1
|
Valladares-Ayerbes M, Toledano-Fonseca M, Graña B, Jimenez-Fonseca P, Pulido-Cortijo G, Gil S, Sastre J, Salud A, Rivera F, Salgado M, García-Alfonso P, López López R, Guillén-Ponce C, Rodríguez-Ariza A, Vieitez JM, Díaz-Rubio E, Aranda E. Associations of blood RNA biomarkers and circulating tumour cells in patients with previously untreated metastatic colorectal cancer. BMC Cancer 2025; 25:743. [PMID: 40259317 PMCID: PMC12013160 DOI: 10.1186/s12885-025-14098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND In patients with metastatic colorectal cancer, analysis of the number of basal circulating tumour cells (bCTCs) has been shown to be a strong prognostic indicator. In this study, we aim to explore the potential associations between whole blood mRNA and microRNA expression profiles and bCTC counts, tumour mutations and prognosis in untreated metastatic colorectal cancer patients. METHODS A total of 151 patients previously screened for inclusion in two clinical trials (VISNÚ1 and VISNÚ2) were enrolled in this study. Real-time quantitative PCR (qPCR) analyses were performed to determine the whole blood expression of selected RNAs (mRNAs and microRNAs) involved in the metastatic process. The CellSearch system was used to enumerate circulating tumour cells. The primary objective was to correlate RNA expression with the number of bCTCs, while the secondary objectives were to investigate the relationship between the levels of circulating RNA biomarkers in whole blood and the clinical, pathological, and molecular characteristics and prognosis of patients with metastatic colorectal cancer. RESULTS bCTC count was significantly associated with AGR2 mRNA in the entire cohort of 151 patients. AGR2, ADAR1 and LGR5 were associated with the number of bCTC, both in the subgroup with bCTC ≥ 3 and in the subgroup with native RAS/BRAF/PIK3 CA tumours. In patients with RAS/BRAF/PIK3 CA mutations no correlations with bCTC were detected, but an upregulation of miR-224-5p and the stemness marker LGR5 and a downregulation of immune regulatory CD274 were found. Lower levels of miR-106a-5p/miR-26a-5p were associated with shorter overall survival, with independent statistical significance in the multivariate analysis. CONCLUSIONS A correlation was identified between the levels of a subset of whole blood RNAs, including AGR2, ADAR1, and LGR5, and the number of bCTC and RAS/BRAF/PIK3 CA mutational status. Furthermore, another set of whole blood RNAs, specifically miR-106a-5p and miR-26a-5p, was found to be associated with poor prognosis. This may be helpful for risk stratification. TRIAL REGISTRATION Clinical Trials Gov. NCT01640405 and NCT01640444. Registered on 13 June 2012. https://clinicaltrials.gov/ .
Collapse
Affiliation(s)
- Manuel Valladares-Ayerbes
- Department of Medical Oncology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS), Seville, Spain.
| | - Marta Toledano-Fonseca
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Begoña Graña
- Department of Medical Oncology, Instituto de Investigación Biomédica (INIBIC), Hospital Universitario de A Coruña, A Coruña, Spain
| | - Paula Jimenez-Fonseca
- Department of Medical Oncology, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Gema Pulido-Cortijo
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Silvia Gil
- Department of Medical Oncology, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Javier Sastre
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación (IdISSC), Universidad Complutense, Madrid, Spain
| | - Antonieta Salud
- Department of Medical Oncology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | - Fernando Rivera
- Department of Medical Oncology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Mercedes Salgado
- Department of Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Pilar García-Alfonso
- Department of Medical Oncology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, Madrid, Spain
| | - Rafael López López
- Department of Medical Oncology and Translational Medical Oncology Group, Hospital Clínico Universitario, Instituto de Investigación Sanitaria de Santiago (IDIS), CIBERONC, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Guillén-Ponce
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Antonio Rodríguez-Ariza
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jose Mª Vieitez
- Department of Medical Oncology, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Eduardo Díaz-Rubio
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación (IdISSC), Universidad Complutense, Madrid, Spain
| | - Enrique Aranda
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
2
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Yang H, Chu Y. Clinical value of multi-slice spiral CT in evaluating preoperative TNN staging and postoperative recurrence and metastasis of colon carcinoma. SLAS Technol 2025; 31:100247. [PMID: 39818275 DOI: 10.1016/j.slast.2025.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To evaluate the clinical value of multi-slice spiral CT in preoperative TNN staging and postoperative recurrence and metastasis of colon carcinoma, and to provide evidence for the reliability of CT in the diagnosis of colon carcinoma METHODS: 89 patients with colon carcinoma diagnosed pathologically in our hospital from July 2020 to April 2023 were selected retrospectively. The preoperative TNN staging and postoperative recurrence and metastasis were monitored by 64 row 128 layer spiral CT. The diagnostic coincidence rate, TNM staging coincidence rate and postoperative recurrent TNM staging accuracy were evaluated according to the pathological diagnosis RESULTS: The diagnostic coincidence rate of multi-slice spiral CT was 97.8 % (87/89), and the detection rate of lymph nodes was 86.1 % (31/36). The coincidence rate of T staging was 93.3 % (83/89), N staging was 91.0 % (81/89), M staging was 100 % (Kappa=0.897,0.879, 1.000). The diagnosis of recurrent TNM stage was consistent (Kappa=0.893, 0.801, 1.000) CONCLUSION: Multi-slice spiral CT is of high diagnostic coincidence rate, high accuracy of TNM staging and rapid noninvasive examination. It can obtain reliable results in preoperative staging and postoperative recurrence and metastasis diagnosis, which is worth popularizing in clinic.
Collapse
Affiliation(s)
- Huili Yang
- Department of Radiology, Huzhou First People's Hospital, Huzhou 313000, Zhejiang Province, PR China
| | - Yun Chu
- Department of Radiology, Huzhou First People's Hospital, Huzhou 313000, Zhejiang Province, PR China.
| |
Collapse
|
4
|
Zhou Q, Chen X, Zeng B, Zhang M, Guo N, Wu S, Zeng H, Sun F. Circulating tumor DNA as a biomarker of prognosis prediction in colorectal cancer: a systematic review and meta-analysis. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:167-178. [PMID: 40265088 PMCID: PMC12010414 DOI: 10.1016/j.jncc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 02/03/2025] Open
Abstract
Objective Circulating tumor DNA (ctDNA) is increasingly being used as a potential biomarker in colorectal cancer (CRC) patients. However, the role of ctDNA in CRC prognosis prediction remains unclear. The objective is to systematically assess the clinical value of ctDNA in colorectal cancer prognosis prediction throughout the treatment cycle. Methods PubMed, Web of Science, Embase, Cochrane Library, Scopus, and clinical trials.gov database was searched from January 2016 to April 2023. Observational studies and randomized clinical trials reporting on ctDNA and prognostic outcomes in CRC patients were included. Pooled hazard risk ratios (HRs) were calculated for the primary outcomes, relapse-free survival (RFS), and overall survival (OS). Random-effects models were preferred considering the potential heterogeneity. Results Sixty-five cohort studies were included. Association between ctDNA and shorter RFS or OS was significant, especially after the full-course treatment recommended by the guidelines (HR = 8.92 [ 95 % CI: 6.02-13.22], P < 0.001, I2 = 73 %; HR = 3.05 [ 95 % CI: 1.72-5.41], P < 0.001, I2 = 48 %) for all types of CRC patients. Despite the presence of heterogeneity, subgroup analyses showed that the cancer type and ctDNA detection assays may be the underlying cause. Besides, ctDNA may detect recurrence earlier than radiographic progression, but no uniform sampling time point between studies might bring bias. However, ctDNA detection did not appear to correlate with pathological complete response achievement in patients with locally advanced rectal cancer. Conclusion ctDNA detection was significantly associated with poorer prognosis. The potential applications in prognostic prediction are promising and remain to be evaluated in other fields.
