1
|
Allemailem KS, Rahmani AH, almansour NM, Aldakheel FM, Albalawi GM, Albalawi GM, Khan AA. Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review). Int J Oncol 2025; 66:42. [PMID: 40342053 PMCID: PMC12068846 DOI: 10.3892/ijo.2025.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
For centuries, a competitive evolutionary race between prokaryotes and related phages or other mobile genetic elements has led to the diversification of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR‑associated sequence (Cas) genome‑editing systems. Among the different CRISPR/Cas systems, the CRISPR/Cas9 system has been widely studied for its precise DNA manipulation; however, due to certain limitations of direct DNA targeting, off‑target effects and delivery challenges, researchers are looking to perform transient knockdown of gene expression by targeting RNA. In this context, the more recently discovered type VI CRISPR/Cas13 system, a programmable single‑subunit RNA‑guided endonuclease system that has the capacity to target and edit any RNA sequence of interest, has emerged as a powerful platform to modulate gene expression outcomes. All the Cas13 effectors known so far possess two distinct ribonuclease activities. Pre‑CRISPR RNA processing is performed by one RNase activity, whereas the two higher eukaryotes and prokaryotes nucleotide‑binding domains provide the other RNase activity required for target RNA degradation. Recent innovative applications of the type VI CRISPR/Cas13 system in nucleic acid detection, viral interference, transcriptome engineering and RNA imaging hold great promise for disease management. This genome editing system can also be employed by the Specific High Sensitivity Enzymatic Reporter Unlocking platform to identify any tumor DNA. The discovery of this system has added a new dimension to targeting, tracking and editing circulating microRNA/RNA/DNA/cancer proteins for the management of cancer. However, there is still a lack of thorough understanding of the mechanisms underlying some of their functions. The present review summarizes the recent updates on the type VI CRISPR/Cas system in terms of its structural and mechanistic properties and some novel applications of this genome‑editing tool in cancer management. However, some issues, such as collateral degradation of bystander RNA, impose major limitations on its in vivo application. Furthermore, additional challenges and future prospects for this genome editing system are described in the present review.
Collapse
Affiliation(s)
- Khaled s. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Ghadah Mohammad Albalawi
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | | | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
3
|
Jiang M, Wang XB, Jiang S. circ_0000018 downregulation peripherally ameliorates neuroprotection against acute ischemic stroke through the miR‑871/BCL2L11 axis. Mol Med Rep 2023; 28:220. [PMID: 37772397 PMCID: PMC10568247 DOI: 10.3892/mmr.2023.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Acute ischemic stroke (AIS) is a common acute cerebrovascular disease. Circular RNAs (circRNAs) have been demonstrated to have critical functions in a wide range of physiological processes and disorders in humans. However, their precise function in ischemic stroke (IS) remains largely unknown. The present study explored the function and potential mechanisms of circ_0000018 in AIS in vivo and in vitro. The cerebral ischemia/reperfusion injury model was established in vivo and in vitro using the oxygen‑glucose deprivation (OGD/R) and transient middle cerebral artery occlusion (tMCAO) methods. Subsequently, the impact of circ_0000018 on cerebral ischemia/reperfusion injury was assessed using various techniques, including TTC staining, quantitative PCR, western blotting, cell counting kit‑8 assay, Annexin V‑FITC Apoptosis Detection Kit, luciferase reporter gene assays, and others. The levels of circ_0000018 were markedly increased in the OGD/R‑treated neuronal cells and in a mouse model of tMCAO. The blocking of microRNA (miR)‑871 by circ_0000018 promoted Bcl‑2‑like protein 11 (BCL2L11) expression to increase neuronal cell damage. Furthermore, circ_0000018 knockdown significantly improved neuronal cell viability and attenuated OGD/R‑treated neuronal cell death. Meanwhile, circ_0000018 knockdown improved brain infarct volume and neuronal apoptosis in tMCAO mice. The present study found that circ_0000018 knockdown relieved cerebral ischemia‑reperfusion injury progression in vitro and in vivo. Mechanistically, circ_0000018 regulated the levels of BCL2L11 by sponging miR‑871.
