1
|
Guo J, Liu C, Pan J, Yang J. Relationship between diabetes and risk of gastric cancer: A systematic review and meta-analysis of cohort studies. Diabetes Res Clin Pract 2022; 187:109866. [PMID: 35398143 DOI: 10.1016/j.diabres.2022.109866] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Patients with diabetes mellitus (DM) are at increased risk of developing several cancers; however, there is a lack of consensus on the relationship between gastric cancer (GC) and DM. This study aimed to explore the association between GC and DM based on the type and duration of DM. We searched nine databases from inception to December 1, 2021, and 40 cohort studies that evaluated the relationship between DM and the incidence of GC were included in this review. The summary relative ratios for the relationship of GC incidence with type 1 DM (T1DM) and type 2 DM (T2DM) were estimated using the fixed-effect and random-effect models, respectively. The risk of GC was 46% and 14% higher in individuals with T1DM and T2DM, respectively, than in those without diabetes. The risk of GC development in patients with diabetes showed a U-shape curve of change with DM duration. Our meta-analysis suggested that both T1DM and T2DM present a higher risk of GC development. The risk of GC may be influenced by the different time windows following the onset of diabetes. Future studies are required to explore the mechanism by which the duration of DM, antidiabetic medication use, and sex affect this association.
Collapse
Affiliation(s)
- Jinru Guo
- School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Changqin Liu
- Department of Endocrinology and Diabetes, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Jinshui Pan
- Department of Hepatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jinqiu Yang
- School of Medicine, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
2
|
Kheradmand P, Vallian Boroojeni S, Esmaeili-Mahani S. MiR-221 Expression Level Correlates with Insulin-Induced Doxorubicin Resistance in MCF-7 Breast Cancer Cells. CELL JOURNAL 2021; 23:329-334. [PMID: 34308576 PMCID: PMC8286461 DOI: 10.22074/cellj.2021.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022]
Abstract
Objective Insulin induces anti-cancer drugs resistance in tumor cells. However, the mechanism by which insulin
induces its drug resistance effects is not clear. In the present study, the expression of miR-221 in insulin-treated MCF-7
cells in response to the anti-cancer drug doxorubicin, was investigated.
Materials and Methods In this experimental study, cell viability was evaluated using MTT (3-[4,5 dimethylthiazol-2-
yl]-2,5-diphenyl tetrazolium bromide) assay. The expression level of miR-221 was determined by real time polymerase
chain reaction (RT-PCR). Furthermore, the expression of insulin receptor (IR) and cleaved caspase-3 protein was
assessed by Western blotting.
Results The results showed that treatment of the MCF-7 cells with insulin reduced the anti-cancer effects of
doxorubicin. Viability of naive and insulin-treated cells following doxorubicin (DOX) treatment was 62.9 ± 5.7% and 79
± 7.2%, respectively. Furthermore, the expression of miR-221 in insulin-treated cells was significantly increased (2.6
± 0.37-fold change) as compared with the control group. A significant decrease (26%) in the expression of caspase-3
protein and a significant increase (24%) in IR were observed in insulin-induced drug resistant MCF-7 cells as compared
to the naive cells.
Conclusion Together, the data showed a positive correlation between the expression of miR-221 and IR expression,
but a negative correlation with caspase3 expression, in insulin-induced drug resistant MCF-7 breast cancer cells. This
could suggest a new mechanism for the role of miR-221 in cancer drugs resistance induced by insulin.
