1
|
Murphy KB, Hu D, Wolfs L, Rohde SK, Fauró GL, Geric I, Mancuso R, De Strooper B, Marzi SJ. The APOE isoforms differentially shape the transcriptomic and epigenomic landscapes of human microglia xenografted into a mouse model of Alzheimer's disease. Nat Commun 2025; 16:4883. [PMID: 40419479 PMCID: PMC12106835 DOI: 10.1038/s41467-025-60099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Microglia play a key role in the response to amyloid beta in Alzheimer's disease (AD). In this context, the major transcriptional response of microglia is the upregulation of APOE, the strongest late-onset AD risk gene. Of its three isoforms, APOE2 is thought to be protective, while APOE4 increases AD risk. We hypothesised that the isoforms change gene regulatory patterns that link back to biological function by shaping microglial transcriptomic and chromatin landscapes. We use RNA- and ATAC-sequencing to profile gene expression and chromatin accessibility of human microglia xenotransplantated into the brains of male APPNL-G-F mice. We identify widespread transcriptomic and epigenomic differences which are dependent on APOE genotype and are corroborated across the profiling assays. Our results indicate that impaired microglial proliferation, migration and immune responses may contribute to the increased risk for late-onset AD in APOE4 carriers, while increased phagocytic capabilities and DNA-binding of the vitamin D receptor in APOE2 microglia may contribute to the isoform's protective role.
Collapse
Affiliation(s)
- Kitty B Murphy
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Di Hu
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Susan K Rohde
- VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Gonzalo Leguía Fauró
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ivana Geric
- VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Renzo Mancuso
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
| |
Collapse
|
2
|
Murphy KB, Ye Y, Tsalenchuk M, Nott A, Marzi SJ. CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders. CELL REPORTS METHODS 2025; 5:101032. [PMID: 40300607 DOI: 10.1016/j.crmeth.2025.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 05/01/2025]
Abstract
Epigenomic profiling of the brain has largely been done on bulk tissues, limiting our understanding of cell type-specific epigenetic changes in disease states. Here, we introduce cell type-specific histone acetylation score (CHAS), a computational tool for inferring cell type-specific signatures in bulk brain H3K27ac profiles. We applied CHAS to >300 H3K27ac chromatin immunoprecipitation sequencing samples from studies of Alzheimer's disease, Parkinson's disease, autism spectrum disorder, schizophrenia, and bipolar disorder in bulk postmortem brain tissue. In addition to recapitulating known disease-associated shifts in cellular proportions, we identified cell type-specific biological insights into brain-disorder-associated regulatory variation. In most cases, genetic risk and epigenetic dysregulation targeted different cell types, suggesting independent mechanisms. For instance, genetic risk of Alzheimer's disease was exclusively enriched within microglia, while epigenetic dysregulation predominantly fell within oligodendrocyte-specific H3K27ac regions. In addition, reanalysis of the original datasets using CHAS enabled identification of biological pathways associated with each neurological and psychiatric disorder at cellular resolution.
Collapse
Affiliation(s)
- Kitty B Murphy
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK.
| | - Yuqian Ye
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria Tsalenchuk
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Farhangdoost N, Liao C, Liu Y, Rochefort D, Aboasali F, Pietrantonio A, Alda M, Dion PA, Chaumette B, Khayachi A, Rouleau GA. Transcriptomic and epigenomic consequences of heterozygous loss-of-function mutations in AKAP11, a shared risk gene for bipolar disorder and schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-03040-x. [PMID: 40316678 DOI: 10.1038/s41380-025-03040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
The gene A-kinase anchoring protein 11 (AKAP11) recently emerged as a shared risk factor between bipolar disorder and schizophrenia, driven by large-effect loss-of-function (LoF) variants. Recent research has uncovered the neurophysiological characteristics and synapse proteomics profile of Akap11-mutant mouse models. Considering the role of AKAP11 in binding cAMP-dependent protein kinase A (PKA) and mediating phosphorylation of numerous substrates, such as transcription factors and epigenetic regulators, and given that chromatin alterations have been implicated in the brains of patients with bipolar disorder and schizophrenia, it is crucial to uncover the transcriptomic and chromatin dysregulations following the heterozygous knockout of AKAP11, particularly in human neurons. This study uses genome-wide approaches to investigate such aberrations in human induced pluripotent stem cell (iPSC)-derived neurons. We show the impact of heterozygous AKAP11 LoF mutations on the gene expression landscape and profile the DNA methylation and histone acetylation modifications. Altogether we highlight the involvement of aberrant activity of intergenic and intronic enhancers, which are enriched in PBX homeobox 2 (PBX2) and Nuclear Factor-1 (NF1) known binding motifs, respectively, in transcription dysregulations of genes mainly involved in DNA-binding transcription factor activity, actin binding and cytoskeleton regulation, and cytokine receptor binding. We also show significant downregulation of pathways related to ribosome structure and function, a pathway also altered in BD and SCZ post-mortem brain tissues and heterozygous Akap11-KO mice synapse proteomics. A better understanding of the dysregulations resulting from haploinsufficiency in AKAP11 improves our knowledge of the biological roots and pathophysiology of BD and SCZ, paving the way for better therapeutic approaches.