Collapse
Affiliation(s)
- Min Jiang
- Laboratory Animal Centre, Southeastern University, Nanjing, Jiangsu 210003, P.R. China
| | - Xiao-Bin Wang
- Laboratory Animal Centre, Southeastern University, Nanjing, Jiangsu 210003, P.R. China
| | - Shan Jiang
- Laboratory Animal Centre, Southeastern University, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
4
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
5
|
Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Application of synthetic biology in bladder cancer. Chin Med J (Engl) 2022; 135:2178-2187. [PMID: 36209735 PMCID: PMC9771244 DOI: 10.1097/cm9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Bladder cancer (BC) is the most common malignant tumor of the genitourinary system. The age of individuals diagnosed with BC tends to decrease in recent years. A variety of standard therapeutic options are available for the clinical management of BC, but limitations exist. It is difficult to surgically eliminate small lesions, while radiation and chemotherapy damage normal tissues, leading to severe side effects. Therefore, new approaches are required to improve the efficacy and specificity of BC treatment. Synthetic biology is a field emerging in the last decade that refers to biological elements, devices, and materials that are artificially synthesized according to users' needs. In this review, we discuss how to utilize genetic elements to regulate BC-related gene expression periodically and quantitatively to inhibit the initiation and progression of BC. In addition, the design and construction of gene circuits to distinguish cancer cells from normal cells to kill the former but spare the latter are elaborated. Then, we introduce the development of genetically modified T cells for targeted attacks on BC. Finally, synthetic nanomaterials specializing in detecting and killing BC cells are detailed. This review aims to describe the innovative details of the clinical diagnosis and treatment of BC from the perspective of synthetic biology.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxing Lin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 528403, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
6
|
Li M, Liu G, Yuan LX, Yang J, Liu J, Li Z, Yang C, Wang J. Triphenyl phosphate (TPP) promotes hepatocyte toxicity via induction of endoplasmic reticulum stress and inhibition of autophagy flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156461. [PMID: 35660595 DOI: 10.1016/j.scitotenv.2022.156461] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPP), a commonly used organophosphate flame retardant, is frequently found in environmental and biota samples, indicating widespread human exposure. Recent studies have shown that TPP causes hepatotoxicity, but the underlying cellular mechanisms are not fully elucidated. Here, by using normal hepatocyte AML12 cells as a model, we showed that TPP induced apoptotic cell death. RNA sequencing analyses revealed that differentially expressed genes induced by TPP were related to endoplasmic reticulum (ER) stress and autophagy. Immunostaining and western blot results further confirmed that TPP activated ER stress. Interestingly, though TPP increased LC3-II, a canonical marker for autophagy, TPP inhibited autophagy flux rather than induced autophagy. Interestingly, TPP-induced ER stress facilitated autophagy flux inhibition and apoptosis. Furthermore, inhibition of autophagy aggravated, and activation of autophagy attenuated apoptosis induced by TPP. Collectively, these results uncovered that ER stress and autophagy flux inhibition were responsible for TPP-induced apoptosis in mouse hepatocytes. Thus, our foundlings provided novel insight into the potential mechanisms of TPP-induced hepatocyte toxicity.
Collapse
Affiliation(s)
- Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li-Xia Yuan
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jing Liu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Artemisinin Research Center, Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Patel RS, Rupani R, Impreso S, Lui A, Patel NA. Role of alternatively spliced, pro-survival Protein Kinase C delta VIII (PKCδVIII) in ovarian cancer. FASEB Bioadv 2022; 4:235-253. [PMID: 35415459 PMCID: PMC8984081 DOI: 10.1096/fba.2021-00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
Ovarian cancer is the deadliest malignant disease in women. Protein Kinase C delta (PRKCD; PKCδ) is serine/threonine kinase extensively linked to various cancers. In humans, PKCδ is alternatively spliced to PKCδI and PKCδVIII. However, the specific function of PKCδ splice variants in ovarian cancer has not been elucidated yet. Hence, we evaluated their expression in human ovarian cancer cell lines (OCC): SKOV3 and TOV112D, along with the normal T80 ovarian cells. Our results demonstrate a marked increase in PKCδVIII in OCC compared to normal ovarian cells. Therefore, we elucidated the role of PKCδVIII and the underlying mechanism of its expression in OCC. Using overexpression and knockdown studies, we demonstrate that PKCδVIII increases cellular survival and migration in OCC. Further, overexpression of PKCδVIII in T80 cells resulted in increased expression of Bcl2 and knockdown of PKCδVIII in OCC decreased Bcl2 expression. Using co-immunoprecipitations and immunocytochemistry, we demonstrate nuclear localization of PKCδVIII in OCC and further show increased association of PKCδVIII with Bcl2 and Bcl-xL in OCC. Using PKCδ splicing minigene, mutagenesis, siRNA and antisense oligonucleotides, we demonstrate that increased levels of alternatively spliced PKCδVIII in OCC is regulated by splice factor SRSF2. Finally, we verified that PKCδVIII levels are elevated in samples of human ovarian cancer tissue. The data presented here demonstrate that the alternatively spliced, signaling kinase PKCδVIII is a viable target to develop therapeutics to combat progression of ovarian cancer.