Collapse
Affiliation(s)
- Parisa Kheradmand
- Department of Cellular and Molecular Biology and Microbology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sadeq Vallian Boroojeni
- Department of Cellular and Molecular Biology and Microbology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | | |
Collapse
|
3
|
Shan Y, Li Y, Han H, Jiang C, Zhang H, Hu J, Sun H, Zhu J. Insulin reverses choriocarcinoma 5- fluorouracil resistance. Bioengineered 2021; 12:2087-2094. [PMID: 34034636 PMCID: PMC8806519 DOI: 10.1080/21655979.2021.1931643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Choriocarcinoma (CC) is a gestational trophoblastic tumor secondary to a gravid or non-gravid pregnancy. It is characterized by rapid growth, high invasion, and high metastatic potential and chemotherapy resistance that significantly affect survival rate of CC patients. Insulin is implicated in alleviation of chemotherapy resistance in CC. However, the mechanism of reversing resistance in CC has not been explored. Our purpose was to explore insulin effect on 5-fluorouracil (5-FU) resistance in CC and elucidate its potential mechanism in vitro and in vivo. CKK-8, colony formation, Transwell, and flow cytometry were used to detect the effect of insulin on 5-FU resistance in CC cells JEG-3 and JARS. Xenograft mice were used to evaluate the effect of insulin on 5-FU resistance. Results showed that insulin combined with 5-FU suppressed cell viability by 30% in JEG-3 and 43% in JAR compared with 5-FU alone in 72 h. What’s more, insulin combined with 5-FU promoted cell apoptosis, inhibited cell proliferation, migration, and phosphorylation of survivin at residue threonine 34 (Thr34) and drug resistance-related proteins, P-GP and MRP1 levels (p < 0.05). In vivo experiment showed Insulin combined with 5-FU suppressed tumor volume by 35% compared with 5-FU alone and 73% compared with control in CC xenograft mice. In summary, the findings of this study show that insulin reversed chemoresistance of CC cells to 5-FU by inhibiting phosphorylation of survivin. Development of a therapeutic strategy that combines insulin with the chemotherapeutic agent 5-FU has a great potential in improving survival of CC patients.
Collapse
Affiliation(s)
- Ying Shan
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Yanyi Li
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China.,Department of Health Science, Graduate School of Medical, Osaka University, Osaka, Japan
| | - Hongyu Han
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Cui Jiang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Jiachang Hu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Huanmei Sun
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Jianglong Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| |
Collapse
|
4
|
He X, Feng J, Yan S, Zhang Y, Zhong C, Liu Y, Shi D, Abagyan R, Xiang T, Zhang J. Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102311. [PMID: 33011392 DOI: 10.1016/j.nano.2020.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/05/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022]
Abstract
A novel biomimetic nanovesicle-loaded supramolecular enzyme-based therapeutics has been developed. Here, using a biomimetic lipid-D-α-tocopherol polyethylene glycol succinate (TPGS) hybrid semi-permeable membrane, cyclodextrin supramolecular docking, metal-ion-aided coordination complexing, we combined multiple functional motifs into a single biomimetic microbioreactor-supramolecular nanovesicle (MiSuNv) that allowed effective transport of arginine deiminase (ADI) to hepatic tumor cells to enhance arginine depletion. We compared two intercalated enzyme-carrying supermolecular motifs mainly comprising of 2-hydroxypropyl-β-cyclodextrin and sulfobutyl-ether-β-cyclodextrin, the only two cyclodextrin derivatives approved for injection by the United States Food and Drug Administration. The ADI-specific antitumor effects were enhanced by TPGS (one constituent of MiSuNv, having synergistic antitumor effects), as ADI was separated from adverse external environment by a semi-permeable membrane and sequestered in a favorable internal microenvironment with an optimal pH and metal-ion combination. ADI@MiSuNv contributed to cell cycle arrest, apoptosis and autophagy through the enhanced efficacy of enzyme treatment against Hep3B xenograft tumors in rats.
Collapse
Affiliation(s)
- Xiaoqian He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Feng
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Oliveira H, Roma-Rodrigues C, Santos A, Veigas B, Brás N, Faria A, Calhau C, de Freitas V, Baptista PV, Mateus N, Fernandes AR, Fernandes I. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Sci Rep 2019; 9:789. [PMID: 30692585 PMCID: PMC6349854 DOI: 10.1038/s41598-018-37283-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022] Open
Abstract
Anthocyanins may protect against a myriad of human diseases. However few studies have been conducted to evaluate their bioavailability so their absorption mechanism remains unclear. This study aimed to evaluate the role of two glucose transporters (GLUT1 and GLUT3) in anthocyanins absorption in the human gastric epithelial cells (MKN-28) by using gold nanoparticles to silence these transporters. Anthocyanins were purified from purple fleshed sweet potatoes and grape skin. Silencing of GLUT1 and/or GLUT3 mRNA was performed by adding AuNP@GLUT1 and/or AuNP@GLUT3 to MKN-28 cells. Downregulation of mRNA expression occurred concomitantly with the reduction in protein expression. Malvidin-3-O-glucoside (Mv3glc) transport was reduced in the presence of either AuNP@GLUT1 and AuNP@GLUT3, and when both transporters were blocked simultaneously. Peonidin-3-(6'-hydroxybenzoyl)-sophoroside-5-glucoside (Pn3HBsoph5glc) and Peonidin-3-(6'-hydroxybenzoyl-6″-caffeoyl)-sophoroside-5-glucoside (Pn3HBCsoph5glc) were assayed to verify the effect of the sugar moiety esterification at glucose B in transporter binding. Both pigments were transported with a lower transport efficiency compared to Mv3glc, probably due to steric hindrance of the more complex structures. Interestingly, for Pn3HBCsoph5glc although the only free glucose is at C5 and the inhibitory effect of the nanoparticles was also observed, reinforcing the importance of glucose on the transport regardless of its position or substitution pattern. The results support the involvement of GLUT1 and GLUT3 in the gastric absorption of anthocyanins.
