1
|
Huang Y, Huang J, Zhan J, Chen M, Zheng J, He J, Fang W, Zhang L, Li J. CCN1 is a therapeutic target upregulated in EML4-ALK mutant lung adenocarcinoma reversibly resistant to alectinib. Cell Death Dis 2025; 16:303. [PMID: 40234387 PMCID: PMC12000322 DOI: 10.1038/s41419-025-07601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
There is limited understanding of the phenomenon of reversible drug resistance, which is characterized by tumor cells regaining sensitivity when the drug is changed or withdrawn after a period of drug resistance. This phenomenon is usually not associated with genetic alterations of tumor cells. In this study, reversible resistant state was induced by alectinib in EML4-ALK mutant lung cancer cell. By performing RNA sequencing on reversible drug-resistant cell line to examine changes in transcriptional profile, significant change in CCN1 was detected after withdrawal and repeated administration of alectinib. Targeting CCN1 resulted in inhibition of tumor cell proliferation and angiogenesis, and restoration of sensitivity to alectinib in reversible drug-resistant cells. Further studies revealed that CCN1 could affect the expression of VEGFA by affecting AKT phosphorylation, and the change of NF-κB could impact the activation of CCN1-AKT-VEGFA pathway. Suppressing NF-κB or CCN1 receptor could improve the sensitivity to alectinib, further suggesting that NF-κB and CCN1 might play a key role in overcoming reversible drug resistance.
Collapse
Affiliation(s)
- Yihua Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Maojian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiani Zheng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junyi He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Jing Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Elkhamisy FAA, Eesa AN, Elnady OM, Elnaghi KAEA, Foda AAM. Reduced expression of SOX11 in colorectal adenocarcinoma is associated with mucinous and signet ring cell types, poor survival, and lower ALK expression. Pathol Res Pract 2024; 260:155450. [PMID: 38986363 DOI: 10.1016/j.prp.2024.155450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mucinous and signet ring cell colorectal carcinoma (m/srCRC) are challenging colorectal adenocarcinoma (CRC) types with poor prognosis. This study aimed to investigate SOX11 and ALK immunohistochemical expression in the m/srCRC group, comparing the results to those of nonmucinous CRC (nmCRC) and studying their association with different clinicopathological CRC features to better understand their significance and role. Besides, the study assesses which marker has a better predictive value for clinical practice. METHODS Tissue microarrays were prepared from 150 CRC blocks distributed equally between the m/srCRC and nmCRC groups. SOX11 and ALK immunohistochemical expressions were compared between both groups. In addition, their association with CRC clinicopathological data and survival was investigated. The Receiver Operating Characteristic (ROC) Curve analysis examined the predictive ability of SOX11 and ALK IHC expression for CRC mortality. RESULTS Both SOX11 and ALK expression were significantly reduced in m/srCRC compared to nmCRC. SOX11 is significantly associated with other prognostic clinicopathological factors (tumor size, lymph node status, overall TNM stage, grade, lymphovascular and perineural invasion) and overall survival. SOX11 significantly positively correlates with ALK expression. Using the ROC analysis, SOX11 is superior to ALK in survival prediction. CONCLUSION SOX11 can be used as a prognostic marker and is a suggested therapeutic target in mucinous and signet ring cell colorectal carcinoma through upregulation modulation.
Collapse
Affiliation(s)
| | - Ahmed Naeem Eesa
- Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ola Mousa Elnady
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Mansoura University, Egypt
| | - Khaled Abd Elaziz Ahmed Elnaghi
- Oncology Centre, Medical Oncology unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Medical Oncology Department, Oncology Center King Abdullah Medical City, Makkah, Saudi Arabia
| | - Abd AlRahman Mohammad Foda
- Anatomic Pathology department, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
3
|
Massenet-Regad L, Poirot J, Jackson M, Hoffmann C, Amblard E, Onodi F, Bouhidel F, Djouadou M, Ouzaid I, Xylinas E, Medvedovic J, Soumelis V. Large-scale analysis of cell-cell communication reveals angiogenin-dependent tumor progression in clear cell renal cell carcinoma. iScience 2023; 26:108367. [PMID: 38025776 PMCID: PMC10663819 DOI: 10.1016/j.isci.2023.108367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular crosstalk in the tumor microenvironment (TME) is still largely uncharacterized, while it plays an essential role in shaping immunosuppression or anti-tumor response. Large-scale analyses are needed to better decipher cell-cell communication in cancer. In this work, we used original and publicly available single-cell RNA sequencing (scRNAseq) data to characterize in-depth the communication networks in human clear cell renal cell carcinoma (ccRCC). We identified 50 putative communication channels specifically used by cancer cells to interact with other cells, including two novel angiogenin-mediated interactions. Expression of angiogenin and its receptors was validated at the protein level in primary ccRCC. Mechanistically, angiogenin enhanced ccRCC cell line proliferation and down-regulated secretion of IL-6, IL-8, and MCP-1 proinflammatory molecules. This study provides novel biological insights into molecular mechanisms of ccRCC, and suggests angiogenin and its receptors as potential therapeutic targets in clear cell renal cancer.
