1
|
Ali E, Ahmed MA, Shawki MA, El Arab LRE, Khalifa MK, Swellam M. Expression of some circulating microRNAs as predictive biomarkers for prognosis and treatment response in glioblastoma. Sci Rep 2025; 15:1933. [PMID: 39809835 PMCID: PMC11733229 DOI: 10.1038/s41598-024-83800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent, treatment-resistant, and fatal form of brain malignancy. It is characterized by genetic heterogeneity, and an infiltrative nature, and GBM treatment is highly challenging. Despite multimodal therapies, clinicians lack efficient prognostic and predictive markers. Therefore, new insights into GBM management are urgently needed to increase the chance of therapeutic success. Circulating miRNAs (miRs) are important regulators of cancer progression and are potentially useful for GBM diagnosis and treatment. This study investigated how miR-29a, miR-106a, and miR-200a affect the prognosis of GBM patients. This study was conducted on 25 GBM patients and 20 healthy volunteers as a control group. The expression levels of target miRs were analyzed pre- and post-treatment using qRT-PCR and evaluated in relation to both clinical GBM criteria and the patient's survival modes. The diagnostic efficacy of target miRs was assessed using the receiver operating characteristic (ROC) curve. MiRs levels showed significant differences among the enrolled participants. All investigated miRs were significantly elevated in GBM patients with non-frontal lesions. Only miR-200a showed a significant difference in GBM patients older than 60 years with a tumor size ≥ 5 mm. Regarding miR-106a, a significant difference was detected based on the surgical strategy and use of an Eastern Cooperative Oncology Group (ECOG) performance status equal to 2. For miR-29a, a significant upregulation was detected according to the surgical strategy. All post-treatment miRs levels in GBM patients were significantly downregulated. In conclusion, circulating miRs revealed a significant role in predicting GBM patient treatment outcomes providing valuable insights for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Elham Ali
- Molecular Biology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Marwa Adel Ahmed
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - May A Shawki
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Lobna R Ezz El Arab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed K Khalifa
- CSO at Omicsense, Cairo, Egypt
- Molecular Pathology Laboratory Children Cancer Hospital, Cairo, 57357, Egypt
| | - Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Xiao Z, Huang S, Qiu W, Pang M, Zeng X, Xu X, Yang Y, Yang B, Chu L. EphB3 receptor suppressor invasion, migration and proliferation in glioma by inhibiting EGFR-PI3K/AKT signaling pathway. Brain Res 2024; 1830:148796. [PMID: 38341169 DOI: 10.1016/j.brainres.2024.148796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Eph receptors are the largest subfamily of receptor tyrosine kinases, and they have been shown to play a crucial role in glioma. The EphB3 receptor is a member of this family, and its effect on the invasion, migration and proliferation of glioma cells was examined in this study. It was found that the expression of EphB3 was decreased in glioma specimens with increasing tumor grade. Additionally, the U87MG and U251 cell lines showed low levels of EphB3 expression. This finding was consistent with the negative correlation between EphB3 expression in glioma tissues and tumor grade. Depletion of EphB3 gene in U87MG and U251 cell lines resulted in a substantial enhancement of their invasion, migration, and proliferation capacities in vitro. Furthermore, the knockdown of EphB3 led to an upregulation of EGFR, p-PI3K, and p-AKT protein levels. On the other hand, EphB3 overexpression reduced the invasiveness, proliferative capacity and migration rate of U87MG and U251 cells, and downregulated EGFR, p-PI3K and p-AKT. These findings indicate that EphB3 functions as a tumor suppressor in glioma, and its downregulation enhances the malignant potential of glioma cells by activating the EGFR-PI3K/AKT pathway. Thus, EphB3 is a promising diagnostic marker for glioma, and the EphB3-EGFR-PI3K / AKT axis deserves further investigation as a potential therapeutic target.
Collapse
Affiliation(s)
- Zumu Xiao
- Department of Neurosurgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China; Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shengxuan Huang
- Department of Neurosurgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Wenjin Qiu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Mengru Pang
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Zeng
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xu Xu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yushi Yang
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Binglin Yang
- Department of Breast, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China.