Collapse
Affiliation(s)
- Hélder Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Ana Santos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Bruno Veigas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Natércia Brás
- REQUIMTE/UCIBIO, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Ana Faria
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School, Faculdade Ciências Médicas Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.,CINTESIS, Center for Health Technology and Services Research, Porto, Portugal.,Comprehensive Health Research Centre, NOVA Medical School, Faculdade Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism, NOVA Medical School, Faculdade Ciências Médicas Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.,CINTESIS, Center for Health Technology and Services Research, Porto, Portugal.,Comprehensive Health Research Centre, NOVA Medical School, Faculdade Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Iva Fernandes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Jiang J, Ren HY, Geng GJ, Mi YJ, Liu Y, Li N, Yang SY, Shen DY. Oncogenic activity of insulin in the development of non-small cell lung carcinoma. Oncol Lett 2018; 15:447-452. [PMID: 29387228 PMCID: PMC5768075 DOI: 10.3892/ol.2017.7347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Insulin is associated with the progression of numerous different types of cancer. However, the association between insulin and non-small cell lung carcinoma (NSCLC) remains unknown. The aim of the present study was to evaluate the role of insulin in the proliferation, migration and drug resistance of NSCLC cells, and to determine whether the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway was involved. NSCLC cells were treated with insulin in the absence or presence of LY294002, an inhibitor of the PI3K/Akt pathway. Following co-incubation with insulin, cell proliferation and drug resistance were measured by MTT; cell migration was examined by wound healing and Transwell assays; and the expression of cyclin A, proliferating cell nuclear antigen (PCNA), p27, matrix metalloproteinase 3 (MMP3), P-gp and proteins involved in the PI3K/Akt pathway were assessed via western blotting. The results of the current study demonstrated that insulin enhanced the proliferation, migration and drug resistance of NSCLC cells. Correspondingly, insulin upregulated the expression of cyclin A, PCNA, MMP3, P-gp and downregulated p27 expression in NSCLC cells. Following treatment with insulin, it was demonstrated that phospho-Akt expression increased in a dose-dependent manner. However, the effects of insulin on NSCLC cells was inhibited by the PI3K/Akt pathway inhibitor LY294002. Therefore, the results of the current study indicate that insulin is associated with the development of NSCLC by activating the PI3K/Akt pathway. This may improve understanding of the mechanism of action of insulin in NSCLC in the future.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Hong-Yue Ren
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Guo-Jun Geng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yan-Jun Mi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu Liu
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Ning Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shu-Yu Yang
- Department of Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Dong-Yan Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
7
|
Wei Y, Pu X, Zhao L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (Review). Oncol Rep 2017; 37:3159-3166. [PMID: 28440434 DOI: 10.3892/or.2017.5593] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022] Open
Abstract
Cancer is one of the most common causes of death and remains the first in China and the second in the US. The common treatments for cancer include surgery, radiation, chemotherapy, targeted therapy and immunotherapy, while chemotherapy remains one of the most important treatments. However, the efficacy of chemotherapy is limited due to drug induced-toxicities and resistance, particularly multiple drug resistance (MDR). Therefore, discovery and development of novel therapeutic drugs and/or combination therapy are urgently needed to reduce toxicity and improve efficacy. Paclitaxel has been widely used to treat various cancers including cervical, breast, ovarian, brain, bladder, prostate, liver and lung cancers. However, its therapeutic efficacy is limited and MDR is a major obstacle. Recently, numerous preclinical studies have shown that the combination of paclitaxel and curcumin may be an ideal strategy to reverse MDR and synergistically improve their therapeutic efficacy in cancer therapy. This review mainly focuses on the current development and progress of the combination of paclitaxel and curcumin in cancer therapy preclinically.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| | - Xinlin Pu
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646099, P.R. China
| |
Collapse
|