Collapse
Affiliation(s)
- Qingxin Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Xiaowei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Baoqi Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Central Laboratory, Tianjin Fifth Central Hospital (Peking University Binhai Hospital), Tianjin, China
| | - Meng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Nana Guo
- Hebei Centers for Disease Control and Prevention, Hebei, China
| | - Shanshan Wu
- Clinical Epidemiology and EBM Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Key Laboratory of Major Disease Epidemiology, Ministry of Education (Peking University), Beijing, China
- Xinjiang Medical University, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
5
|
Yin H, Zhang M, Zhang Y, Zhang X, Zhang X, Zhang B. Liquid biopsies in cancer. MOLECULAR BIOMEDICINE 2025; 6:18. [PMID: 40108089 PMCID: PMC11923355 DOI: 10.1186/s43556-025-00257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer ranks among the most lethal diseases worldwide. Tissue biopsy is currently the primary method for the diagnosis and biological analysis of various solid tumors. However, this method has some disadvantages related to insufficient tissue specimen collection and intratumoral heterogeneity. Liquid biopsy is a noninvasive approach for identifying cancer-related biomarkers in peripheral blood, which allows for repetitive sampling across multiple time points. In the field of liquid biopsy, representative biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Many studies have evaluated the prognostic and predictive roles of CTCs and ctDNA in various solid tumors. Although these studies have limitations, the results of most studies appear to consistently demonstrate the correlations of high CTC counts and ctDNA mutations with lower survival rates in cancer patients. Similarly, a reduction in CTC counts throughout therapy may be a potential prognostic indicator related to treatment response in advanced cancer patients. Moreover, the biochemical characteristics of CTCs and ctDNA can provide information about tumor biology as well as resistance mechanisms against targeted therapy. This review discusses the current clinical applications of liquid biopsy in cancer patients, emphasizing its possible utility in outcome prediction and treatment decision-making.
Collapse
Affiliation(s)
- Hang Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Manjie Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yu Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Xuebing Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Xia Zhang
- Dalian Fifth People's Hospital, Dalian, 116000, China.
| | - Bin Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
6
|
Ye QY, Wang YY, Wang ZJ, Lu M, Peng HX, Wang X, Cheng XX, Ying HQ. Robust Predictive Performance of MLPAS and CCMLP for Clinical Outcome and Risk Stratification in Patients with Colorectal Cancer. J Inflamm Res 2025; 18:3889-3900. [PMID: 40109656 PMCID: PMC11921802 DOI: 10.2147/jir.s498028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND There is no recognized biomarker is recommended to monitor or predict the prognosis of colorectal cancer (CRC) patients with negative detection of carcinoembryonic antigen (CEA) or carbohydrate antigen 19-9 (CA19-9) and to classify high recurrence-risk cases. METHODS Discovery and two-stage validation cohorts, which included 2111 radically resected patients with stage II-III CRC, were enrolled in this study. We detected preoperative peripheral monocyte, platelet, albumin (Alb), pre-albumin (pAlb), CEA, and CA19-9 and investigated the prognostic and risk-stratified roles of twelve new inflammatory biomarkers in the three cohorts. RESULTS In our study, monocyte-to-pAlb ratio (MPAR), monocyte-to-lymphocyte -to-Alb ratio (MLAR), monocyte-to-lymphocyte-to-pAlb ratio (MLPAR), monocyte- to-pAlb score (MPAS), lymphocyte-to-monocyte-Alb score (MLAS), lymphocyte-to monocyte-pAlb score (MLPAS), and platelet-to-lymphocyte-Alb score (PLAS) were significantly associated with both RFS and OS in three cohorts. MLPAS showed the best performance in predicting RFS and OS, and it was related to right-tumor location and significant cancer burden (≥5cm) in the overall population. Moreover, MLPAS is a robust prognostic biomarker in subgroups stratified by CEA or CA19-9. Patients with scores zero and two of the CEA-CA19-9-MLPAS score (CCMLP) showed the lowest and highest recurrence and death rates, respectively, and significant survival differences were observed between them. CONCLUSION MLPAS is an optimal, independent, and robust prognostic biomarker in the stage II-III CRC population, especially with negative CEA or CA19-9. The CCMLP could effectively classify high recurrence-risk patients who require more focus, monitoring, and treatment for the clinic.
Collapse
Affiliation(s)
- Qiu-Ying Ye
- Department of Clinical Laboratory, Immunity and Inflammation Key Laboratory of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
- Department of Medical Technology, Jiangxi Medical College, Shangrao, 334000, People’s Republic of China
- Department of Laboratory Medicine, Central Hospital of Shangrao City, Shangrao, 334000, People’s Republic of China
| | - Yuan-Yuan Wang
- Department of Clinical Laboratory, Immunity and Inflammation Key Laboratory of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zhi-Jie Wang
- Department of Clinical Laboratory, Immunity and Inflammation Key Laboratory of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Min Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Hong-Xin Peng
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing, 210006, People’s Republic of China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Xue-Xin Cheng
- Department of Clinical Laboratory, Immunity and Inflammation Key Laboratory of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Hou-Qun Ying
- Department of Clinical Laboratory, Immunity and Inflammation Key Laboratory of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
- Department of Laboratory Medicine, Central Hospital of Shangrao City, Shangrao, 334000, People’s Republic of China
- Shangrao Medical Center, The Second Affiliated Hospital of Nanchang University, Shangrao, 334000, People’s Republic of China
| |
Collapse
|
7
|
Liatsou E, Kollias I, Trapali M, Tsilimigras DI, Gavriatopoulou M, Ntanasis-Stathopoulos I. Liquid Biopsies in the Early Diagnosis, Prognosis, and Tailored Treatment of Colorectal Cancer. Cancers (Basel) 2025; 17:927. [PMID: 40149264 PMCID: PMC11940745 DOI: 10.3390/cancers17060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Liquid biopsies provide a less-invasive option to tissue biopsies for the early diagnosis, prognosis, and tailored therapy of colorectal cancer (CRC). CRC is a major cause of cancer-related death, and early identification is essential for improving patient outcomes. REVIEW Conventional diagnostic techniques, including colonoscopy and tissue biopsy, may be enhanced by liquid biopsies that examine circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and other indicators present in body fluids. These markers provide significant insights into tumor biology, heterogeneity, and therapeutic response. CTCs detected in early-stage CRC have prognostic significance for disease recurrence and survival, while ctDNA investigation may uncover genetic mutations, epigenetic alterations, and tumor development. The identification of ctDNA in minimal residual disease (MRD) postsurgery correlates with an elevated risk of recurrence and unfavorable prognosis, underscoring its use in assessing treatment effectiveness. Furthermore, non-coding RNAs (ncRNAs) contained inside EVs provide potential prospective biomarkers and therapeutic targets, facilitating diagnosis and treatment assessment. Notwithstanding the potential of liquid biopsies, obstacles persist in assay standardization, sensitivity enhancement, and the management of tumor heterogeneity. Additional extensive research is required to determine their function in clinical practice. CONCLUSION Overall, liquid biopsies serve as a potential instrument for real-time monitoring, evaluating therapy responses, and directing individualized therapeutic strategies in CRC patients.
Collapse
Affiliation(s)
- Efstathia Liatsou
- CAST, Center of Allogenic Transplantation and Cell Therapies, Karolinska University, 17177 Stockholm, Sweden;
| | - Ioannis Kollias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.G.)
| | - Maria Trapali
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Medicine, University of West Attica, 12243 Egaleo, Greece;
| | - Diamantis I. Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.G.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.G.)
| |
Collapse
|
8
|
Yu Z, Fu J, Mantareva V, Blažević I, Wu Y, Wen D, Battulga T, Wang Y, Zhang J. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 2025; 32:273-285. [PMID: 40011710 DOI: 10.1038/s41417-024-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 02/28/2025]
Abstract
Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.
Collapse
Affiliation(s)
- Zhile Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Jiali Fu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113, Sofia, Bulgaria
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Yusong Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Dianchang Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Yuqing Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510140, PR China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
9
|
Huang XY, Chen SX, Wang ZY, Lu YS, Liu CT, Chen SZ. PIWI-interacting RNA biomarkers in gastrointestinal disease. Clin Chim Acta 2025; 569:120182. [PMID: 39920958 DOI: 10.1016/j.cca.2025.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Detection and diagnosis of neoplastic and inflammatory gastrointestinal (GI) diseases are typically based on endoscopic and pathologic examination. In GI neoplastic diseases, diagnosis can be delayed due to the expense and invasive nature of this approach. Recently, PIWI-interacting RNAs (piRNAs), a group of small non-coding RNA molecules containing 24-31 nucleotides, have been thought to serve as biomarkers in many disease processes. For example, piRNAs are differentially expressed in GI cancer but their biologic role remains unclear. Using next-generation sequencing and microarray analyses, researchers have suggested that monitoring piRNAs could facilitate diagnosis and prognosis in GI disease. Herein, we reviewed the use of piRNAs in neoplastic, inflammatory, functional, and other diseases of the digestive system, which could shed new light on cancer screening, early detection, and personalized treatment.