Collapse
Affiliation(s)
- Nargess Farhangdoost
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Calwing Liao
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yumin Liu
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Farah Aboasali
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Alessia Pietrantonio
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), Institut Pasteur (CNRS UMR3571), GHU Paris Psychiatrie et Neurosciences, Paris, France.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Anouar Khayachi
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Abbasova L, Urbanaviciute P, Hu D, Ismail JN, Schilder BM, Nott A, Skene NG, Marzi SJ. CUT&Tag recovers up to half of ENCODE ChIP-seq histone acetylation peaks. Nat Commun 2025; 16:2993. [PMID: 40148272 PMCID: PMC11950320 DOI: 10.1038/s41467-025-58137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
DNA-protein interactions have traditionally been profiled via chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). Cleavage Under Targets & Tagmentation (CUT&Tag) is a rapidly expanding technique that enables the profiling of such interactions in situ at high sensitivity. However, thorough evaluation and benchmarking against established ChIP-seq datasets are lacking. Here, we comprehensively benchmarked CUT&Tag for H3K27ac and H3K27me3 against published ChIP-seq profiles from ENCODE in K562 cells. Combining multiple new and published CUT&Tag datasets, there was an average recall of 54% known ENCODE peaks for both histone modifications. We tested peak callers MACS2 and SEACR and identified optimal peak calling parameters. Overall, peaks identified by CUT&Tag represent the strongest ENCODE peaks and show the same functional and biological enrichments as ChIP-seq peaks identified by ENCODE. Our workflow systematically evaluates the merits of methodological adjustments, providing a benchmarking framework for the experimental design and analysis of CUT&Tag studies.
Collapse
Affiliation(s)
- Leyla Abbasova
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paulina Urbanaviciute
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Di Hu
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Joy N Ismail
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexi Nott
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nathan G Skene
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
5
|
Kiltschewskij DJ, Reay WR, Geaghan MP, Atkins JR, Xavier A, Zhang X, Watkeys OJ, Carr VJ, Scott RJ, Green MJ, Cairns MJ. Alteration of DNA Methylation and Epigenetic Scores Associated With Features of Schizophrenia and Common Variant Genetic Risk. Biol Psychiatry 2024; 95:647-661. [PMID: 37480976 DOI: 10.1016/j.biopsych.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Unpacking molecular perturbations associated with features of schizophrenia is a critical step toward understanding phenotypic heterogeneity in this disorder. Recent epigenome-wide association studies have uncovered pervasive dysregulation of DNA methylation in schizophrenia; however, clinical features of the disorder that account for a large proportion of phenotypic variability are relatively underexplored. METHODS We comprehensively analyzed patterns of DNA methylation in a cohort of 381 individuals with schizophrenia from the deeply phenotyped Australian Schizophrenia Research Bank. Epigenetic changes were investigated in association with cognitive status, age of onset, treatment resistance, Global Assessment of Functioning scores, and common variant polygenic risk scores for schizophrenia. We subsequently explored alterations within genes previously associated with psychiatric illness, phenome-wide epigenetic covariance, and epigenetic scores. RESULTS Epigenome-wide association studies of the 5 primary traits identified 662 suggestively significant (p < 6.72 × 10-5) differentially methylated probes, with a further 432 revealed after controlling for schizophrenia polygenic risk on the remaining 4 traits. Interestingly, we uncovered many probes within genes associated with a variety of psychiatric conditions as well as significant epigenetic covariance with phenotypes and exposures including acute myocardial infarction, C-reactive protein, and lung cancer. Epigenetic scores for treatment-resistant schizophrenia strikingly exhibited association with clozapine administration, while epigenetic proxies of plasma protein expression, such as CCL17, MMP10, and PRG2, were associated with several features of schizophrenia. CONCLUSIONS Our findings collectively provide novel evidence suggesting that several features of schizophrenia are associated with alteration of DNA methylation, which may contribute to interindividual phenotypic variation in affected individuals.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Michael P Geaghan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Xiajie Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Oliver J Watkeys