Collapse
Affiliation(s)
| | - Rea Rupani
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | | | - Ashley Lui
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Niketa A. Patel
- James A. Haley Veterans HospitalTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
8
|
Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021; 10:1245-1267. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decades, significant progress has been made in targeted cancer therapy. In precision oncology, molecular profiling of cancer patients enables the use of targeted cancer therapeutics. However, current diagnostic methods for molecular analysis of cancer are costly and require sophisticated equipment. Moreover, targeted cancer therapeutics such as monoclonal antibodies and small-molecule drugs may cause off-target effects and they are available for only a minority of cancer driver proteins. Therefore, there is still a need for versatile, efficient, and precise tools for cancer diagnostics and targeted cancer treatment. In recent years, the CRISPR-based genome and transcriptome engineering toolbox has expanded rapidly. Particularly, the RNA-targeting CRISPR-Cas13 system has unique biochemical properties, making Cas13 a promising tool for cancer diagnosis, therapy, and research. Cas13-based diagnostic methods allow early detection and monitoring of cancer markers from liquid biopsy samples without the need for complex instrumentation. In addition, Cas13 can be used for targeted cancer therapy through degrading and manipulating cancer-associated transcripts with high efficiency and specificity. Moreover, Cas13-mediated programmable RNA manipulation tools offer invaluable opportunities for cancer research, identification of drug-resistance mechanisms, and discovery of novel therapeutic targets. Here, we review and discuss the current use and potential applications of the CRISPR-Cas13 system in cancer diagnosis, therapy, and research. Thus, researchers will gain a deep understanding of CRISPR-Cas13 technologies, which have the potential to be used as next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Özgür Can
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ayça Nur Demir
- Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03100, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ahsen Özcan
- Institute of Genetic Engineering and Biotechnology, TUBITAK Marmara Research Center, Kocaeli 41470, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, 10 Mersin, Nicosia, Turkey
| |
Collapse
|
9
|
Yang K, Zhou Y, Zhong H. CRISPReader System Sensing the Ets-1 Transcription Factor Can Effectively Identify Cancer Cells. Front Mol Biosci 2021; 8:672040. [PMID: 34124154 PMCID: PMC8194308 DOI: 10.3389/fmolb.2021.672040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
By targeting key genes, the CRISPR system can effectively exert its anti-cancer activity. The latest research suggests that the CRISPReader system that regulates gene transcription can effectively target and inhibit bladder cancer cells by sensing transcription factors such as c-Myc and Get-1 in the cell. An interesting question is whether the CRISPReader system can exert its anti-cancer ability against a variety of tumors by sensing the broad-spectrum transcription factor Ets-1. In this work, a CRISPReader system that senses the Ets-1 transcription factor has been constructed. It can effectively identify a variety of cancer cell lines, and specifically induce apoptosis in cancer cells. This study fully confirmed the effectiveness of Ets-1 as a broad-spectrum cancer related signal and provided a new anti-cancer tool based on the CRISPReader system.