Collapse
Affiliation(s)
- Xin-Yi Huang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shu-Xian Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Zhen-Yu Wang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Yong-Sheng Lu
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Su-Zuan Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
10
|
Ding P, Wu J, Wu H, Ma W, Li T, Yang P, Guo H, Tian Y, Yang J, Er L, Gu R, Zhang L, Meng N, Li X, Guo Z, Meng L, Zhao Q. Preoperative liquid biopsy transcriptomic panel for risk assessment of lymph node metastasis in T1 gastric cancer. J Exp Clin Cancer Res 2025; 44:43. [PMID: 39915770 PMCID: PMC11804050 DOI: 10.1186/s13046-025-03305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The increasing incidence of early-stage T1 gastric cancer (GC) underscores the need for accurate preoperative risk stratification of lymph node metastasis (LNM). Current pathological assessments often misclassify patients, leading to unnecessary radical surgeries. METHODS Through analysis of transcriptomic data from public databases and T1 GC tissues, we identified a 4-mRNA panel (SDS, TESMIN, NEB, and GRB14). We developed and validated a Risk Stratification Assessment (RSA) model combining this panel with clinical features using surgical specimens (training cohort: n = 218; validation cohort: n = 186), gastroscopic biopsies (n = 122), and liquid biopsies (training cohort: n = 147; validation cohort: n = 168). RESULTS The RSA model demonstrated excellent predictive accuracy for LNM in surgical specimens (training AUC = 0.890, validation AUC = 0.878), gastroscopic biopsies (AUC = 0.928), and liquid biopsies (training AUC = 0.873, validation AUC = 0.852). This model significantly reduced overtreatment rates from 83.9 to 44.1% in tissue specimens and from 84.4 to 56.0% in liquid biopsies. The 4-mRNA panel showed specificity for T1 GC compared to other gastrointestinal cancers (P < 0.001). CONCLUSIONS We developed and validated a novel liquid biopsy-based RSA model that accurately predicts LNM in T1 GC patients. This non-invasive approach could significantly reduce unnecessary surgical interventions and optimize treatment strategies for high-risk T1 GC patients.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Haotian Wu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Wenqian Ma
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Tongkun Li
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Peigang Yang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Honghai Guo
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Yuan Tian
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Jiaxuan Yang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China
| | - Limian Er
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Renjun Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430065, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, 050050, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, 071030, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, 053099, China
| | - Lingjiao Meng
- Research Center, Tumor Research Institute of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China.
| |
Collapse
|
11
|
Zhou J, Li L, Liu Y, Jia W, Liu Q, Gao X, Wu A, Wu B, Shen Z, Wang Z, Han J, Niu B, Gong Y, Guan Y, Zhou J, Xue H, Zhou W, Hu K, Lu J, Xu L, Xia X, Yi X, Yang L, Lin G. Circulating tumour DNA in predicting and monitoring survival of patients with locally advanced rectal cancer undergoing multimodal treatment: long-term results from a prospective multicenter study. EBioMedicine 2025; 112:105548. [PMID: 39818166 PMCID: PMC11786667 DOI: 10.1016/j.ebiom.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (nCRT) is the standard for locally advanced rectal cancer (LARC). However, distant metastasis remains the primary cause of treatment failure. Early identification of high-risk individuals for personalized treatment may offer a solution. Circulating tumour DNA (ctDNA) could assist in this process. METHODS From September 2017 to June 2019, the study prospectively recruited 113 patients with LARC (cT3-4N0M0 or cTanyN + M0) who underwent nCRT followed by radical surgery across 8 tertiary centers. ctDNA was analysed using large-panel targeted sequencing at baseline, during nCRT, pre-surgery, post-surgery, post-adjuvant chemotherapy (ACT), and during annual follow-ups for 3 years. FINDINGS We analysed 103 tissue and 669 plasma samples from 103 patients. With a median 53-month follow-up, significantly worse progression-free survival (PFS) and overall survival (OS) were observed if median variant allele frequency (mVAF) of baseline ctDNA per patient was ≥0.5% (PFS, HR 4.39, p < 0.001; OS, HR 5.61, p = 0.004) or ctDNA was still detectable two weeks into nCRT (PFS, HR 7.63, p < 0.001; OS, HR 5.08, p < 0.001). Furthermore, when compared to the low-risk (C1) group (characterized by "ctDNA undetected during nCRT with baseline mVAF <0.5%" or "ctDNA undetected during nCRT with TMB (tumour mutational burden) ≥20/Mb"), the high-risk (C2) group (characterized by "ctDNA detected during nCRT" or "baseline mVAF ≥0.5% with TMB <20/Mb") showed significantly worse long-term outcomes (3 y-PFS, 55.9% vs. 94.2%; 3 y-OS, 79.4% vs. 100%). The ctDNA clearance during nCRT, baseline mVAF, and TMB may be effective prognostic indicators. INTERPRETATION Our findings reaffirm the clinical monitoring value of ctDNA and demonstrate the strong prognostic value of baseline ctDNA and its early clearance status in patients with LARC undergoing nCRT. This highlights the potential of dynamic ctDNA monitoring as actionable stratified indicators to guide personalized neoadjuvant treatment strategies. FUNDING This work was supported by the Major Grants Program of Beijing Science and Technology Commission (No. D171100002617003) and the National High Level Hospital Clinical Research Funding (2022-PUMCH-C-005).
Collapse
Affiliation(s)
- Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102206, China
| | - Yuxin Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wenzhuo Jia
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Qian Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Gao
- Geneplus-Beijing, Beijing 102206, China
| | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100871, China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Beizhan Niu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ke Hu
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Junyang Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102206, China
| | - Ling Yang
- Geneplus-Beijing, Beijing 102206, China.
| | - Guole Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
12
|
Ohmura H, Hanamura F, Okumura Y, Ando Y, Masuda T, Mimori K, Akashi K, Baba E. Liquid biopsy for breast cancer and other solid tumors: a review of recent advances. Breast Cancer 2025; 32:33-42. [PMID: 38492205 DOI: 10.1007/s12282-024-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Liquid biopsy using circulating tumor DNA (ctDNA) has been reported to be less invasive and effective for comprehensive genetic analysis of heterogeneous solid tumors, including decision-making for therapeutic strategies, predicting recurrence, and detecting genetic factors related to treatment resistance in various types of cancers. Breast cancer, colorectal cancer, and lung cancer are among the most prevalent malignancies worldwide, and clinical studies of liquid biopsy for these cancers are ongoing. Liquid biopsy has been used as a companion diagnostic tool in clinical settings, and research findings have accumulated, especially in cases of colorectal cancer after curative resection and non-small cell lung cancer (NSCLC) after curative chemoradiotherapy, in which ctDNA detection helps predict eligibility for adjuvant chemotherapy. Liquid biopsy using ctDNA shows promise across a wide range of cancer types, including breast cancer, and its clinical applications are expected to expand further through ongoing research. In this article, studies on liquid biopsy in breast cancer, colorectal cancer, and NSCLC are compared focusing on ctDNA.