Collapse
Affiliation(s)
- Lucile Massenet-Regad
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Université Paris-Saclay, F-91190 Saint Aubin, France
| | - Justine Poirot
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Université Paris-Saclay, F-91190 Saint Aubin, France
| | | | - Caroline Hoffmann
- INSERM U932, Department of Surgical Oncology, PSL University, Institut Curie, 75005 Paris, France
- Owkin France, 75010 Paris, France
| | - Elise Amblard
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble Alpes University, 38000 Grenoble, France
| | - Fanny Onodi
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
| | - Fatiha Bouhidel
- Department of Pathology, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| | - Malika Djouadou
- Department of Urology, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| | - Idir Ouzaid
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP.Nord, Université Paris Cité, 75018 Paris, France
| | - Evanguelos Xylinas
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP.Nord, Université Paris Cité, 75018 Paris, France
| | | | - Vassili Soumelis
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Owkin France, 75010 Paris, France
- Department of Immunology-Histocompatibility, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| |
Collapse
|
4
|
Sverchinsky DV, Alhasan BA, Mikeladze MA, Lazarev VF, Kuznetcova LS, Morshneva AV, Nikotina AD, Ziewanah A, Koludarova LV, Starkova TY, Margulis BA, Guzhova IV. Autocrine regulation of tumor cell repopulation by Hsp70-HMGB1 alarmin complex. J Exp Clin Cancer Res 2023; 42:279. [PMID: 37880798 PMCID: PMC10598926 DOI: 10.1186/s13046-023-02857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70). METHODS Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used. Cell proliferation and the dynamics of cell growth were measured using MTT assay and xCELLigence technology; cell growth markers were estimated using qPCR and with the aid of ELISA for prostaglandin E detection. Immunoprecipitation followed by mass-spectrometry was employed to identify Hsp70-binding proteins and protein-protein interaction assays were developed to reveal the above protein complexes. RESULTS It was found that CM of dying tumor cells contains tumor regrowth-initiating factors and the removal of one of them, Hsp70, caused a reduction in the relapse-activating capacity. The pull out of Hsp70 alone using ATP-agarose had no effect on repopulation, while the immunodepletion of Hsp70 dramatically reduced its repopulation activity. Using proteomic and immunochemical approaches, we showed that Hsp70 in conditioned medium binds and binds another abundant alarmin, the High Mobility Group B1 (HMGB1) protein; the complex is formed in tumor cells treated with anti-cancer drugs, persists in the cytosol and is further released from dying tumor cells. Recurrence-activating power of Hsp70-HMGB1 complex was proved by the enhanced expression of proliferation markers, Ki67, Aurka and MCM-10 as well as by increase of prostaglandin E production and autophagy activation. Accordingly, dissociating the complex with Hsp70 chaperone inhibitors significantly inhibited the pro-growth effects of the above complex, in both in vitro and in vivo tumor relapse models. CONCLUSIONS These data led us to suggest that the abundance of the Hsp70-HMGB1 complex in the extracellular matrix may serve as a novel marker of relapse state in cancer patients, while specific targeting of the complex may be promising in the treatment of cancers with a high risk of recurrence.