Collapse
Affiliation(s)
- Kang Yang
- HuiZhou Municipal Central Hospital, Huizhou, China
| | - Yan Zhou
- Logistics Management Office, HuiZhou University, Huizhou, China
| | | |
Collapse
|
10
|
Liang Y, Wang Y, Wang L, Liang Z, Li D, Xu X, Chen Y, Yang X, Zhang H, Niu H. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact Mater 2021; 6:433-446. [PMID: 32995671 PMCID: PMC7490593 DOI: 10.1016/j.bioactmat.2020.08.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is one of the concerning malignancies worldwide, which is lacking effective targeted therapy. Gene therapy is a potential approach for bladder cancer treatment. While, a safe and effective targeted gene delivery system is urgently needed for prompting the bladder cancer treatment in vivo. In this study, we confirmed that the bladder cancer had CD44 overexpression and small interfering RNAs (siRNA) with high interfere to Bcl2 oncogene were designed and screened. Then hyaluronic acid dialdehyde (HAD) was prepared in an ethanol-water mixture and covalently conjugated to the chitosan nanoparticles (CS-HAD NPs) to achieve CD44 targeted siRNA delivery. The in vitro and in vivo evaluations indicated that the siRNA-loaded CS-HAD NPs (siRNA@CS-HAD NPs) were approximately 100 nm in size, with improved stability, high siRNA encapsulation efficiency and low cytotoxicity. CS-HAD NPs could target to CD44 receptor and deliver the therapeutic siRNA into T24 bladder cancer cells through a ligand-receptor-mediated targeting mechanism and had a specific accumulation capacity in vivo to interfere the targeted oncogene Bcl2 in bladder cancer. Overall, a CD44 targeted gene delivery system based on natural macromolecules was developed for effective bladder cancer treatment, which could be more conducive to clinical application due to its simple preparation and high biological safety.
Collapse
Affiliation(s)
- Ye Liang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Yonghua Wang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Wang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhijuan Liang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dan Li
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoyu Xu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Yuanbin Chen
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Haitao Niu
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
11
|
Wang R, Huang Z, Qian C, Wang M, Zheng Y, Jiang R, Yu C. LncRNA WEE2-AS1 promotes proliferation and inhibits apoptosis in triple negative breast cancer cells via regulating miR-32-5p/TOB1 axis. Biochem Biophys Res Commun 2020; 526:1005-1012. [PMID: 32307083 DOI: 10.1016/j.bbrc.2020.01.170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/25/2020] [Indexed: 12/28/2022]
Abstract
Triple negative breast cancer (TNBC) is a malignant breast cancer subtype with poor prognosis. Recent studies have revealed the critical roles of dysregulated long non-coding RNAs (lncRNAs) in many cancer types, including TNBC. LncRNA WEE2 antisense RNA 1 (WEE2-AS1) has been reported to be able to promote the progression of hepatocellular carcinoma, but the function of WEE2-AS1 in TNBC is still unknown. Therefore, in this study, we specifically researched the role of WEE2-AS1 and probed its molecular mechanism in TNBC cells. Our results showed that WEE2-AS1 was up-regulated in TNBC cell lines, and WEE2-AS1 knockdown could inhibit TNBC cell proliferation, promote apoptosis, and suppress migration and invasion. Further, we found that miR-32-5p was down-regulated in TNBC cells and could be sponged by WEE2-AS1. Moreover, miR-32-5p could target its downstream gene transducer of ERBB2, 1 (TOB1), which was highly expressed and could play the oncogenic role in TNBC cells. Through rescue assays, we proved that WEE2-AS1/miR-32-5p/TOB1 axis could modulate cancer progression in TNBC cells. In conclusion, our results demonstrated the oncogenic function of lncRNA WEE2-AS1 in TNBC cells, providing a novel insight into TNBC therapy.
Collapse
Affiliation(s)
- Rong Wang
- Department of Thyroid Breast Surgery, HuBei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Ziming Huang
- Department of Thyroid Breast Surgery, HuBei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China.
| | - Chongwei Qian
- Department of Thyroid Breast Surgery, HuBei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Min Wang
- Department of Thyroid Breast Surgery, HuBei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yuan Zheng
- Department of Thyroid Breast Surgery, HuBei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Ran Jiang
- Department of Thyroid Breast Surgery, HuBei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Chunjiao Yu
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, 430070, Hubei, China
| |
Collapse
|
12
|
Fan J, Liu Y, Liu L, Huang Y, Li X, Huang W. A Multifunction Lipid-Based CRISPR-Cas13a Genetic Circuit Delivery System for Bladder Cancer Gene Therapy. ACS Synth Biol 2020; 9:343-355. [PMID: 31891494 DOI: 10.1021/acssynbio.9b00349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The treatment of bladder cancer has recently shown minimal progress. Gene therapy mediated by CRISPR provides a new option for bladder cancer treatment. In this study, we developed a versatile liposome system to deliver the CRISPR-Cas13a gene circuits into bladder cancer cells. After in vitro studies and intravesical perfusion studies in mice, this system showed five advantages: (1) CRISPR-Cas13a, a transcriptional targeting and cleavage tool for gene expression editing, did not affect the stability of the cell genome; (2) the prepared liposome systems were targeted to hVEGFR2, which is always highly expressed in bladder cancer cells; (3) the CRISPR-Cas13a sequence was driven by an artificial tumor specific promoter to achieve further targeting; (4) a near-infrared photosensitizer released using near-infrared light was introduced to control the delivery system; and (5) the plasmids were constructed with three crRNA tandem sequences to achieve multiple targeting and wider therapeutic results. This tumor cell targeting lipid delivery system with near-infrared laser-controlled ability provided a versatile strategy for CRISPR-Cas13a based gene therapy of bladder cancer.