Collapse
Affiliation(s)
- Hirofumi Ohmura
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Fumiyasu Hanamura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuta Okumura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
14
|
Lou P, Luo D, Huang Y, Chen C, Yuan S, Wang K. Establishment and Validation of a Prognostic Nomogram for Predicting Postoperative Overall Survival in Advanced Stage III-IV Colorectal Cancer Patients. Cancer Med 2024; 13:e70385. [PMID: 39546402 PMCID: PMC11566917 DOI: 10.1002/cam4.70385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Most colorectal cancer (CRC) patients are at an advanced stage when they are first diagnosed. Risk factors for predicting overall survival (OS) in advanced stage CRC patients are crucial, and constructing a prognostic nomogram model is a scientific method for survival analysis. METHODS A total of 2956 advanced stage CRC patients were randomised into training and validation groups at a 7:3 ratio. Univariate and multivariate Cox proportional hazards regression analyses were used to screen risk factors for OS and subsequently construct a prognostic nomogram model for predicting 1-, 3-, 5-, 8- and 10-year OS of advanced stage CRC patients. The performance of the model was demonstrated by the area under the curve (AUC) values, calibration curves and decision curve analysis (DCA). Kaplan-Meier curves were used to plot the survival probabilities for different strata of each risk factor. RESULTS There was no statistically significant difference (p > 0.05) in the 32 clinical variables between patients in the training and validation groups. Univariate and multivariate Cox proportional hazards regression analyses demonstrated that age, location, TNM, chemotherapy, liver metastasis, lung metastasis, MSH6, CEA, CA199, CA125 and CA724 were risk factors for OS. We estimated the AUC values for the nomogram model to predict 1-, 3-, 5-, 8- and 10-year OS, which in the training group were 0.826 (95% CI: 0.807-0.845), 0.836 (0.819-0.853), 0.839 (0.820-0.859), 0.835 (0.809-0.862) and 0.825 (0.779-0.870) respectively; in the validation group, the corresponding AUC values were 0.819 (0.786-0.852), 0.831 (0.804-0.858), 0.830 (0.799-0.861), 0.815 (0.774-0.857) and 0.802 (0.723-0.882) respectively. Finally, the 1-, 3-, 5-, 8- and 10-year OS rates for advanced stage CRC patients were 73.4 (71.8-75.0), 49.5 (47.8-51.4), 43.3 (41.5-45.2), 40.1 (38.1-41.9) and 38.6 (36.6-40.8) respectively. CONCLUSION We constructed and validated an original nomogram for predicting the postoperative OS of advanced stage CRC patients, which can help facilitates physicians to accurately assess the individual survival of postoperative patients and identify high-risk patients.
Collapse
Affiliation(s)
- Pengwei Lou
- Department of Big Data, College of Information EngineeringXinjiang Institute of EngineeringUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Dongmei Luo
- Department of Medical AdministrationCancer Hospital Affiliated With Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Yuting Huang
- Department of Medical AdministrationTraditional Chinese Medicine Hospital Affiliated With Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Chen Chen
- College of Public HealthXinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Shuai Yuan
- Department of UrologyCancer Hospital Affiliated With Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Kai Wang
- College of Public HealthXinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| |
Collapse
|
15
|
Lișcu HD, Verga N, Atasiei DI, Badiu DC, Dumitru AV, Ultimescu F, Pavel C, Stefan RE, Manole DC, Ionescu AI. Biomarkers in Colorectal Cancer: Actual and Future Perspectives. Int J Mol Sci 2024; 25:11535. [PMID: 39519088 PMCID: PMC11546354 DOI: 10.3390/ijms252111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Biomarkers in colorectal cancer (CRC) are of great interest in the current literature due to improvements in techniques such as liquid biopsy and next-generation sequencing (NGS). However, screening methods vary globally, with multi-target stool DNA (mt-sDNA) predominantly used in the USA and, more recently, the Cologuard Plus; biomarkers such as the Galectins family and septins show promise in early detection. Gut microbiome assessments, such as Fusobacterium nucleatum, are under intense exploration. Diagnostic tests, such as circulating DNA analysis via NGS, exhibit effectiveness and are being increasingly adopted. Circulating tumor cells emerge as potential alternatives to traditional methods in terms of diagnosis and prognosis. Predictive biomarkers are well established in guidelines; nonetheless, with the aid of machine learning and artificial intelligence, these biomarkers may be improved. This review critically explores the actual dynamic landscape of CRC biomarkers and future, promising biomarkers involved in screening, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Horia-Dan Lișcu
- Discipline of Oncological Radiotherapy and Medical Imaging, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (A.-I.I.)
- Radiotherapy Department, Colțea Clinical Hospital, 030167 Bucharest, Romania;
| | - Nicolae Verga
- Radiotherapy Department, Colțea Clinical Hospital, 030167 Bucharest, Romania;
| | - Dimitrie-Ionuț Atasiei
- Discipline of Oncological Radiotherapy and Medical Imaging, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (A.-I.I.)
| | - Dumitru-Cristinel Badiu
- Department of Surgery, Bagdasar Arseni Clinical Emergency Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bd., 050474 Bucharest, Romania;
| | - Adrian Vasile Dumitru
- Department of Pathology, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bd., 050474 Bucharest, Romania;
| | - Flavia Ultimescu
- Department of Pathology, Institute of Oncology Alexandru Trestioreanu, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Christopher Pavel
- Department of Gastroenterology, Floreasca Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roxana-Elena Stefan
- General Surgery Department, Clinic of General and Esophageal Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Diandra-Carmen Manole
- Department of Endocrinology, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bd., 050474 Bucharest, Romania;
| | - Andreea-Iuliana Ionescu
- Discipline of Oncological Radiotherapy and Medical Imaging, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (A.-I.I.)
- Radiotherapy Department, Colțea Clinical Hospital, 030167 Bucharest, Romania;
| |
Collapse
|
16
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
17
|
Liu G, Zhu J, Zhang P, Zhang T, Cui Z, Jiao F, Le W, Li X, Chen B. Exploring the diagnostic and prognostic significance of circulating tumor cells in stage II-IV colorectal cancer using a nano-based detection method. J Chin Med Assoc 2024; 87:945-952. [PMID: 39164812 DOI: 10.1097/jcma.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer mortality globally, underscoring the urgency for a noninvasive and effective biomarker to enhance patient prognosis. Circulating tumor cells (CTCs), a potential marker for real-time tumor monitoring, are limited in clinical utility due to the low sensitivity of existing detection methods. Previously, we introduced a novel nano-based CTCs detection method that relies on the electrical properties of cell surfaces, thus eliminating the need for specific molecular biomarkers. In this study, we used this technique to evaluate the diagnostic and prognostic value of CTCs in stage II-IV CRC. METHODS A total of 194 participants were included, consisting of 136 CRC patients and 58 healthy individuals. The peripheral blood of the participants was collected, and CTC enumeration was performed utilizing the nano-based detection method that we newly developed. The receiver operating characteristic (ROC) curve and multivariate Cox proportional-hazards analysis were used to assess the effectiveness of CTCs for diagnosing CRC and predicting patient prognosis. RESULTS The nano-based method demonstrated an ability to differentiate CRC patients from healthy individuals with a sensitivity of 84.6% and a specificity of 94.8%. Furthermore, baseline CTC levels were predictive of progression-free survival (PFS) in CRC patients, with lower levels associated with longer PFS compared to higher levels (4.5 vs 8.0 months at 15 CTCs/mL, p = 0.016; 4.4 vs 8.0 months at 20 CTCs/mL, p = 0.028). We also explored the dynamic changes in the number of CTCs after 1 to 5 cycles of chemotherapy. Patients with increasing CTC levels typically experienced disease progression (PD), while those with decreasing levels often achieved a partial response (PR) or maintained stable disease (SD). These findings suggest that the dynamic fluctuations in CTC counts are closely tied to the clinical course of the disease. CONCLUSION Our study indicates the potential of nano-based CTCs detection in diagnosing and predicting outcomes for patients with stage II-IV CRC.
