1
|
Kim S, Cho CS, Jang HY, Jo DH, Kim JH. Ca V3.3 T-type calcium channels contribute to carboplatin resistance in retinoblastoma. J Biol Chem 2025; 301:108199. [PMID: 39826688 PMCID: PMC11850143 DOI: 10.1016/j.jbc.2025.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Carboplatin resistance in retinoblastoma, an aggressive pediatric intraocular tumor, remains a major clinical challenge in treatment. This study elucidates the role of T-type calcium channels in carboplatin resistance using human retinoblastoma Y79 cells. We generated carboplatin-resistant Y79 (Y79CR) cells and characterized their electrophysiological properties. Patch-clamp recordings revealed a subpopulation of enlarged Y79CR cells (i.e., giant cells) with hyperpolarized resting membrane potentials, reduced input resistance, and increased T-type calcium currents. Quantitative RT-PCR analysis confirmed upregulation of CaV3.3 mRNA in Y79CR cells, identifying CaV3.3 as the predominant channel mediating these currents. Pharmacological inhibition of CaV3.3 using ML218 and TAT-C3P attenuated the sustained currents and partially restored carboplatin sensitivity, as evidenced by decreased IC50 values in Y79CR cells. These findings demonstrate a critical role for T-type calcium channels, particularly CaV3.3, in mediating chemoresistance in retinoblastoma. Our results suggest that targeting these channels may provide a potential strategy to enhance the efficacy of carboplatin-based therapy in retinoblastoma treatment.
Collapse
Affiliation(s)
- Sooyun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Tomida S, Ishima T, Nagai R, Aizawa K. T-Type Voltage-Gated Calcium Channels: Potential Regulators of Smooth Muscle Contractility. Int J Mol Sci 2024; 25:12420. [PMID: 39596484 PMCID: PMC11594734 DOI: 10.3390/ijms252212420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging evidence has indicated a possible link between attenuation of contractility in aortic smooth muscle cells and pathogenesis of aortic dissection, as revealed through comprehensive, multi-omic analyses of familial thoracic aortic aneurysm and dissection models. While L-type voltage-gated calcium channels have been extensively investigated for their roles in smooth muscle contraction, more recent investigations have suggested that downregulation of T-type voltage-gated calcium channels, rather than their L-type counterparts, may be more closely associated with impaired contractility observed in vascular smooth muscle cells. This review provides a detailed examination of T-type voltage-gated calcium channels, highlighting their structure, electrophysiology, biophysics, expression patterns, functional roles, and potential mechanisms through which their downregulation may contribute to reduced contractile function. Furthermore, the application of multi-omic approaches in investigating calcium channels is discussed.
Collapse
Affiliation(s)
- Shota Tomida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- School of Medicine, Faculty of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
3
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
4
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Zhou SM, Yuan WB, Li JZ, Chen HQ, Zeng Y, Wang N, Fan J, Zhang Z, Xu Y, Cao J, Liu WB. TET1 involved in bisphenol A induced TM3 Leydig cell toxicity by regulating Cav3.3 hydroxymethylation. CHEMOSPHERE 2023; 312:137171. [PMID: 36370755 DOI: 10.1016/j.chemosphere.2022.137171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), an important environmental pollutant, is known to damage reproductive development. However, the underlying epigenetic mechanism in Leydig cells during BPA exposure has not been explored in detail. In this study, TM3 Leydig cells were treated with BPA (0, 20, 40 and 80 μM) for 72 h. The differentially expressed TET1 cell model was constructed to explore the mechanism of BPA-induced cytotoxicity. Results showed that BPA exposure significantly inhibited cell viability and increased apoptosis of TM3 Leydig cells. Meanwhile, the mRNA of TET1, Cav3.2 and Cav3.3 decreased significantly with the increase of BPA exposure. Importantly, TET1 significantly promoted proliferation of TM3 Leydig cells and inhibited apoptosis. Differentially expressed TET1 significantly affected BPA-induced toxicity in TM3 Leydig cells. Notably, TET1 elevated the mRNA levels of Cav3.2 and Cav3.3. MeDIP and hMeDIP confirmed that TET1 regulated the expression of Cav3.3 through DNA hydroxymethylation. Our study firstly presented that TET1 participated in BPA-induced toxicity in TM3 Leydig cells through regulating Cav3.3 hydroxymethylation modification. These findings suggest that TET1 acts as a potential epigenetic marker for reproductive toxicity induced by BPA exposure and may provide a new direction for the research on male reproductive damage.
Collapse
Affiliation(s)
- Shi-Meng Zhou
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Montera M, Goins A, Cmarko L, Weiss N, Westlund KN, Alles SRA. Trigeminal neuropathic pain is alleviated by inhibition of Ca v3.3 T-type calcium channels in mice. Channels (Austin) 2021; 15:31-37. [PMID: 33283622 PMCID: PMC7781641 DOI: 10.1080/19336950.2020.1859248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022] Open
Abstract
In this brief report, we demonstrate that the Cav3.3 T-type voltage-gated calcium channel subtype is involved in our FRICT-ION model of chronic trigeminal neuropathic pain. We first showed that the Cacna1i gene encoding Cav3.3 is significantly upregulated in whole trigeminal ganglia of FRICT-ION mice compared to controls at week 10 post-injury. We confirmed protein upregulation of Cav3.3 compared to controls using Western blot analysis of whole trigeminal ganglia tissues. Finally, we demonstrated that intraperitoneal injection of a selective TAT-based Cav3.3 blocking peptide in FRICT-ION mice significantly reduces Cav3.3 protein expression at the peak anti-allodynic effect (4 hrs post-injection) of the attenuated neuropathic pain behavior. We also suggest that blockade of Cav3.3 may be more effective in attenuating trigeminal neuropathic pain in female than male FRICT-ION mice. Therefore, blocking or attenuating Cav3.3 function may be an effective strategy for the treatment of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Marena Montera
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Aleyah Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Leos Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Karin N. Westlund
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sascha R. A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|