Collapse
Affiliation(s)
- Dmitry V Sverchinsky
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Bashar A Alhasan
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Marina A Mikeladze
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Vladimir F Lazarev
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Liubov S Kuznetcova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Alisa V Morshneva
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Alina D Nikotina
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Amr Ziewanah
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
- University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Lidia V Koludarova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Biocenter 2, Helsinki, 00790, Finland
| | - Tatiana Y Starkova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Boris A Margulis
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Irina V Guzhova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
5
|
Katic L, Priscan A. Multifaceted Roles of ALK Family Receptors and Augmentor Ligands in Health and Disease: A Comprehensive Review. Biomolecules 2023; 13:1490. [PMID: 37892172 PMCID: PMC10605310 DOI: 10.3390/biom13101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This review commemorates the 10-year anniversary of the discovery of physiological ligands Augα (Augmentor α; ALKAL2; Fam150b) and Augβ (Augmentor β; ALKAL1; Fam150a) for anaplastic lymphoma kinase (ALK) and leukocyte tyrosine kinase (LTK), previously considered orphan receptors. This manuscript provides an in-depth review of the biophysical and cellular properties of ALK family receptors and their roles in cancer, metabolism, pain, ophthalmology, pigmentation, central nervous system (CNS) function, and reproduction. ALK and LTK receptors are implicated in the development of numerous cancers, and targeted inhibition of their signaling pathways can offer therapeutic benefits. Additionally, ALK family receptors are involved in regulating body weight and metabolism, modulating pain signaling, and contributing to eye development and pigmentation. In the CNS, these receptors play a role in synapse modulation, neurogenesis, and various psychiatric pathologies. Lastly, ALK expression is linked to reproductive functions, with potential implications for patients undergoing ALK inhibitor therapy. Further research is needed to better understand the complex interactions of ALK family receptors and Aug ligands and to repurpose targeted therapy for a wide range of human diseases.
Collapse
Affiliation(s)
- Luka Katic
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside/West, 1000 Tenth Avenue, New York, NY 10019, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anamarija Priscan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
6
|
Rejali L, Seifollahi Asl R, Sanjabi F, Fatemi N, Asadzadeh Aghdaei H, Saeedi Niasar M, Ketabi Moghadam P, Nazemalhosseini Mojarad E, Mini E, Nobili S. Principles of Molecular Utility for CMS Classification in Colorectal Cancer Management. Cancers (Basel) 2023; 15:2746. [PMID: 37345083 PMCID: PMC10216373 DOI: 10.3390/cancers15102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer-related deaths in both sexes globally and presents different clinical outcomes that are described by a range of genomic and epigenomic alterations. Despite the advancements in CRC screening plans and treatment strategies, the prognosis of CRC is dismal. In the last two decades, molecular biomarkers predictive of prognosis have been identified in CRC, although biomarkers predictive of treatment response are only available for specific biological drugs used in stage IV CRC. Translational clinical trials mainly based on "omic" strategies allowed a better understanding of the biological heterogeneity of CRCs. These studies were able to classify CRCs into subtypes mainly related to prognosis, recurrence risk, and, to some extent, also to treatment response. Accordingly, the comprehensive molecular characterizations of CRCs, including The Cancer Genome Atlas (TCGA) and consensus molecular subtype (CMS) classifications, were presented to improve the comprehension of the genomic and epigenomic landscapes of CRCs for a better patient management. The CMS classification obtained by the CRC subtyping consortium categorizes CRC into four consensus molecular subtypes (CMS1-4) characterized by different prognoses. In this review, we discussed the CMS classification in different settings with a focus on its relationships with precursor lesions, tumor immunophenotype, and gut microbiota, as well as on its role in predicting prognosis and/or response to pharmacological treatments, as a crucial step towards precision medicine.
