective effects of glycine after ICH. Together, our findings demonstrate, for the first time, the protective role of glycine on ICH rats, and suggest that the neuroprotective effect of glycine was mediated through PTEN/Akt signal pathway.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Biomedical Engineering, School of Basic Medical Sciences, WuhanUniversity, Wuhan 430071, China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, 442000 China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, 26 Shengli Street, Wuhan, 430013, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, 442000 China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Shu Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Xing-Ping Qin
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Yu-Gong Feng
- Institute of Neuroregeneration& Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, WuhanUniversity, Wuhan 430071, China.
| | - Qi Wan
- Institute of Neuroregeneration& Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
19
|
Ye L, Wang Y, Nie L, Qian S, Xu M. MiR-130 exerts tumor suppressive function on the tumorigenesis of human non-small cell lung cancer by targeting PTEN. Am J Transl Res 2017; 9:1856-1865. [PMID: 28469790 PMCID: PMC5411933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) have been involved in some human malignancies and correlated with tumor progression. The dysregulation of miR-130 is found in various cancers and correlated with tumor proliferation and apoptosis. However, its expression and function in non-small cell lung cancer (NSCLC) have not been investigated yet. In this study, we demonstrated that miR-130 is significantly down-regulated in NSCLC tissue samples and cell lines. Low miR-130 expression was closely associated with lymph node metastasis, late stages of disease progression and diminished survival in NSCLC patients. The up-regulation of miR-130 could significantly inhibit NSCLC cell growth and enhance cell apoptosis both in vitro and in vivo. Whereas inhibition of miR-130 exerted opposite effects. Furthermore, dual-luciferase reporter assay confirmed that PTEN was regulated by miR-130 directly, and the knockdown of PTEN markedly abrogated the anti-growth effect of miR-130. Additionally, miR-130 was found positively correlated with PTEN in NSCLC specimens. In conclusion, our results suggested that the expression of miR-130 is significantly associated with the growth and apoptosis of NSCLS cells by targeting PTEN, whilst miR-130 may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Ling Ye
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou, Guangdong, China
| | - Yiming Wang
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou, Guangdong, China
| | - Lin Nie
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou, Guangdong, China
| | - Shen Qian
- Armed Police Corps Hospital of Guangdong ProvinceGuangzhou, Guangdong, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan UniversityGuangzhou, Guangdong, China
| |
Collapse
|