Collapse
Affiliation(s)
- Jing Fan
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
- Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Lisa Liu
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Yikun Huang
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Xuemei Li
- Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| |
Collapse
|
13
|
Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells 2019; 8:cells8050392. [PMID: 31035374 PMCID: PMC6563133 DOI: 10.3390/cells8050392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Modulation of telomerase maintenance by gene therapy must meet two polarizing requirements to achieve different therapeutic outcomes: Anti-aging/regenerative applications require upregulation, while anticancer applications necessitate suppression of various genes integral to telomere maintenance (e.g., telomerase, telomerase RNA components, and shelterin complex). Patients suffering from aging-associated illnesses often exhibit telomere attrition, which promotes chromosomal instability and cellular senescence, thus requiring the transfer of telomere maintenance-related genes to improve patient outcomes. However, reactivation and overexpression of telomerase are observed in 85% of cancer patients; this process is integral to cancer immortality. Thus, telomere-associated genes in the scope of cancer gene therapy must be inactivated or inhibited to induce anticancer effects. These contradicting requirements for achieving different therapeutic outcomes mean that any vector-mediated upregulation of telomere-associated genes must be accompanied by rigorous evaluation of potential oncogenesis. Thus, this review aims to discuss how telomere-associated genes are being targeted or utilized in various gene therapy applications and provides some insight into currently available safety hazard assessments.
Collapse
|
14
|
Yazarlou F, Afsharpad M, Oskooei VK, Nekoohesh L, Moharrami T, Samadaian N, Ghafouri-Fard S, Modarressi MH. Expression analysis of apoptosis-related genes in bladder cancer patients. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Zhang C, Zhou Y, Yang GY, Li S. Biomimetic peptides protect cells from oxidative stress. Am J Transl Res 2017; 9:5518-5527. [PMID: 29312503 PMCID: PMC5752901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Most degenerative diseases are caused by free radicals. Antioxidin-RL peptide is a free radical scavenger found in the skin of plateau frog Odorrana livida, which is more stable than vitamin C as it resists light-induced degradation. However, whether and how antioxidin-RL protects cells from oxidative stress was not clear. Here we addressed this issue, and in addition, we designed a series of antioxidin cognates by adding tyrosine residues to enhance free radical-binding capability. We performed free radical-clearing assays in solution to screen the mutants, and found a mutant antioxidin-2 that was as stable as antioxidin-RL and cleared free radical faster. By using PC-12 cells as a model, we demonstrated that both antioxidin-2 and antioxidin-RL inhibited the accumulation of intracellular free radicals triggered by H2O2, reduced mitochondria membrane potential dissipation, maintained mitochondrial morphology, and decreased the expression of dynamin-related protein-1 in mitochondria, with antioxidin-RL more effective. Antioxidin-RL also attenuated the changes in SOD1 and GPx1 expression induced by H2O2. These findings provide insight into the anti-oxidative mechanisms of antioxidin-RL and its derivatives, which will provide rational basis for the development of more effective antioxidants to cure diseases.