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Melissa J Green
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| |
Collapse
|
6
|
Liu W, Deng W, Chen M, Dong Z, Zhu B, Yu Z, Tang D, Sauler M, Lin C, Wain LV, Cho MH, Kaminski N, Zhao H. A statistical framework to identify cell types whose genetically regulated proportions are associated with complex diseases. PLoS Genet 2023; 19:e1010825. [PMID: 37523391 PMCID: PMC10414598 DOI: 10.1371/journal.pgen.1010825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/10/2023] [Accepted: 06/12/2023] [Indexed: 08/02/2023] Open
Abstract
Finding disease-relevant tissues and cell types can facilitate the identification and investigation of functional genes and variants. In particular, cell type proportions can serve as potential disease predictive biomarkers. In this manuscript, we introduce a novel statistical framework, cell-type Wide Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell types whose genetically regulated proportions (GRPs) are disease/trait-associated. On simulated and real GWAS data, cWAS showed good statistical power with newly identified significant GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a powerful tool to reveal cell types associated with complex diseases mediated by GRPs.
Collapse
Affiliation(s)
- Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Ming Chen
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Zihan Dong
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Zhaolong Yu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Daiwei Tang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Chen Lin
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Choi S, Schilder BM, Abbasova L, Murphy AE, Skene NG. EpiCompare: R package for the comparison and quality control of epigenomic peak files. BIOINFORMATICS ADVANCES 2023; 3:vbad049. [PMID: 37250110 PMCID: PMC10209526 DOI: 10.1093/bioadv/vbad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Summary EpiCompare combines a variety of downstream analysis tools to compare, quality control and benchmark different epigenomic datasets. The package requires minimal input from users, can be run with just one line of code and provides all results of the analysis in a single interactive HTML report. EpiCompare thus enables downstream analysis of multiple epigenomic datasets in a simple, effective and user-friendly manner. Availability and implementation EpiCompare is available on Bioconductor (≥ v3.15): https://bioconductor.org/packages/release/bioc/html/EpiCompare.html; all source code is publicly available via GitHub: https://github.com/neurogenomics/EpiCompare; documentation website https://neurogenomics.github.io/EpiCompare; and EpiCompare DockerHub repository: https://hub.docker.com/repository/docker/neurogenomicslab/epicompare.
Collapse
Affiliation(s)
- Sera Choi
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London W12 0BZ, UK
| | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London W12 0BZ, UK
| | - Leyla Abbasova
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Alan E Murphy
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London W12 0BZ, UK
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London W12 0BZ, UK
| |
Collapse
|
8
|
Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson's disease? Ageing Res Rev 2022; 79:101648. [PMID: 35595184 DOI: 10.1016/j.arr.2022.101648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
After fifteen years of genome-wide association studies (GWAS) in Parkinson's disease (PD), what have we learned? Addressing this question will help catalogue the progress made towards elucidating disease mechanisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing heritability in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true potential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction (PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for a true clinical translatability of PD genetic findings.