Collapse
Affiliation(s)
- Gang Liu
- Department of Throatic Surgery, East Hospital of Tongji University School of Medicine, Shanghai, China
| | - Jinfeng Zhu
- Department of Oncology, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Pengbo Zhang
- Zhihui Medical Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Tingting Zhang
- Zhihui Medical Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Zheng Cui
- Zhihui Medical Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Fanglei Jiao
- Department of Throatic Surgery, East Hospital of Tongji University School of Medicine, Shanghai, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Xiaofeng Li
- Department of Oncology, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Gao Y, Zhang X, Wang X, Sun R, Li Y, Li J, Quan W, Yao Y, Hou Y, Li D, Sun Z. The clinical value of rapidly detecting urinary exosomal lncRNA RMRP in bladder cancer with an RT-RAA-CRISPR/Cas12a method. Clin Chim Acta 2024; 562:119855. [PMID: 38981565 DOI: 10.1016/j.cca.2024.119855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND AIMS Bladder cancer (BCa) is a highly aggressive malignancy of the urinary system. Timely detection is imperative for enhancing BCa patient prognosis. MATERIALS AND METHODS This study introduces a novel approach for detecting long non-coding RNA (lncRNA) Mitochondrial RNA Processing Endoribonuclease (RMRP) in urine exosomes from BCa patients using the reverse transcription recombinase-aided amplification (RT-RAA) and clustered regularly interspaced short palindromic repeats and associated Cas12a proteins (CRISPR/Cas12a) technique. Various statistical methods were used to evaluate its diagnostic value for BCa. RESULTS The specificity of urine exosomal RMRP detection for BCa diagnosis was enhanced by using RT-RAA combined with CRISPR/Cas12a. The testing process duration was reduced to 30 min, which supports rapid detection. Moreover, this approach allows the identification of target signals in real-time using blue light, facilitating immediate detection. In clinical sample analysis, this methodology exhibited a high level of diagnostic efficacy. This was evidenced by larger area under the curve values with receiver operating characteristic curve analysis compared with using traditional RT-qPCR methods, indicating superior diagnostic accuracy and sensitivity. Furthermore, the combined analysis of RMRP expression in urine exosomes detected by RT-RAA-CRISPR/Cas12a and NMP-22 expression may further enhance diagnostic accuracy. CONCLUSIONS The RT-RAA-CRISPR/Cas12a technology is a swift, sensitive, and uncomplicated method for nucleic acid detection. Because of its convenient and non-invasive sampling approach, user-friendly operation, and reproducibility, this technology is very promising for automated detection and holds favorable application possibilities within clinical environments.
Collapse
Affiliation(s)
- Yuting Gao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Xueru Zhang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Xuanlin Wang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Ruixin Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yaran Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Jing Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yiwen Yao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yanqiang Hou
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, PR China.
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| | - Zujun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| |
Collapse
|
20
|
Li B, Wang K, Cheng W, Fang B, Li YH, Yang SM, Zhang MH, Wang YH, Wang K. Recent advances of PIWI-interacting RNA in cardiovascular diseases. Clin Transl Med 2024; 14:e1770. [PMID: 39083321 PMCID: PMC11290350 DOI: 10.1002/ctm2.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The relationship between noncoding RNAs (ncRNAs) and human diseases has been a hot topic of research, but the study of ncRNAs in cardiovascular diseases (CVDs) is still in its infancy. PIWI-interacting RNA (piRNA), a small ncRNA that binds to the PIWI protein to maintain genome stability by silencing transposons, was widely studied in germ lines and stem cells. In recent years, piRNA has been shown to be involved in key events of multiple CVDs through various epigenetic modifications, revealing the potential value of piRNA as a new biomarker or therapeutic target. CONCLUSION This review explores origin, degradation, function, mechanism and important role of piRNA in CVDs, and the promising therapeutic targets of piRNA were summarized. This review provide a new strategy for the treatment of CVDs and lay a theoretical foundation for future research. KEY POINTS piRNA can be used as a potential therapeutic target and biomaker in CVDs. piRNA influences apoptosis, inflammation and angiogenesis by regulating epigenetic modificaions. Critical knowledge gaps remain in the unifying piRNA nomenclature and PIWI-independent function.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Wei Cheng
- Department of Cardiovascular SurgeryBeijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Bo Fang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Ying Hui Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Su Min Yang
- Department of Cardiovascular SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Mei Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
| | - Yun Hong Wang
- Hypertension CenterBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| |
Collapse
|
21
|
Guo SB, Hu LS, Huang WJ, Zhou ZZ, Luo HY, Tian XP. Comparative investigation of neoadjuvant immunotherapy versus adjuvant immunotherapy in perioperative patients with cancer: a global-scale, cross-sectional, and large-sample informatics study. Int J Surg 2024; 110:4660-4671. [PMID: 38652128 PMCID: PMC11325894 DOI: 10.1097/js9.0000000000001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Neoadjuvant and adjuvant immunotherapies for cancer have evolved through a series of remarkable and critical research advances; however, addressing their similarities and differences is imperative in clinical practice. Therefore, this study aimed to examine their similarities and differences from the perspective of informatics analysis. METHODS This cross-sectional study retrospectively analyzed extensive relevant studies published between 2014 and 2023 using stringent search criteria, excluding nonpeer-reviewed and non-English documents. The main outcome variables are publication volume, citation volume, connection strength, occurrence frequency, relevance percentage, and development percentage. Furthermore, an integrated comparative analysis was conducted using unsupervised hierarchical clustering, spatiotemporal analysis, regression statistics, and Walktrap algorithm analysis. RESULTS This analysis included 1373 relevant studies. Advancements in neoadjuvant and adjuvant immunotherapies have been promising over the last decade, with an annual growth rate of 25.18 vs. 6.52% and global collaboration (International Co-authorships) of 19.93 vs. 19.84%. Respectively, five dominant research clusters were identified through unsupervised hierarchical clustering based on machine learning, among which Cluster 4 (Balance of neoadjuvant immunotherapy efficacy and safety) and Cluster 2 (Adjuvant immunotherapy clinical trials) [Average Publication Year (APY): 2021.70±0.70 vs. 2017.54±4.59] are emerging research populations. Burst and regression curve analyses uncovered domain pivotal research signatures, including microsatellite instability (R 2 =0.7500, P =0.0025) and biomarkers (R 2 =0.6505, P =0.0086) in neoadjuvant scenarios, and the tumor microenvironment (R 2 =0.5571, P =0.0209) in adjuvant scenarios. The Walktrap algorithm further revealed that 'neoadjuvant immunotherapy, nonsmall cell lung cancer (NSCLC), immune checkpoint inhibitors, melanoma' and 'adjuvant immunotherapy, melanoma, hepatocellular carcinoma, dendritic cells' (Relevance Percentage: 100 vs. 100%, Development Percentage: 37.5 vs. 17.1%) are extremely relevant to this field but remain underdeveloped, highlighting the need for further investigation. CONCLUSION This study identified pivotal research signatures and provided substantial predictions for neoadjuvant and adjuvant cancer immunotherapies. In addition, comprehensive quantitative comparisons revealed a notable shift in focus within this field, with neoadjuvant immunotherapy taking precedence over adjuvant immunotherapy after 2020; such a qualitative finding facilitate proper decision-making for subsequent research and mitigate the wastage of healthcare resources.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Le-Sheng Hu
- Department of Plastic Surgery, Shantou Central Hospital, Shantou
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou
| | - Zhen-Zhong Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| |
Collapse
|
22
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
23
|
Peng J, Lin Y, Sheng X, Yuan C, Wang Y, Yin W, Zhou L, Lu J. Serum miRNA-1 may serve as a promising noninvasive biomarker for predicting treatment response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:789. [PMID: 38956544 PMCID: PMC11221026 DOI: 10.1186/s12885-024-12500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND MicroRNA-1 (miR-1) is a tumour suppressor that can inhibit cell proliferation and invasion in several cancer types. In addition, miR-1 was found to be associated with drug sensitivity. Circulating miRNAs have been proven to be potential biomarkers with predictive and prognostic value. However, studies of miR-1 expression in the serum of breast cancer (BC) patients are relatively scarce, especially in patients receiving neoadjuvant chemotherapy (NAC). METHODS Serum samples from 80 patients were collected before chemotherapy, and RT-PCR was performed to detect the serum expression of miR-1. The correlation between miR-1 expression in serum and clinicopathological factors, including pathological complete response (pCR), was analyzed by the chi-squared test and logistic regression. KEGG and GSEA analysis were also performed to determine the biological processes and signalling pathways involved. RESULTS The miR-1 high group included more patients who achieved a pCR than did the miR-1 low group (p < 0.001). Higher serum miR-1 levels showed a strong correlation with decreased ER (R = 0.368, p < 0.001) and PR (R = 0.238, p = 0.033) levels. The univariate model of miR-1 for predicting pCR achieved an AUC of 0.705 according to the ROC curve. According to the interaction analysis, miR-1 interacted with Ki67 to predict the NAC response. According to the Kaplan-Meier plot, a high serum miR-1 level was related to better disease-free survival (DFS) in the NAC cohort. KEGG analysis and GSEA results indicated that miR-1 may be related to the PPAR signalling pathway and glycolysis. CONCLUSIONS In summary, our data suggested that miR-1 could be a potential biomarker for pCR and survival outcomes in patients with BC treated with NAC.