Collapse
Affiliation(s)
- Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Romina Seifollahi Asl
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran P.O. Box 14496-14535, Iran;
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Mahsa Saeedi Niasar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Pardis Ketabi Moghadam
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, Tehran P.O. Box 19857-17411, Iran;
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy;
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy
| |
Collapse
|
7
|
Parejo-Alonso B, Royo-García A, Espiau-Romera P, Courtois S, Curiel-García Á, Zagorac S, Villaoslada I, Olive KP, Heeschen C, Sancho P. Pharmacological targeting of the receptor ALK inhibits tumorigenicity and overcomes chemoresistance in pancreatic ductal adenocarcinoma. Biomed Pharmacother 2023; 158:114162. [PMID: 36571997 DOI: 10.1016/j.biopha.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease characterized by its metastatic potential and chemoresistance. These traits are partially attributable to the highly tumorigenic pancreatic cancer stem cells (PaCSCs). Interestingly, these cells show unique features in order to sustain their identity and functionality, some of them amenable for therapeutic intervention. Screening of phospho-receptor tyrosine kinases revealed that PaCSCs harbored increased activation of anaplastic lymphoma kinase (ALK). We subsequently demonstrated that oncogenic ALK signaling contributes to tumorigenicity in PDAC patient-derived xenografts (PDXs) by promoting stemness through ligand-dependent activation. Indeed, the ALK ligands midkine (MDK) or pleiotrophin (PTN) increased self-renewal, clonogenicity and CSC frequency in several in vitro local and metastatic PDX models. Conversely, treatment with the clinically-approved ALK inhibitors Crizotinib and Ensartinib decreased PaCSC content and functionality in vitro and in vivo, by inducing cell death. Strikingly, ALK inhibitors sensitized chemoresistant PaCSCs to Gemcitabine, as the most used chemotherapeutic agent for PDAC treatment. Consequently, ALK inhibition delayed tumor relapse after chemotherapy in vivo by effectively decreasing the content of PaCSCs. In summary, our results demonstrate that targeting the MDK/PTN-ALK axis with clinically-approved inhibitors impairs in vivo tumorigenicity and chemoresistance in PDAC suggesting a new treatment approach to improve the long-term survival of PDAC patients.
Collapse
Affiliation(s)
- Beatriz Parejo-Alonso
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Alba Royo-García
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Pilar Espiau-Romera
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Sarah Courtois
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Álvaro Curiel-García
- Department of Medicine, Division of Digestive Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sladjana Zagorac
- Center for Stem Cells in Cancer & Ageing (Barts Cancer Institute), London, UK
| | - Isabel Villaoslada
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christopher Heeschen
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (Torino), Italy
| | - Patricia Sancho
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain.
| |
Collapse
|
8
|
Song P, Li Y, Wang F, Pu L, Bao L, Gao H, Zhu C, Wang M, Tao L. Genome-wide screening for differentially methylated long noncoding RNAs identifies LIFR-AS1 as an epigenetically regulated lncRNA that inhibits the progression of colorectal cancer. Clin Epigenetics 2022; 14:138. [PMID: 36316703 PMCID: PMC9624034 DOI: 10.1186/s13148-022-01361-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Aberrant DNA methylation is an epigenetic marker that has been linked to the pathogenesis of colorectal cancer (CRC). Long noncoding RNAs (lncRNAs) have been increasingly identified to be associated with tumorigenic processes of CRC. Identifying epigenetically dysregulated lncRNAs and characterizing their effects during carcinogenesis are focuses of cancer research. Methods Differentially methylated loci and expressed lncRNAs were identified by integrating DNA methylome and transcriptome analyses using The Cancer Genome Atlas database. Bisulfite sequencing PCR (BSP) was performed to analyze LIFR-AS1 promoter methylation status. The functional roles of LIFR-AS1 in CRC were determined by in vitro and in vivo experiments. Results We identified a novel hypermethylated lncRNA, LIFR-AS1, that was downregulated and associated with tumorigenesis, metastasis, and poor prognosis in CRC. High methylation burden of LIFR-AS1 indicated a poor survival of CRC patients. Promoter hypermethylation of LIFR-AS1 in tumor tissues was confirmed by BSP. Functional assays revealed that LIFR-AS1 could competitively bind to hsa-miR-29b-3p, and repressed colon cancer cell proliferation, colony formation and invasion. LIFR-AS1 also inhibited tumor growth in a mouse xenograft model of CRC. Conclusions Our results showed that the identified DNA methylation-dysregulated lncRNAs may be potential biomarkers and highlighted a role for LIFR-AS1 as a tumor suppressor in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01361-0.
Collapse
Affiliation(s)
- Peng Song
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ying Li
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Wang
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingxiao Pu
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Linsen Bao
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hengfei Gao
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chuandong Zhu
- grid.410745.30000 0004 1765 1045Department of Oncology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Wang
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Tao
- grid.412676.00000 0004 1799 0784Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|