Collapse
|
9
|
Vaillancourt K, Chen GG, Fiori L, Maussion G, Yerko V, Théroux JF, Ernst C, Labonté B, Calipari E, Nestler EJ, Nagy C, Mechawar N, Mash DC, Turecki G. Methylation of the tyrosine hydroxylase gene is dysregulated by cocaine dependence in the human striatum. iScience 2021; 24:103169. [PMID: 34693223 PMCID: PMC8517202 DOI: 10.1016/j.isci.2021.103169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023] Open
Abstract
Cocaine dependence is a chronic, relapsing disorder caused by lasting changes in the brain. Animal studies have identified cocaine-related alterations in striatal DNA methylation; however, it is unclear how methylation is related to cocaine dependence in humans. We generated methylomic profiles of the nucleus accumbens using human postmortem brains from a cohort of individuals with cocaine dependence and healthy controls (n = 25 per group). We found hypermethylation in a cluster of CpGs within the gene body of tyrosine hydroxylase (TH), containing a putative binding site for the early growth response 1 (EGR1) transcription factor, which is hypermethylated in the caudate nucleus of cocaine-dependent individuals. We replicated this finding and found it to be specific to striatal neuronal nuclei. Furthermore, this locus demonstrates enhancer activity which is attenuated by methylation and enhanced by EGR1 overexpression. These results suggest that cocaine dependence alters the epigenetic regulation of dopaminergic signaling genes.
Collapse
Affiliation(s)
- Kathryn Vaillancourt
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gang G. Chen
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Laura Fiori
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Gilles Maussion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, QC, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Jean-François Théroux
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Carl Ernst
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Benoit Labonté
- Centre de Recherche Cervo, Université Laval, Québec, QC, Canada
| | - Erin Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Deborah C. Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
11
|
Cocaine-related DNA methylation in caudate neurons alters 3D chromatin structure of the IRXA gene cluster. Mol Psychiatry 2021; 26:3134-3151. [PMID: 33046833 PMCID: PMC8039060 DOI: 10.1038/s41380-020-00909-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
Epigenetic mechanisms, like those involving DNA methylation, are thought to mediate the relationship between chronic cocaine dependence and molecular changes in addiction-related neurocircuitry, but have been understudied in human brain. We initially used reduced representation bisulfite sequencing (RRBS) to generate a methylome-wide profile of cocaine dependence in human post-mortem caudate tissue. We focused on the Iroquois Homeobox A (IRXA) gene cluster, where hypomethylation in exon 3 of IRX2 in neuronal nuclei was associated with cocaine dependence. We replicated this finding in an independent cohort and found similar results in the dorsal striatum from cocaine self-administering mice. Using epigenome editing and 3C assays, we demonstrated a causal relationship between methylation within the IRX2 gene body, CTCF protein binding, three-dimensional (3D) chromatin interaction, and gene expression. Together, these findings suggest that cocaine-related hypomethylation of IRX2 contributes to the development and maintenance of cocaine dependence through alterations in 3D chromatin structure in the caudate nucleus.
Collapse
|
12
|
Hannon E, Dempster EL, Mansell G, Burrage J, Bass N, Bohlken MM, Corvin A, Curtis CJ, Dempster D, Di Forti M, Dinan TG, Donohoe G, Gaughran F, Gill M, Gillespie A, Gunasinghe C, Hulshoff HE, Hultman CM, Johansson V, Kahn RS, Kaprio J, Kenis G, Kowalec K, MacCabe J, McDonald C, McQuillin A, Morris DW, Murphy KC, Mustard CJ, Nenadic I, O'Donovan MC, Quattrone D, Richards AL, Rutten BPF, St Clair D, Therman S, Toulopoulou T, Van Os J, Waddington JL, Wellcome Trust Case Control Consortium (WTCCC), CRESTAR consortium, Sullivan P, Vassos E, Breen G, Collier DA, Murray RM, Schalkwyk LS, Mill J. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. eLife 2021; 10:e58430. [PMID: 33646943 PMCID: PMC8009672 DOI: 10.7554/elife.58430] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Eilis Hannon
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Emma L Dempster
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Georgina Mansell
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Nick Bass
- Division of Psychiatry, University College LondonLondonUnited Kingdom
| | - Marc M Bohlken
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HeidelberglaanUtrechtNetherlands
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James HospitalDublinIreland
| | - Charles J Curtis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
| | - David Dempster
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
| | | | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
| | - Fiona Gaughran
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- National Psychosis Service, South London and Maudsley NHS Foundation TrustLondonUnited Kingdom
| | - Michael Gill
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College DublinDublinIreland
| | - Amy Gillespie
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- Department of Psychiatry, Medical Sciences Division, University of OxfordOxfordUnited Kingdom
| | - Cerisse Gunasinghe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Hilleke E Hulshoff
- Department of Psychiatry, University Medical Center UtrechtUtrechtNetherlands