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Bashiri H, Moazam-Jazi M, Karimzadeh MR, Jafarinejad-Farsangi S, Moslemizadeh A, Lotfian M, Karam ZM, Kheirandish R, Farazi MM. Autophagy in combination therapy of temozolomide and IFN-γ in C6-induced glioblastoma: role of non-coding RNAs. Immunotherapy 2023; 15:1157-1169. [PMID: 37584216 DOI: 10.2217/imt-2022-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aim: We predicted the modulation of autophagy and apoptosis in response to temozolomide (TMZ) and IFN-γ based on changes in the expression of non-coding RNAs in C6-induced glioblastoma (GBM). Materials & methods: Each rat received an intraperitoneal injection of TMZ (7.5 mg/kg) and/or IFN-γ (50,000 IU). Results: The reduced expression of H19 and colorectal neoplasia differentially expressed (CRNDE) was associated with a reduction in autophagy in response to TMZ, IFN-γ and TMZ + IFN-γ therapy, whereas the decreased level of miR-29a (proapoptotic miRNA) was associated with an increase in apoptosis. Conclusion: It appears that H19 promotes switching from autophagy to apoptosis in response to combination therapy of TMZ and IFN-γ through the miR-29a/autophagy-related protein 9A (ATG9A) pathway in C6-induced GBM.
Collapse
Affiliation(s)
- Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Maryam Moazam-Jazi
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17413, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, 76198-13159, Iran
| | | | | | - Marziyeh Lotfian
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, 76198-13159, Iran
| | - Zahra Miri Karam
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, 76198-13159, Iran
| | - Mohammad Mojtaba Farazi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| |
Collapse
|
4
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
5
|
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, Cheng SY. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022; 10:2031. [PMID: 36009578 PMCID: PMC9405925 DOI: 10.3390/biomedicines10082031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Marie Tiek
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Chen Y, Wang YL, Qiu K, Cao YQ, Zhang FJ, Zhao HB, Liu XZ. YTHDF2 promotes temozolomide resistance in glioblastoma by activation of the Akt and NF-κB signalling pathways via inhibiting EPHB3 and TNFAIP3. Clin Transl Immunology 2022; 11:e1393. [PMID: 35582627 PMCID: PMC9082891 DOI: 10.1002/cti2.1393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Temozolomide (TMZ) resistance is a key factor that restricts the therapeutic effect of glioblastoma (GBM). YTH‐domain family member 2 (YTHDF2) is highly expressed in GBM tissues, while the mechanism of YTHDF2 in TMZ resistance in GBM remains not fully elucidated. Methods The YTHDF2 expression in TMZ‐resistant tissues and cells was detected. Kaplan–Meier analysis was employed to evaluate the prognostic value of YTHDF2 in GBM. Effect of YTHDF2 in TMZ resistance in GBM was explored via corresponding experiments. RNA sequence, FISH in conjugation with fluorescent immunostaining, RNA immunoprecipitation, dual‐luciferase reporter gene and immunofluorescence were applied to investigate the mechanism of YTHDF2 that boosted TMZ resistance in GBM. Results YTHDF2 was up‐regulated in TMZ‐resistant tissues and cells, and patients with high expression of YTHDF2 showed lower survival rate than the patients with low expression of YTHDF2. The elevated YTHDF2 expression boosted TMZ resistance in GBM cells, and the decreased YTHDF2 expression enhanced TMZ sensitivity in TMZ‐resistant GBM cells. Mechanically, YTHDF2 bound to the N6‐methyladenosine (m6A) sites in the 3′UTR of EPHB3 and TNFAIP3 to decrease the mRNA stability. YTHDF2 activated the PI3K/Akt and NF‐κB signals through inhibiting expression of EPHB3 and TNFAIP3, and the inhibition of the two pathways attenuated YTHDF2‐mediated TMZ resistance. Conclusion YTHDF2 enhanced TMZ resistance in GBM by activation of the PI3K/Akt and NF‐κB signalling pathways via inhibition of EPHB3 and TNFAIP3.