Collapse
Affiliation(s)
- Chen Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityChina
- Department of Bioengineering, University of CaliforniaLos Angeles, USA
| | - Yue Zhou
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityChina
| | - Guo-Yuan Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityChina
| | - Song Li
- Department of Bioengineering, University of CaliforniaLos Angeles, USA
| |
Collapse
|
16
|
Zhuang C, Huang X, Zhuang C, Luo X, Zhang X, Cai Z, Gui Y. Synthetic regulatory RNAs selectively suppress the progression of bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:151. [PMID: 29084575 PMCID: PMC5663129 DOI: 10.1186/s13046-017-0626-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022]
Abstract
The traditional treatment for cancer is lack of specificity and efficacy. Modular synthetic regulatory RNAs, such as inhibitive RNA (iRNA) and active RNA (aRNA), may overcome these limitations. Here, we synthesize a new iRNA to bind the upstream activating sequence (UAS) of a minimal promoter that drives expression of artificial miRNAs (amiRNAs) targeting MYC, which represses the binding interaction between UAS and GAL4 fusion protein (GAL4-VP64) in GAL4/UAS system. The aRNA driven by a tumor-specific mutant human telomerase reverse transcriptase (hTERT) promoter is created to interact with iRNA to expose UAS again in bladder cancer. Without the aRNA, mRNA and protein levels of MYC, cell growth, cell apoptosis and cell migration were no significance in two bladder cancer cell lines, T24 and 5637, and human foreskin fibroblast (HFF) cells. The aRNA significantly inhibited the expression of MYC in mRNA and protein levels, as well as the proliferation and migration of the cancer cells, but not in HFF cells. These results indicated that regulatory RNAs selectively controlled the expression of amiRNAs and ultimately suppress the progression of bladder cancer cells without affecting normal cells. Synthetic regulatory RNAs might be a selective therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Chengle Zhuang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People's Republic of China
| | - Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People's Republic of China
| | - Changshui Zhuang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People's Republic of China
| | - Xiaomin Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People's Republic of China
| | - Xiaowei Zhang
- The Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Zhiming Cai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People's Republic of China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
17
|
Chen Z, He A, Liu Y, Huang W, Cai Z. Recent development on synthetic biological devices treating bladder cancer. Synth Syst Biotechnol 2016; 1:216-220. [PMID: 29062946 PMCID: PMC5625735 DOI: 10.1016/j.synbio.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
Synthetic biology is an emerging field focusing on engineering genetic devices and biomolecular systems for a variety of applications from basic biology to biotechnology and medicine. Thanks to the tremendous advances in genomics and the chemical synthesis of DNA in the past decade, scientists are now able to engineer genetic devices and circuits for cancer research and intervention, which offer promising therapeutic strategies for cancer treatment. In this article, we provide a systemic review on recent development achieved by the synthetic biologists, oncologists and clinicians of one National "973" Plan. We expand the synthetic biology toolkits involving DNA, RNA and protein bio-parts to explore various issues in cancer research, such as elucidation of mechanisms and pathways, creation of new diagnostic tools and invention of novel therapeutic approaches. We claimed that the Chinese synthetic biologists are promoting the basic research productions of tumor synthetic biology into the clinic.
Collapse
Affiliation(s)
- Zhicong Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039 Guangdong Province, People's Republic of China
| | - Anbang He
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039 Guangdong Province, People's Republic of China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039 Guangdong Province, People's Republic of China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039 Guangdong Province, People's Republic of China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039 Guangdong Province, People's Republic of China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, 100034, China
| |
Collapse
|
18
|
Dong Y, Shen X, He M, Wu Z, Zheng Q, Wang Y, Chen Y, Wu S, Cui J, Zeng Z. Activation of the JNK-c-Jun pathway in response to irradiation facilitates Fas ligand secretion in hepatoma cells and increases hepatocyte injury. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:114. [PMID: 27431384 PMCID: PMC4950705 DOI: 10.1186/s13046-016-0394-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Background It is well established that some irradiated liver non-parenchymal cells secrete pro-inflammatory cytokines to facilitate the development of radiation-induced liver disease. However, little is known on whether the irradiated hepatoma cells-mediated non-irradiated hepatocyte injury occurs in HCC patients. Here, we elucidated the roles of the irradiated hepatoma cells in driving non-irradiated hepatocyte injury and its underlying mechanism. Methods SMMC7721 cells were cultured and divided into irradiated (4-Gy X-ray, R) and non-irradiated (NR) groups. At 24th hour after irradiation, conditioned medium (CM) from these cultures was mixed with normal culture medium in specific proportions, and termed as 7721-R-CM and 7721-NR-CM. Following incubation with these CM compound, the biological characteristics of L02 cells related to liver cell injury