1
|
He J, Guo J, Liu S, Li H, Ma Y, Ma S, Hu Z, Zhao W, Tan M, Liu W, Liu B. Targeted degradation of GOLM1 by CC-885 via CRL4-CRBN E3 ligase inhibits hepatocellular carcinoma progression. Cell Signal 2025; 130:111665. [PMID: 39986359 DOI: 10.1016/j.cellsig.2025.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, emphasizing the urgent need for novel therapeutic strategies. In this study, we investigate the anti-tumor potential of CC-885, a cereblon (CRBN) modulator known for its efficacy in targeting neoplastic cells through proteasomal degradation pathways. Our findings demonstrate that CC-885 exhibits potent anti-tumor activity against HCC. In vitro assays revealed that CC-885 significantly inhibits the proliferation, migration, and invasion of HCC cells. These effects were corroborated in vivo, where CC-885 markedly suppressed tumor growth and angiogenesis in chick embryos and impeded the progression of orthotopic liver tumors in murine models. Mechanistically, CC-885 selectively reduces GOLM1 protein levels via ubiquitin-mediated proteasomal degradation. Knockdown of GOLM1 recapitulated the anti-proliferative effects of CC-885, while overexpression of GOLM1 conferred resistance to CC-885-induced apoptosis and growth inhibition. Further investigation revealed that CC-885 facilitates the interaction between GOLM1 and the E3 ubiquitin ligase CRBN, promoting the ubiquitination and subsequent degradation of GOLM1. Transcriptomic analyses showed that both CC-885 treatment and GOLM1 knockdown modulate critical pathways involved in apoptosis. These findings position CC-885 as a promising therapeutic candidate for HCC, acting primarily through CRBN-dependent degradation of GOLM1, and support its further development for clinical application.
Collapse
Affiliation(s)
- Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingli Guo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunfang Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan 430030, China
| | - Hanxue Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongke Hu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wensi Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Bahmani F, Shayanmanesh M, Safari M, Alaei A, Yasaman Pouriafar, Rasti Z, Zaker F, Rostami S, Damerchiloo F, Safa M. Bone marrow microenvironment in myelodysplastic neoplasms: insights into pathogenesis, biomarkers, and therapeutic targets. Cancer Cell Int 2025; 25:175. [PMID: 40349084 PMCID: PMC12065391 DOI: 10.1186/s12935-025-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Myelodysplastic neoplasms (MDS) represent a heterogeneous group of malignant hematopoietic stem and progenitor cell (HSPC) disorders characterized by cytopenia, ineffective hematopoiesis, as well as the potential to progress to acute myeloid leukemia (AML). The pathogenesis of MDS is influenced by intrinsic factors, such as genetic insults, and extrinsic factors, including altered bone marrow microenvironment (BMM) composition and architecture. BMM is reprogrammed in MDS, initially to prevent the development of the disease but eventually to provide a survival advantage to dysplastic cells. Recently, inflammation or age-related inflammation in the bone marrow has been identified as a key pathogenic mechanism for MDS. Inflammatory signals trigger stress hematopoiesis, causing HSPCs to emerge from quiescence and resulting in MDS development. A better understanding of the role of the BMM in the pathogenesis of MDS has opened up new avenues for improving diagnosis, prognosis, and treatment of the disease. This article provides a comprehensive review of the current knowledge regarding the significance of the BMM to MDS pathophysiology and highlights recent advances in developing innovative therapies.
Collapse
Affiliation(s)
- Forouzan Bahmani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayanmanesh
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Safari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirarsalan Alaei
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Yasaman Pouriafar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rasti
- Department of Hematology, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Damerchiloo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jiang C, Sun H, Jiang Z, Tian W, Cang S, Yu J. Targeting the CD47/SIRPα pathway in malignancies: recent progress, difficulties and future perspectives. Front Oncol 2024; 14:1378647. [PMID: 39040441 PMCID: PMC11261161 DOI: 10.3389/fonc.2024.1378647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Since its initial report in 2015, CD47 has garnered significant attention as an innate immune checkpoint, raising expectations to become the next "PD-1." The optimistic early stages of clinical development spurred a flurry of licensing deals for CD47-targeted molecules and company mergers or acquisitions for related assets. However, a series of setbacks unfolded recently, starting with the July 2023 announcement of discontinuing the phase 3 ENHANCE study on Magrolimab plus Azacitidine for higher-risk myelodysplastic syndromes (MDS). Subsequently, in August 2023, the termination of the ASPEN-02 program, assessing Evorpacept in combination with Azacitidine in MDS patients, was disclosed due to insufficient improvement compared to Azacitidine alone. These setbacks have cast doubt on the feasibility of targeting CD47 in the industry. In this review, we delve into the challenges of developing CD47-SIRPα-targeted drugs, analyze factors contributing to the mentioned setbacks, discuss future perspectives, and explore potential solutions for enhancing CD47-SIRPα-targeted drug development.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, Henan University People’s Hospital and Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Sun
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Shundong Cang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, Henan University People’s Hospital and Zhengzhou University, Zhengzhou, Henan, China
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Rajakumaraswamy N, Gandhi M, Wei AH, Sallman DA, Daver NG, Mo S, Iqbal S, Karalliyadda R, Chen M, Wang Y, Vyas P. Real-world Effectiveness of Azacitidine in Treatment-Naive Patients With Higher-risk Myelodysplastic Syndromes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:260-268.e2. [PMID: 38216397 DOI: 10.1016/j.clml.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
INTRODUCTION Azacitidine (AZA) is an approved frontline therapy for higher-risk myelodysplastic syndromes (HR-MDS); however, poor survival denotes unmet needs to increase depth/duration of response (DOR). METHODS This retrospective study with patient chart review evaluated AZA effectiveness in 382 treatment-naive patients with HR-MDS from a US electronic health record (EHR)-derived database. Responses were assessed using International Working Group (IWG) 2006 criteria; real-world equivalents were derived from EHRs. Primary endpoint was IWG 2006-based complete remission rate (CRR). Secondary endpoints were EHR-based CRR, IWG 2006- and EHR-based objective response rates (ORRs), duration of CR, DOR, progression-free survival, time-to-next-treatment, and overall survival (OS). RESULTS Using IWG 2006 criteria, the CRR was 7.9% (n = 30); median duration of CR was 12.0 months (95% CI, 7.7-15.6). In poor cytogenetic risk (n = 101) and TP53 mutation (n = 46) subgroups, CRRs were 7.9% (n = 8) and 8.7% (n = 4), respectively. ORR was 62.8% (n = 240), including a hematologic improvement rate (HIR) of 46.9% (n = 179). Using EHR-based data, CRR was 3.7% (n = 14); median duration of CR was 13.5 months (95% CI, 4.5-21.5). ORR was 67.8% (n = 259), including an HIR of 29.3% (n = 112). Median follow-up was 12.9 months; median OS was 17.9 months (95% CI, 15.5-21.7). CONCLUSIONS Consistent with other studies, CRRs and median OS with AZA in treatment-naive patients with HR-MDS were low in this large, real-world cohort. Novel agents/combinations are urgently needed to improve these outcomes in HR-MDS.