Collapse
Affiliation(s)
- Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
24
|
Zhou X, Wu L, Tian C. Overexpression of circular RNA hsa_circ_0008621 facilitates colorectal cancer progression and predicts poor prognosis. Ann Gastroenterol Surg 2024; 8:639-649. [PMID: 38957564 PMCID: PMC11216790 DOI: 10.1002/ags3.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024] Open
Abstract
Aim To evaluate the potential role of serum and tissue hsa_circ_0008621 as a prognostic biomarker for CRC patients. Focused on the functional role of hsa_circ_0008621 in colorectal cancer (CRC). Methods Serum and tissue hsa_circ_0008621 expression were quantified by qRT-PCR in 157 CRC patients, as well as 100 serums from healthy controls. Serum and tissue hsa_circ_0008621 expression was evaluated for their prognostic role in CRC patients using Kaplan-Meier curves and Multivariate Cox proportional hazards analysis. To further characterize the biological role of hsa_circ_0008621 expression in CRC, in vitro hsa_circ_0008621 inhibition was performed and the effects on cellular growth, migration, invasion, apoptosis, and glycolysis were explored. Next, the downstream molecules for hsa_circ_0008621 were predicted. Results Hsa_circ_0008621 expression was significantly upregulated in CRC tissues and serums. Serum hsa_circ_0008621 levels were significantly up-regulated in advanced-staged samples. High serum hsa_circ_0008621 expression was associated with shorter overall survival and recurrence-free survival in CRC patients. Multivariate Cox regression analysis identified a high level of serum hsa_circ_0008621 expression as an independent prognostic factor with respect to overall survival and recurrence-free survival. Loss of function assays for hsa_circ_0008621 in vitro led to a significant decrease in cell proliferation, migration, invasion, and glycolysis, but an increase in cell apoptosis. Hsa_circ_0008621 can sponge miR-532-5p, which targets SLC16A3. Conclusion High level of serum hsa_circ_0008621 is associated with poor survival in CRC and promotes CRC progression, suggesting it to be a promising non-invasive prognostic biomarker and novel therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Department of General SurgeryThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou first People's HospitalXuzhouJiangsuChina
| | - Lei Wu
- Department of General SurgeryThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou first People's HospitalXuzhouJiangsuChina
| | - Chunyan Tian
- Department of General SurgeryThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou first People's HospitalXuzhouJiangsuChina
| |
Collapse
|
25
|
Metaxas G, Papachristou A, Stathaki M. Colorectal cancer screening: Modalities and adherence. World J Gastroenterol 2024; 30:3048-3051. [PMID: 38983962 PMCID: PMC11230065 DOI: 10.3748/wjg.v30.i24.3048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
In the last decade, several studies have explored various modalities and strategies for colorectal cancer (CRC) screening, taking into account epidemiological data, individual characteristics, and socioeconomic factors. In this editorial, we comment further on a retrospective study by Agatsuma et al published in the recent issue of the World Journal of Gastroenterology. Our focus is on screening trends, particularly in relation to efforts to improve the currently suboptimal uptake among the general population worldwide, aiming to enhance early diagnosis rates of CRC. There is a need to raise awareness through health edu-cation programs and to consider the use of readily available, non-invasive screening methods. These strategies are crucial for attracting screen-eligible populations to participate in first-line screening, especially those in high- or average-risk groups and in regions with limited resources. Liquid biopsies and biomarkers represent rapidly evolving trends in screening and diagnosis; however, their clinical relevance has yet to be standardized.
Collapse
Affiliation(s)
- Georgios Metaxas
- Department of Surgery, Elena Venizelou Hospital, Athens 11521, Greece
| | | | - Martha Stathaki
- Department of Surgery, Elena Venizelou Hospital, Athens 11521, Greece
| |
Collapse
|
26
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yi Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hui Cao
- Department of PsychiatryThe School of Clinical Medicine, Hunan University of Chinese MedicineChangshaChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province)ChangshaChina
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinxin Chen
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Liangchi Wang
- Department of NeurosurgeryFengdu People's Hospital, ChongqingChongqingChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ji Xue
- Department of NeurosurgeryTraditional Chinese Medicine Hospital Dianjiang ChongqingChongqingChina
| | - Xiaoya Qi
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiancheng Dong
- Department of Cerebrovascular DiseasesDazhou Central HospitalSichuanChina
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
27
|
Zhong D, Wang Z, Ye Z, Wang Y, Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol Cancer 2024; 23:67. [PMID: 38561768 PMCID: PMC10983767 DOI: 10.1186/s12943-024-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.
Collapse
Affiliation(s)
- Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
28
|
Li S, Fang W, Zheng J, Peng Z, Yu B, Chen C, Zhang Y, Jiang W, Yuan S, Zhang L, Zhang X. Whole-transcriptome defines novel glucose metabolic subtypes in colorectal cancer. J Cell Mol Med 2024; 28:e18065. [PMID: 38116696 PMCID: PMC10902307 DOI: 10.1111/jcmm.18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.
Collapse
Affiliation(s)
- Shaohua Li
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Wei Fang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Jianfeng Zheng
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Zhiqiang Peng
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Biyue Yu
- School of Life SciencesHebei UniversityBaodingChina
| | - Chunhui Chen
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Yuting Zhang
- School of Life SciencesHebei UniversityBaodingChina
| | - Wenli Jiang
- School of Life SciencesHebei UniversityBaodingChina
| | - Shuhui Yuan
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Xueli Zhang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| |
Collapse
|
29
|
Guo N, Zhou Q, Chen X, Zeng B, Wu S, Zeng H, Sun F. Circulating tumor DNA as prognostic markers of relapsed breast cancer: a systematic review and meta-analysis. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:63-73. [PMID: 39036387 PMCID: PMC11256521 DOI: 10.1016/j.jncc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 07/23/2024] Open
Abstract
Objective Circulating tumor DNA (ctDNA) is increasingly being used as a potential prognosis biomarker in patients of breast cancer. This review aims to assess the clinical value of ctDNA in outcome prediction in breast cancer patients throughout the whole treatment cycle. Methods PubMed, Web of Science, Embase, Cochrane Library, Scopus, and clinical trials.gov were searched from January 2016 to May 2022. Conference abstracts published in last three years were also included. The following search terms were used: ctDNA OR circulating tumor DNA AND breast cancer OR breast carcinoma. Only studies written in English languages were included. The following pre-specified criteria should be met for inclusion: (1) observational studies (prospective or retrospective), randomized control trials, case-control studies and case series studies; (2) patients with breast cancer; (3) ctDNA measurement; (4) clinical outcome data such as objective response rate (ORR), pathological complete response (pCR), relapse-free survival (RFS), overall survival (OS), and so on. The random-effect model was preferred considering the potential heterogeneity across studies. The primary outcomes included postoperative short-term outcomes (ORR and pCR) and postoperative long-term outcomes (RFS, OS, and relapse). Secondary outcomes focused on ctDNA detection rate. Results A total of 30 studies, comprising of 19 cohort studies, 2 case-control studies and 9 case series studies were included. The baseline ctDNA was significantly negatively associated with ORR outcome (Relative Risk [RR] = 0.65, 95% confidence interval [CI]: 0.50-0.83), with lower ORR in the ctDNA-positive group than ctDNA-negative group. ctDNA during neoadjuvant therapy (NAT) treatment was significantly associated with pCR outcomes (Odds Ratio [OR] = 0.15, 95% CI: 0.04-0.54). The strong association between ctDNA and RFS or relapse outcome was significant across the whole treatment period, especially after the surgery (RFS: Hazard Ratio [HR] = 6.74, 95% CI: 3.73-12.17; relapse outcome: RR = 7.11, 95% CI: 3.05-16.53), although there was heterogeneity in these results. Pre-operative and post-operative ctDNA measurements were significantly associated with OS outcomes (pre-operative: HR = 2.03, 95% CI: 1.12-3.70; post-operative: HR = 6.03, 95% CI: 1.31-27.78). Conclusions In this review, ctDNA measurements at different timepoints are correlated with evaluation indexes at different periods after treatment. The ctDNA can be used as an early potential postoperative prognosis biomarker in breast cancer, and also as a reference index to evaluate the therapeutic effect at different stages.