including viability, apoptosis and liver dysfunction indices were comparatively analyzed. Simultaneously, the levels of proliferation- and apoptosis-related cytokines in irradiated and non-irradiated SMMC7721 cells were also measured. FasL as a cytokine with significantly differential expression, was selected to clarify its effects on L02 apoptosis. Subsequently, FasL expression following irradiation was examined in SMMC7721 and other HCC cells with varying malignant potentials, as well as in HCC tissues, the related mechanism of higher expression of FasL in irradiated HCC cells was further investigated. Results Apoptosis and liver dysfunction indices were all significantly enhanced in L02 cells treated with 7721-R-CM, whereas viability was suppressed, compared to those with 7721-NR-CM stimulation. FasL was identified as a leading differential cytokine in the irradiated SMMC7721 cells. Higher proportion of apoptosis was also found in L02 cells following FasL incubation. A recombinant Fas-Fc protein, which blocks Fas-FasL interaction, ameliorated 7721-R-CM-induced apoptosis in L02 cells. FasL was highly expressed in a dose-dependent manner, and peaked at the 24th hour post-irradiation in different HCC cells and their culture supernatant. Meanwhile, phosphorylation levels of JNK, ERK, Akt, and p38 were all upregulated significantly in irradiated HCC cells. But, only JNK inhibition was validated to block radiation-induced FasL expression in HCC cells. c-Jun, the target transcription factor of JNK, was also activated. Conclusion In HCC cells, the JNK-c-Jun pathway plays an important role in mediating irradiation- induced FasL expression, which may be critical in determining non-irradiated hepatocyte injury. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0394-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinying Dong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Xiaoyun Shen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Mingyan He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
19
|
Zhan Y, Lin J, Liu Y, Chen M, Chen X, Zhuang C, Liu L, Xu W, Chen Z, He A, Zhang Q, Sun X, Zhao G, Huang W. Up-regulation of long non-coding RNA PANDAR is associated with poor prognosis and promotes tumorigenesis in bladder cancer. J Exp Clin Cancer Res 2016; 35:83. [PMID: 27206339 PMCID: PMC4873988 DOI: 10.1186/s13046-016-0354-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/03/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have emerged as biomarkers and important regulators of tumor development and progression. PANDAR (promoter of CDKN1A antisense DNA damage activated RNA) is a novel long non-coding RNA that acts as a potential biomarker and involves in development of multiple cancers. However, the clinical significance and molecular mechanism of PANDAR in bladder cancer is still unknown. In this study, we aimed to figure out the role of PANDAR in bladder cancer. METHODS The relative expression level of lncRNA PANDAR was determined by Real-Time qPCR in a total of 55 patients with urothelial bladder cancer and in different bladder cancer cell lines. We inhibited PANDAR expression by transfecting PANDAR specific siRNA and enhanced PANDAR expression by transfecting a PANDAR expression vector (pcDNA3.1-PANDAR). Cell proliferation was determined by using both CCK-8 assay and Edu assay. Cell apoptosis was determined by using ELISA assay, Hoechst 33342 staining and Flow cytometry. Cell migration was determined by using transwell assay. All experimental data from three independent experiments were analyzed by χ2 test or Student's t-test and results were expressed as mean ± standard deviation. RESULTS We found that PANDAR was significantly up-regulated in bladder cancer tissues compared with paired-adjacent nontumorous tissues in a cohort of 55 bladder cancer patients. Moreover, increased PANDAR expression was positively correlated with higher histological grade (P < 0.05) and advanced TNM stage (P < 0.05). Further experiments demonstrated that inhibited cell proliferation/migration and induced apoptosis by silencing PANDAR were also observed in bladder cancer cells. Furthermore, over expression of PANDAR in bladder cancer cells promoted the proliferation/migration and suppressed apoptosis. CONCLUSIONS These findings demonstrate that PANDAR plays oncogenic roles in bladder cancer and PANDAR may serve as a potential prognostic biomarker and therapeutic target of bladder cancer.
Collapse
Affiliation(s)
- Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China
- Shantou University Medical College, Shantou, 515041, China
| | - Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Shantou University Medical College, Shantou, 515041, China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
| | - Xiaoying Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Shantou University Medical College, Shantou, 515041, China
| | - Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Shantou University Medical College, Shantou, 515041, China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Shantou University Medical College, Shantou, 515041, China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
| | - Zhicong Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Shantou University Medical College, Shantou, 515041, China
| | - Anbang He
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
| | - Qiaoxia Zhang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
| | - Xiaojuan Sun
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
| | - Guoping Zhao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Centerat Shanghai, Shanghai 200000, Shanghai, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, Shenzhen, China.
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China.
- Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|