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| | - Viktoria Johansson
- Department of Medical Epidemiology and Biostatistics Sweden, Karolinska InstitutetStockholmSweden
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care ServicesStockholmSweden
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of HelsinkiHelsinkiFinland
- Department of Public Health, University of HelsinkiHelsinkiFinland
| | - Gunter Kenis
- Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
| | - Kaarina Kowalec
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- College of Pharmacy, University of ManitobaWinnipegCanada
| | - James MacCabe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Medicine, National University of Ireland GalwayGalwayIreland
| | - Andrew McQuillin
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Division of Psychiatry, University College LondonLondonUnited Kingdom
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in IrelandDublinIreland
| | - Colette J Mustard
- Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and IslandsInvernessUnited Kingdom
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/ Marburg University Hospital UKGMMarburgGermany
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
| | - Alexander L Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Bart PF Rutten
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
| | - David St Clair
- The Institute of Medical Sciences, Univeristy of AberdeenAberdeenUnited Kingdom
| | - Sebastian Therman
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and WelfareHelsinkiFinland
| | - Timothea Toulopoulou
- Department of Psychology and National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent UniversityAnkaraTurkey
| | - Jim Van Os
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in IrelandDublinIreland
| | - Wellcome Trust Case Control Consortium (WTCCC)
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HeidelberglaanUtrechtNetherlands
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James HospitalDublinIreland
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
- APC Microbiome Ireland, University College CorkCorkIreland
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- National Psychosis Service, South London and Maudsley NHS Foundation TrustLondonUnited Kingdom
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College DublinDublinIreland
- Department of Psychiatry, Medical Sciences Division, University of OxfordOxfordUnited Kingdom
- Department of Psychiatry, University Medical Center UtrechtUtrechtNetherlands
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- Department of Medical Epidemiology and Biostatistics Sweden, Karolinska InstitutetStockholmSweden
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care ServicesStockholmSweden
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Molecular Medicine FIMM, University of HelsinkiHelsinkiFinland
- Department of Public Health, University of HelsinkiHelsinkiFinland
- Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
- College of Pharmacy, University of ManitobaWinnipegCanada
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Medicine, National University of Ireland GalwayGalwayIreland
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Department of Psychiatry, Royal College of Surgeons in IrelandDublinIreland
- Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and IslandsInvernessUnited Kingdom
- Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/ Marburg University Hospital UKGMMarburgGermany
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
- The Institute of Medical Sciences, Univeristy of AberdeenAberdeenUnited Kingdom
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and WelfareHelsinkiFinland
- Department of Psychology and National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent UniversityAnkaraTurkey
- Molecular and Cellular Therapeutics, Royal College of Surgeons in IrelandDublinIreland
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel HillChapel HillUnited States
- Neuroscience Genetics, Eli Lilly and CompanySurreyUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
- School of Life Sciences, University of EssexColchesterUnited Kingdom
| | | | - Patrick Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel HillChapel HillUnited States
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
| | | | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| |
Collapse
|
13
|
Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nat Commun 2020; 11:4873. [PMID: 32978376 PMCID: PMC7519165 DOI: 10.1038/s41467-020-18526-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a phenotypically and genetically heterogeneous neurodevelopmental disorder. Despite this heterogeneity, previous studies have shown patterns of molecular convergence in post-mortem brain tissue from autistic subjects. Here, we integrate genome-wide measures of mRNA expression, miRNA expression, DNA methylation, and histone acetylation from ASD and control brains to identify a convergent molecular subtype of ASD with shared dysregulation across both the epigenome and transcriptome. Focusing on this convergent subtype, we substantially expand the repertoire of differentially expressed genes in ASD and identify a component of upregulated immune processes that are associated with hypomethylation. We utilize eQTL and chromosome conformation datasets to link differentially acetylated regions with their cognate genes and identify an enrichment of ASD genetic risk variants in hyperacetylated noncoding regulatory regions linked to neuronal genes. These findings help elucidate how diverse genetic risk factors converge onto specific molecular processes in ASD.