Collapse
Affiliation(s)
| | | | - Andrew H Wei
- The Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Naval G Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | - Paresh Vyas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Bănescu C, Tripon F, Muntean C. The Genetic Landscape of Myelodysplastic Neoplasm Progression to Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5734. [PMID: 36982819 PMCID: PMC10058431 DOI: 10.3390/ijms24065734] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic neoplasm (MDS) represents a heterogeneous group of myeloid disorders that originate from the hematopoietic stem and progenitor cells that lead to the development of clonal hematopoiesis. MDS was characterized by an increased risk of transformation into acute myeloid leukemia (AML). In recent years, with the aid of next-generation sequencing (NGS), an increasing number of molecular aberrations were discovered, such as recurrent mutations in FLT3, NPM1, DNMT3A, TP53, NRAS, and RUNX1 genes. During MDS progression to leukemia, the order of gene mutation acquisition is not random and is important when considering the prognostic impact. Moreover, the co-occurrence of certain gene mutations is not random; some of the combinations of gene mutations seem to have a high frequency (ASXL1 and U2AF1), while the co-occurrence of mutations in splicing factor genes is rarely observed. Recent progress in the understanding of molecular events has led to MDS transformation into AML and unraveling the genetic signature has paved the way for developing novel targeted and personalized treatments. This article reviews the genetic abnormalities that increase the risk of MDS transformation to AML, and the impact of genetic changes on evolution. Selected therapies for MDS and MDS progression to AML are also discussed.
Collapse
Affiliation(s)
- Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Carmen Muntean
- Pediatric Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
Gurnari C, Xie Z, Zeidan AM. How I Manage Transplant Ineligible Patients with Myelodysplastic Neoplasms. Clin Hematol Int 2023; 5:8-20. [PMID: 36574201 PMCID: PMC10063738 DOI: 10.1007/s44228-022-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022] Open
Abstract
Myelodysplastic neoplasms, formerly known as myelodysplastic syndromes (MDS), represent a group of clonal disorders characterized by a high degree of clinical and molecular heterogeneity, and an invariable tendency to progress to acute myeloid leukemia. MDS typically present in the elderly with cytopenias of different degrees and bone marrow dysplasia, the hallmarks of the disease. Allogeneic hematopoietic stem cell transplant is the sole curative approach to date. Nonetheless, given the disease's demographics, only a minority of patients can benefit from this procedure. Currently used prognostic schemes such as the Revised International Prognostic Scoring System (R-IPSS), and most recently the molecular IPSS (IPSS-M), guide clinical management by dividing MDS into two big categories: lower- and higher-risk cases, based on a cut-off score of 3.5. The main clinical problem of the lower-risk group is represented by the management of cytopenias, whereas the prevention of secondary leukemia progression is the goal for the latter. Herein, we discuss the non-transplant treatment of MDS, focusing on current practice and available therapeutic options, while also presenting new investigational agents potentially entering the MDS therapeutic arsenal in the near future.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Medicine, Yale School of Medicine, and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
7
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Xie Z, Chen EC, Stahl M, Zeidan AM. Prognostication in myelodysplastic syndromes (neoplasms): Molecular risk stratification finally coming of age. Blood Rev 2022; 59:101033. [PMID: 36357283 DOI: 10.1016/j.blre.2022.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Accurate risk prognostication is central to the management of myelodysplastic syndromes, given the widely heterogeneous clinical outcomes of these bone marrow failure disorders. Over the past decade, the rapidly expanding compendium of molecular lesions in myelodysplastic syndrome (MDS) has offered unprecedented insight into MDS pathobiology. Recently, molecular prognostic models such as the Molecular International Prognostic Scoring System (IPSS-M) have leveraged the wellspring of genetic data to improve upon traditional risk models such as the Revised IPSS (IPSS-R), but also added substantial complexity. In this review, we highlight early MDS prognostic models, the significant advancements in MDS genomics since then, and the recent advent of molecular based prognostic models. We conclude by discussing important opportunities and challenges in the management of MDS as we arrive at the molecular frontier.
Collapse
|