Collapse
Affiliation(s)
- Na'na Guo
- Hebei Province Centers for Disease Control and Prevention, Shijiazhuang, China
| | - Qingxin Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Xiaowei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Baoqi Zeng
- Department of Science and Education, Peking University Binhai Hospital, Tianjin, China
| | - Shanshan Wu
- Clinical Epidemiology and EBM Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Major Disease Epidemiology, Ministry of Education (Peking University), Beijing, China
| |
Collapse
|
30
|
Murray NP. Biomarkers of minimal residual disease and treatment. Adv Clin Chem 2024; 119:33-70. [PMID: 38514211 DOI: 10.1016/bs.acc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Minimal residual disease (MRD) has been defined as a very small numbers of cancer cells that remain in the body after curative treatment. Its presence or absence will ultimately determine prognosis. With the introduction of new technologies the presence of MRD in patients with solid tumours can be detected and characterized. As MRD predicts future relapse, be it early or late treatment failure, in an otherwise asymptomatic patient its treatment and when to start treatment remains to be determined. Thus the concepts of personalized medicine using different biomarkers to classify the biological properties of MRD maybe come possible. Based on this determinations it may be possible to use targeted therapies rather than all patients with the same type of cancer receiving a standard treatment. However, it is important to understand the limitations of the different technologies, what these techniques are detecting and how they may help in the treatment of patients with cancer. The majority of published studies are in patients with metastatic cancer and there are few reports in patients with MRD. In this chapter the concept of MRD, the methods used to detect it and what treatments may be effective based on the biological characteristics of the tumour cells as determined by different biomarkers is reviewed. MRD depends on the phenotypic properties of the tumour cells to survive in their new environment and the anti-tumour immune response. This is a dynamic process and changes with time in the wake of immunosuppression caused by the tumour cells and/or the effects of treatment to select resistant tumour cells. With the use of biomarkers to typify the characteristics of MRD and the development of new drugs a personalized treatment can be designed rather than all patients given the same treatment. Patients who are initially negative for MRD may not require further treatment with liquid biopsies used to monitor the patients during follow-up in order to detect those patients who may become MRD positive. The liquid biopsy used during the follow up of MRD positive patients can be used to detect changes in the biological properties of the tumour cells and thus may need treatment changes to overcome tumour cell resistance.
Collapse
Affiliation(s)
- Nigel P Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine, University Finis Terrae, Santiago, Chile.
| |
Collapse
|
31
|
Li L, Jiang H, Zeng B, Wang X, Bao Y, Chen C, Ma L, Yuan J. Liquid biopsy in lung cancer. Clin Chim Acta 2024; 554:117757. [PMID: 38184141 DOI: 10.1016/j.cca.2023.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Lung cancer is a highly prevalent malignancy worldwide and the primary cause of mortality. The absence of systematic and standardized diagnostic approaches for identifying potential pulmonary nodules, early-stage cancers, and indeterminate tumors has led clinicians to consider tissue biopsy and pathological sections as the preferred method for clinical diagnosis, often regarded as the gold standard. The conventional tissue biopsy is an invasive procedure that does not adequately capture the diverse characteristics and evolving nature of tumors. Recently, the concept of 'liquid biopsy' has gained considerable attention as a promising solution. Liquid biopsy is a non-invasive approach that facilitates repeated analysis, enabling real-time monitoring of tumor recurrence, metastasis, and response to treatment. Currently, liquid biopsy includes circulating tumor cells, circulating cell-free DNA, circulating tumor DNA, circulating cell-free RNA, extracellular vesicles, and other proteins and metabolites. With rapid progress in molecular technology, liquid biopsy has emerged as a highly promising and intriguing approach, yielding compelling results. This article critically examines the significant role and potential clinical implications of liquid biopsy in the diagnosis, treatment, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Lan Li
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haixia Jiang
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Bingjie Zeng
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Xianzhao Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Yunxia Bao
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China
| | - Changqiang Chen
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China.
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China.
| | - Jin Yuan
- Department of Laboratory Medicine, Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China, Shanghai 200030, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
32
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
33
|
Abstract
Abstract
Matrix metalloproteinase-2 (MMP-2) is a gelatinase and is involved in multiple steps of the metastatic cascade. More than a decade ago an increased expression of MMP-2 in tumour cells or higher serum levels was reported to be a prognostic biomarker for a lower disease-free and overall survival rate. In recent years new evidence has indicated that MMP-2 has an important role in the tumour ecosystem. It is one of the many players in the onco-sphere, involved in interacting between tumour cells, host cells and the microenvironment. It plays a role in the dissemination of tumour cells, the epithelial–mesenchymal and mesenchymal–epithelial transitions, the formation of the pre-metastatic and metastatic niches, dormancy of tumour cells and modulating the immune system. The aim of this review is to highlight these multiple roles in the metastatic cascade and how many signalling pathways can up or down-regulate MMP-2 activity in the different stages of cancer progression and the effect of MMP-2 on the onco-sphere. Research in head and neck cancer is used as an example of these processes. The use of non-specific MMP inhibitors has been unsuccessful showing only limited benefits and associated with high toxicity as such that none have progressed past Phase III trials. Preclinical trials are undergoing using antibodies directed against specific matrix metalloproteinases, these targeted therapies may be potentially less toxic to the patients.
Collapse
Affiliation(s)
- Nigel P. Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine , University Finis Terrae , Santiago , Chile
- Department of Haematology , Hospital de Carabineros de Chile , Santiago , Chile
| |
Collapse
|
34
|
Bernardi S, Mulas O, Mutti S, Costa A, Russo D, La Nasa G. Extracellular vesicles in the Chronic Myeloid Leukemia scenario: an update about the shuttling of disease markers and therapeutic molecules. Front Oncol 2024; 13:1239042. [PMID: 38260856 PMCID: PMC10800789 DOI: 10.3389/fonc.2023.1239042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs) are various sets of cell-derived membranous structures containing lipids, nucleic acids, and proteins secreted by both eukaryotic and prokaryotic cells. It is now well recognized that EVs are key intercellular communication mediators, allowing the functional transfer of bioactive chemicals from one cell to another in both healthy and pathological pathways. It is evident that the condition of the producer cells heavily influences the composition of EVs. Hence, phenotypic changes in the parent cells are mirrored in the design of the secreted EVs. As a result, EVs have been investigated for a wide range of medicinal and diagnostic uses in different hematological diseases. EVs have only recently been studied in the context of Chronic Myeloid Leukemia (CML), a blood malignancy defined by the chromosomal rearrangement t(9;22) and the fusion gene BCR-ABL1. The findings range from the impact on pathogenesis to the possible use of EVs as medicinal chemical carriers. This review aims to provide for the first time an update on our understanding of EVs as carriers of CML biomarkers for minimal residual disease monitoring, therapy response, and its management, as well as the limited reports on the use of EVs as therapeutic shuttles for innovative treatment approaches.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Unit of Bone Marrow Transplantation, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
- Lab CREA (Centro di Ricerca Emato-oncologica Associazione italiana contro le leucemie, linfomi e mieloma-AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Olga Mulas
- Department of Medical Sciences and Public Health, University of Cagliari, Hematology Unit, Businco Hospital, Cagliari, Italy
| | - Silvia Mutti
- Department of Clinical and Experimental Sciences, University of Brescia, Unit of Bone Marrow Transplantation, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
- Lab CREA (Centro di Ricerca Emato-oncologica Associazione italiana contro le leucemie, linfomi e mieloma-AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Costa
- Department of Medical Sciences and Public Health, University of Cagliari, Hematology Unit, Businco Hospital, Cagliari, Italy
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, University of Brescia, Unit of Bone Marrow Transplantation, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Giorgio La Nasa
- Department of Medical Sciences and Public Health, University of Cagliari, Hematology Unit, Businco Hospital, Cagliari, Italy
| |
Collapse
|
35
|
Xu C, Jun E, Okugawa Y, Toiyama Y, Borazanci E, Bolton J, Taketomi A, Kim SC, Shang D, Von Hoff D, Zhang G, Goel A. A Circulating Panel of circRNA Biomarkers for the Noninvasive and Early Detection of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:178-190.e16. [PMID: 37839499 PMCID: PMC10843014 DOI: 10.1053/j.gastro.2023.09.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies. Delayed manifestation of symptoms and lack of specific diagnostic markers lead patients being diagnosed with PDAC at advanced stages. This study aimed to develop a circular RNA (circRNA)-based biomarker panel to facilitate noninvasive and early detection of PDAC. METHODS A systematic genome-wide discovery of circRNAs overexpressed in patients with PDAC was conducted. Subsequently, validation of the candidate markers in the primary tumors from patients with PDAC was performed, followed by their translation into a plasma-based liquid biopsy assay by analyzing 2 independent clinical cohorts of patients with PDAC and nondisease controls. The performance of the circRNA panel was assessed in conjunction with the plasma levels of cancer antigen 19-9 for the early detection of PDAC. RESULTS Initially, a panel of 10 circRNA candidates was identified during the discovery phase. Subsequently, the panel was reduced to 5 circRNAs in the liquid biopsy-based assay, which robustly identified patients with PDAC and distinguished between early-stage (stage I/II) and late-stage (stage III/IV) disease. The areas under the curve of this diagnostic panel for the detection of early-stage PDAC were 0.83 and 0.81 in the training and validation cohorts, respectively. Moreover, when this panel was combined with cancer antigen 19-9 levels, the diagnostic performance for identifying patients with PDAC improved remarkably (area under the curve, 0.94) for patients in the validation cohort. Furthermore, the circRNA panel could also efficiently identify patients with PDAC (area under the curve, 0.85) who were otherwise deemed clinically cancer antigen 19-9-negative (<37 U/mL). CONCLUSIONS A circRNA-based biomarker panel with a robust noninvasive diagnostic potential for identifying patients with early-stage PDAC was developed.