Collapse
Affiliation(s)
- Yu Chen
- Department of Neurosurgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yan-Lan Wang
- Department of Clinical Laboratory The Second Xiangya Hospital of Central South University Changsha China
| | - Kai Qiu
- Department of Neurosurgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yi-Qiang Cao
- Department of Neurosurgery The First Affiliated Hospital of Kunming Medical University Kunming China
| | - Feng-Jiang Zhang
- Department of Neurosurgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Hai-Biao Zhao
- Department of Neurosurgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xian-Zhi Liu
- Department of Neurosurgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
7
|
Wei L, Zou C, Chen L, Lin Y, Liang L, Hu B, Mao Y, Zou D. Molecular Insights and Prognosis Associated With RBM8A in Glioblastoma. Front Mol Biosci 2022; 9:876603. [PMID: 35573726 PMCID: PMC9098818 DOI: 10.3389/fmolb.2022.876603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most invasive brain tumors, and it is associated with high rates of recurrence and mortality. The purpose of this study was to investigate the expression of RBM8A in GBM and the potential influence of its expression on the disease. Methods: Levels of RBM8A mRNA in GBM patients and controls were examined in The Cancer Genome Atlas (TCGA), GSE16011 and GSE90604 databases. GBM samples in TCGA were divided into RBM8Ahigh and RBM8Alow groups. Differentially expressed genes (DEGs) between GBM patients and controls were identified, as were DEGs between RBM8Ahigh and RBM8Alow groups. DEGs common to both of these comparisons were analyzed for coexpression and regression analyses. In addition, we identified potential effects of RBM8A on competing endogenous RNAs, immune cell infiltration, methylation modifications, and somatic mutations. Results: RBM8A is expressed at significantly higher levels in GBM than control samples, and its level correlates with tumor purity. We identified a total of 488 mRNAs that differed between GBM and controls as well as between RBM8Ahigh and RBM8Alow groups, which enrichment analysis revealed to be associated mainly with neuroblast proliferation, and T cell immune responses. We identified 174 mRNAs that gave areas under the receiver operating characteristic curve >0.7 among coexpression module genes, of which 13 were significantly associated with overall survival of GBM patients. We integrated 11 candidate mRNAs through LASSO algorithm, then nomogram, risk score, and decision curve analyses were analyzed. We found that RBM8A may compete with DLEU1 for binding to miR-128-1-5p, and aberrant RBM8A expression was associations with tumor infiltration by immune cells. Some mRNAs associated with GBM prognosis also appear to be methylated or mutated. Conclusions: Our study strongly links RBM8A expression to GBM pathobiology and patient prognosis. The candidate mRNAs identified here may lead to therapeutic targets against the disease.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| |
Collapse
|
8
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|
10
|
Chen Q, Wang W, Chen S, Chen X, Lin Y. miR-29a sensitizes the response of glioma cells to temozolomide by modulating the P53/MDM2 feedback loop. Cell Mol Biol Lett 2021; 26:21. [PMID: 34044759 PMCID: PMC8161631 DOI: 10.1186/s11658-021-00266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, pivotal functions of miRNAs in regulating common tumorigenic processes and manipulating signaling pathways in brain tumors have been recognized; notably, miR‐29a is closely associated with p53 signaling, contributing to the development of glioma. However, the molecular mechanism of the interaction between miR-29a and p53 signaling is still to be revealed. Herein, a total of 30 glioma tissues and 10 non-cancerous tissues were used to investigate the expression of miR‐29a. CCK-8 assay and Transwell assay were applied to identify the effects of miR-29a altered expression on the malignant biological behaviors of glioma cells in vitro, including proliferation, apoptosis, migration and invasion. A dual-luciferase reporter assay was used to further validate the regulatory effect of p53 or miR-29a on miR-29a or MDM2, respectively, at the transcriptional level. The results showed that miR-29a expression negatively correlated with tumor grade of human gliomas; at the same time it inhibited cell proliferation, migration, and invasion and promoted apoptosis of glioma cells in vitro. Mechanistically, miR-29a expression was induced by p53, leading to aberrant expression of MDM2 targeted by miR-29a, and finally imbalanced the activity of the p53-miR-29a-MDM2 feedback loop. Moreover, miR-29a regulating p53/MDM2 signaling sensitized the response of glioma cells to temozolomide treatment. Altogether, the study demonstrated a potential molecular mechanism in the tumorigenesis of glioma, while offering a possible target for treating human glioma in the future.
Collapse
Affiliation(s)
- Qiudan Chen
- The Department of Central Laboratory, Clinical Laboratory, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Weifeng Wang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200435, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 20040, China
| | - Xiaotong Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 20040, China
| | - Yong Lin
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 20040, China.
| |
Collapse
|
11
|
Géczi D, Nagy B, Szilágyi M, Penyige A, Klekner Á, Jenei A, Virga J, Birkó Z. Analysis of Circulating miRNA Profile in Plasma Samples of Glioblastoma Patients. Int J Mol Sci 2021; 22:ijms22105058. [PMID: 34064637 PMCID: PMC8151942 DOI: 10.3390/ijms22105058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis. Treatment options are limited, clinicians lack efficient prognostic and predictive markers. Circulating miRNAs—besides being important regulators of cancer development—may have potential as diagnostic biomarkers of GBM. (2) Methods: In this study, profiling of 798 human miRNAs was performed on blood plasma samples from 6 healthy individuals and 6 patients with GBM, using a NanoString nCounter Analysis System. To validate our results, five miRNAs (hsa-miR-433-3p, hsa-miR-362-3p, hsa-miR-195-5p, hsa-miR-133a-3p, and hsa-miR-29a-3p) were randomly chosen for RT-qPCR detection. (3) Results: In all, 53 miRNAs were significantly differentially expressed in plasma samples of GBM patients when data were filtered for FC 1 and FDR 0.1. Target genes of the top 39 differentially expressed miRNAs were identified, and we carried out functional annotation and pathway enrichment analysis of target genes via GO and KEGG-based tools. General and cortex-specific protein–protein interaction networks were constructed from the target genes of top miRNAs to assess their functional connections. (4) Conclusions: We demonstrated that plasma microRNA profiles are promising diagnostic and prognostic molecular biomarkers that may find an actual application in the clinical practice of GBM, although more studies are needed to validate our results.