Collapse
|
14
|
Bertram L, Tanzi RE. Genomic mechanisms in Alzheimer's disease. Brain Pathol 2020; 30:966-977. [PMID: 32657454 PMCID: PMC8018017 DOI: 10.1111/bpa.12882] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and, owing to its increasing prevalence, represents one of the leading public health problems in aging populations. The molecular causes underlying the onset and progression of AD are manifold and hitherto still incompletely understood. Research over nearly four decades has clearly delineated genetics to play a crucial role in AD susceptibility, likely in concert with non-genetic factors. The field has gained considerable momentum and novel insights over the past 10 years owing to the advent and application of high-throughput genomics technologies in datasets of increasing size. In this contribution to the Mini-Symposium on the Molecular Etiology of Alzheimer's Disease, we review the current status of genomics research in AD. To this end, we scrutinize and discuss the main findings from the two largest and most current genome-wide association studies (GWAS) in the field, that is, the papers published by Jansen et al (Nat Genet 51:404-413) and Kunkle et al (Nat Genet 51:414-430). Particular focus is laid on genomics findings overlapping across both studies and on the novel insights they provide in terms of improving our understanding of the "genomic mechanisms" underlying this devastating disease.
Collapse
Affiliation(s)
- Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)Institutes of Neurogenetics and CardiogeneticsUniversity of LübeckLübeckGermany
- Centre for Lifespan Changes in Brain and CognitionDepartment of PsychologyUniversity of OsloOsloNorway
| | - Rudolph E. Tanzi
- McCance Center for Brain Health and Genetics and Aging Research UnitDepartment of NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMA
| |
Collapse
|
15
|
Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzón-Sandoval J, Bowden R, Alegre-Abarrategui J, Wade-Martins R, Webber C. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat Commun 2020; 11:4183. [PMID: 32826893 PMCID: PMC7442652 DOI: 10.1038/s41467-020-17876-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
We describe a human single-nuclei transcriptomic atlas for the substantia nigra (SN), generated by sequencing approximately 17,000 nuclei from matched cortical and SN samples. We show that the common genetic risk for Parkinson’s disease (PD) is associated with dopaminergic neuron (DaN)-specific gene expression, including mitochondrial functioning, protein folding and ubiquitination pathways. We identify a distinct cell type association between PD risk and oligodendrocyte-specific gene expression. Unlike Alzheimer’s disease (AD), we find no association between PD risk and microglia or astrocytes, suggesting that neuroinflammation plays a less causal role in PD than AD. Beyond PD, we find associations between SN DaNs and GABAergic neuron gene expression and multiple neuropsychiatric disorders. Conditional analysis reveals that distinct neuropsychiatric disorders associate with distinct sets of neuron-specific genes but converge onto shared loci within oligodendrocytes and oligodendrocyte precursors. This atlas guides our aetiological understanding by associating SN cell type expression profiles with specific disease risk. The substantia nigra is important in neurological disease, particularly movement disorders. Here the authors provide a single cell transcriptomic atlas for the human substantia nigra.
Collapse
Affiliation(s)
- Devika Agarwal
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Cynthia Sandor
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Viola Volpato
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Tara M Caffrey
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX2 7BN, UK
| | - Javier Alegre-Abarrategui
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK.,Department of Neuropathology, University of Oxford, Oxford, UK.,Division of Brain Sciences, Imperial College London, London, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Caleb Webber
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK. .,UK Dementia Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Diaz-Ortiz ME, Chen-Plotkin AS. Omics in Neurodegenerative Disease: Hope or Hype? Trends Genet 2020; 36:152-159. [PMID: 31932096 PMCID: PMC7065657 DOI: 10.1016/j.tig.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
The past 15 years have seen a boom in the use and integration of 'omic' approaches (limited here to genomic, transcriptomic, and epigenomic techniques) to study neurodegenerative disease in an unprecedented way. We first highlight advances in and the limitations of using such approaches in the neurodegenerative disease literature, with a focus on Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). We next discuss how these studies can advance human health in the form of generating leads for downstream mechanistic investigation or yielding polygenic risk scores (PRSs) for prognostication. However, we argue that these approaches constitute a new form of molecular description, analogous to clinical or pathological description, that alone does not hold the key to solving these complex diseases.
Collapse
Affiliation(s)
- Maria E Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|