Collapse
Affiliation(s)
- Dóra Géczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.G.); (B.N.); (M.S.)
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.G.); (B.N.); (M.S.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.G.); (B.N.); (M.S.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.K.); (A.J.)
| | - Adrienn Jenei
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.K.); (A.J.)
| | - József Virga
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
12
|
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2021; 69:391-398. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive (WHO grade IV) form of diffuse glioma endowed with tremendous invasive capacity. The availability of narrow therapeutic choices for GBM management adds to the irony, even the post-treatment median survival time is roughly around 14-16 months. Gene mutations seem to be cardinal to GBM formation, owing to involvement of amplified and mutated receptor tyrosine kinase (RTK)-encoding genes, leading to dysregulation of growth factor signaling pathways. Of-late, the role of different microRNAs (miRNAs) in progression and proliferation of GBM was realized, which lead to their burgeon potential applications for diagnostic and therapeutic purposes. miRNA signatures are intricately linked with onset and progression of GBM. Although, progression of GBM causes significant changes in the BBB to form BBTB, but still efficient passage of cancer therapeutics, including antibodies and miRNAs are prevented, leading to low bioavailability. Recent developments in the nanomedicine field provide novel approaches to manage GBM via efficient and brain targeted delivery of miRNAs either alone or as part of cytotoxic pharmaceutical composition, thereby modulating cell signaling in well predicted manner to promise positive therapeutic outcomes.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
13
|
The Expression Patterns of BECN1, LAMP2, and PINK1 Genes in Colorectal Cancer Are Potentially Regulated by Micrornas and CpG Islands: An In Silico Study. J Clin Med 2020; 9:jcm9124020. [PMID: 33322704 PMCID: PMC7764710 DOI: 10.3390/jcm9124020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Autophagy plays a dual role of tumor suppression and tumor promotion in colorectal cancer. The study aimed to find those microRNAs (miRNAs) important in BECN1, LAMP2, and PINK1 regulation and to determine the possible role of the epigenetic changes in examined colorectal cancer using an in silico approach. Methods: A total of 44 pairs of surgically removed tumors at clinical stages I‒IV and healthy samples (marginal tissues) from patients’ guts were analyzed. Analysis of the obtained results was conducted using the PL-Grid Infrastructure and Statistica 12.0 program. The miRNAs and CpG islands were estimated using the microrna.org database and MethPrimer program. Results: The autophagy-related genes were shown to be able to be regulated by miRNAs (BECN1—49 mRNA, LAMP2—62 mRNA, PINK1—6 mRNA). It was observed that promotion regions containing at least one CpG region were present in the sequence of each gene. Conclusions: The in silico analysis performed allowed us to determine the possible role of epigenetic mechanisms of regulation gene expression, which may be an interesting therapeutic target in the treatment of colorectal cancer.
Collapse
|
14
|
Dai Y, Chen Z, Zhao W, Cai G, Wang Z, Wang X, Hu H, Zhang Y. miR-29a-5p Regulates the Proliferation, Invasion, and Migration of Gliomas by Targeting DHRS4. Front Oncol 2020; 10:1772. [PMID: 33014873 PMCID: PMC7511594 DOI: 10.3389/fonc.2020.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common malignant primary brain tumors in adults and exhibit a spectrum of aberrantly aggressive phenotypes. MicroRNAs (miRNAs) play a regulatory role in various cancers, including gliomas; however, their specific roles and mechanisms have not been fully investigated. Studies have indicated that miR-29a is a tumor-suppressive miRNA, but the data are limited. In this study, we investigated the role of miR-29a-5p in glioma and further explored its underlying mechanisms. On the basis of bioinformatics, dehydrogenase/reductase 4 (DHRS4) was considered a potential target of miR-29a-5p and was also found to be highly expressed in gliomas in our experiments. Moreover, with a luciferase reporter assay, DHRS4 was found to be a target gene of miR-29a-5p and to be correlated with glioma proliferation, invasion, and migration in our in vivo and in vitro experiments. Simultaneously, we observed that the knockdown of DHRS4 rescued the downregulation of glioma proliferation, invasion, and migration caused by treatment with a mir-29a-5p inhibitor. The present findings demonstrate that miR-29a-5p suppresses cell proliferation, invasion, and migration by targeting DHRS4, and DHRS4 may be a potential new oncogene and prognostic factor in gliomas.
Collapse
Affiliation(s)
- Yong Dai
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenhua Chen
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Cai
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhifeng Wang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xuejiang Wang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
16
|
Ma Y, Zhao HX, Shi YJ, Cheng MG. MicroRNA-532-5p is a prognostic marker and inhibits the aggressive phenotypes of osteosarcoma through targeting CXCL2. Kaohsiung J Med Sci 2020; 36:885-894. [PMID: 32643867 DOI: 10.1002/kjm2.12261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of miR-532-5p is involved in the development of several cancers. Nevertheless, the roles of miR-532-5p in osteosarcoma (OS) have yet to be illuminated. In the present study, we found that miR-532-5p was significantly downregulated in both OS tissues and cell lines. The low level of miR-532-5p was associated with advance clinical stage and poor overall survival in patient with OS. The functional experiments implied that upregulation of miR-532-5p restrained OS U2OS cell growth and metastatic ability in vitro; induced apoptosis, and impaired OS cell growth in vivo. Mechanistically, chemokine (C-X-C Motif) ligand 2 (CXCL2) was proved as a target gene of miR-532-5p. The inhibitory effects of miR-532-5p on OS cell were rescued by CXCL2 overexpression. Altogether, we demonstrated that miR-532-5p exerted tumor-inhibitory functions in OS cell via regulating CXCL2.
Collapse
Affiliation(s)
- Yong Ma
- Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Hai-Xia Zhao
- Internal Medicine-Neurology, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Yin-Ju Shi
- Nursing Department, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| | - Ming-Guo Cheng
- Orthopeadic Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong, China
| |
Collapse
|
17
|
Yang Y, Dodbele S, Park T, Glass R, Bhat K, Sulman EP, Zhang Y, Abounader R. MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. J Neurooncol 2019; 145:23-34. [PMID: 31482267 PMCID: PMC10880555 DOI: 10.1007/s11060-019-03275-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE microRNAs are small noncoding RNAs that play important roles in cancer regulation. In this study, we investigated the expression, functional effects and mechanisms of action of microRNA-29a (miR-29a) in glioblastoma (GBM). METHODS miR-29a expression levels in GBM cells, stem cells (GSCs) and human tumors as well as normal astrocytes and normal brain were measured by quantitative PCR. miR-29a targets were uncovered by target prediction algorithms, and verified by immunoblotting and 3' UTR reporter assays. The effects of miR-29a on cell proliferation, death, migration and invasion were assessed with cell counting, Annexin V-PE/7AAD flow cytometry, scratch assay and transwell assay, respectively. Orthotopic xenografts were used to determine the effects of miR-29a on tumor growth. RESULTS Mir-29a was downregulated in human GBM specimens, GSCs and GBM cell lines. Exogenous expression of miR-29a inhibited GSC and GBM cell growth and induced apoptosis. miR-29a also inhibited GBM cell migration and invasion. PDGFC and PDGFA were uncovered and validated as direct targets of miR-29a in GBM. miR-29a downregulated PDGFC and PDGFA expressions at the transcriptional and translational levels. PDGFC and PDGFA expressions in GBM tumors, GSCs, and GBM established cell lines were higher than in normal brain and human astrocytes. Mir-29a expression inhibited orthotopic GBM xenograft growth. CONCLUSIONS miR-29a is a tumor suppressor miRNA in GBM, where it inhibits cancer stem cells and tumor growth by regulating the PDGF pathway.
Collapse
Affiliation(s)
- Yanzhi Yang
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, PO Box 800168, Charlottesville, VA, 22908, USA
| | - Samantha Dodbele
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, PO Box 800168, Charlottesville, VA, 22908, USA
| | - Thomas Park
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, PO Box 800168, Charlottesville, VA, 22908, USA
| | - Rainer Glass
- Neurosurgical Research, University Clinics Munich, Munich, Germany
| | - Krishna Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, USA
| | - Ying Zhang
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, PO Box 800168, Charlottesville, VA, 22908, USA.
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, PO Box 800168, Charlottesville, VA, 22908, USA.
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.
- Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|