Collapse
Affiliation(s)
- Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Eunsung Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu City, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu City, Mie, Japan
| | | | - John Bolton
- Department of Surgery, Ochsner Clinic Foundation, New Orleans, Louisiana
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California; City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
36
|
Gostomczyk K, Marsool MDM, Tayyab H, Pandey A, Borowczak J, Macome F, Chacon J, Dave T, Maniewski M, Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum Cell 2024; 37:101-120. [PMID: 37874534 PMCID: PMC10764589 DOI: 10.1007/s13577-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.
- University Hospital No. 2 Im. Dr Jan Biziel, Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | | | | | | | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Facundo Macome
- Universidad del Norte Santo Tomás de Aquino, San Miquel de Tucuman, Argentina
| | - Jose Chacon
- American University of Integrative Sciences, Cole Bay, Saint Martin, Barbados
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
37
|
Iacob R, Paul D, Popescu I. Editorial: The emerging role of liquid biopsy in gastrointestinal, pancreatic and liver cancers. Front Med (Lausanne) 2023; 10:1341739. [PMID: 38169840 PMCID: PMC10759217 DOI: 10.3389/fmed.2023.1341739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Razvan Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center for Excellence in Translation Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine/New York-Presbyterian, New York, NY, United States
| | - Irinel Popescu
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center for Excellence in Translation Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
38
|
Rodríguez-Zorrilla S, Lorenzo-Pouso AI, Fais S, Logozzi MA, Mizzoni D, Di Raimo R, Giuliani A, García-García A, Pérez-Jardón A, Ortega KL, Martínez-González Á, Pérez-Sayáns M. Increased Plasmatic Levels of Exosomes Are Significantly Related to Relapse Rate in Patients with Oral Squamous Cell Carcinoma: A Cohort Study. Cancers (Basel) 2023; 15:5693. [PMID: 38067397 PMCID: PMC10705147 DOI: 10.3390/cancers15235693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by an immunosuppressive tumor microenvironment. Their plasma-derived exosomes deliver immunomodulatory molecules and cargo that correlate significantly with clinical parameters. This study aims to assess the exosomal profile as a potential tool for early detection of relapse and long-term outcomes in OSCC patients undergoing conventional therapy. METHODS 27 OSCC patients with a median 38-month follow-up were included in this study. The relationship between NTA-derived parameters and clinical pathological parameters was examined, and receiver operating characteristic (ROC) curves were utilized to evaluate the diagnostic efficacy of these values in detecting cancer relapse. RESULTS Plasmatic levels of exosomes prior to surgery showed a drastic reduction after surgical intervention (8.08E vs. 1.41 × 109 particles/mL, p = 0.006). Postsurgical concentrations of exosomes were higher in patients who experienced relapse compared to those who remained disease-free (2.97 × 109 vs. 1.11 × 109 particles/mL, p = 0.046). Additionally, patients who relapsed exhibited larger exosome sizes after surgery (141.47 vs. 132.31 nm, p = 0.03). Patients with lower concentrations of exosomes prior to surgery demonstrated better disease-free survival compared to those with higher levels (p = 0.012). ROC analysis revealed an area under the curve of 0.82 for presurgical exosome concentration in identifying relapse. CONCLUSIONS Presurgical exosomal plasmatic levels serve as independent predictors of early recurrence and survival in OSCC. All in all, our findings indicate that the detection of peripheral exosomes represents a novel tool for the clinical management of OSCC, with potential implications for prognosis assessment.
Collapse
Affiliation(s)
- Samuel Rodríguez-Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
| | - Alejandro I. Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Maria A. Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Rossella Di Raimo
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Alba Pérez-Jardón
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Karem L. Ortega
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- School of Dentistry, Department of Oral Pathology, University of São Paulo, Av. Lineu Prestes, 2227, Cidade Universitária São Paulo, Sao Paulo 05508-000, Brazil
| | - Ángel Martínez-González
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Pontevedra, Mourente S/N, 36472 Pontevedra, Spain;
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
- Institute of Materials (IMATUS), Avenida do Mestre Mateo, 25, 15782 Santiago de Compostela, Spain
| |
Collapse
|
39
|
Song J, Liu Q, Han L, Song T, Huang S, Zhang X, He Q, Liang C, Zhu S, Xiong B. Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J Exp Clin Cancer Res 2023; 42:319. [PMID: 38008713 PMCID: PMC10680284 DOI: 10.1186/s13046-023-02887-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND It has been demonstrated that circularRNA (circRNAs) plays a critical role in various cancers. While the potential molecular mechanism of circRNAs in the progression of colorectal cancer (CRC) remains uncertain. METHODS Differentially expressed circRNAs were identified by RNA sequencing. RT-qPCR detected the expression of circ_0009092, miR-665, and NLK in CRC tissues and cells. Functions of circ_0009092 on tumor cell proliferation, migration, and invasion were investigated by a series of in vitro assays. The underlying mechanism of circ_0009092 was explored by bioinformatics analysis, RNA immunoprecipitation (RIP) and luciferase assays. A co-culture assay in vitro was performed to detect the affection of circ_0009092 on macrophage recruitment in the tumor microenvironment (TME). A xenograft mouse model was used to explore the effect of circ_0009092 on tumor growth. RESULTS Circ_0009092 was downregulated in CRCand predicted a good prognosis. Overexpression of circ_0009092 reduced tumor cell EMT, proliferation, migration, and invasion in vitro and in vivo. Mechanistically, circ_0009092 elevated the NLK expression via sponging miR-665 and suppressed the Wnt/β-catenin signaling pathway. EIF4EA3 induced circ_0009092 expression in CRC cells. In addition, NLK regulates phosphorylation and O-GlcNAcylation of STAT3 by binding to STAT3, thereby inhibiting CCL2 expression, in which it inhibits macrophage recruitment in the tumor microenvironment (TME). CONCLUSION EIF4A3 suppressed circ_0009092 biogenesis, whichinhibits CRC progression by sponging miR-665 to downregulate NLK. Circ_0009092/miR-665/NLK suppressed tumor EMT, proliferation, migration, and invasion by acting on the Wnt/β-catenin signaling pathway. NLK directly interacted with STAT3 and decreased the CCL2 expression, inhibiting the recruitment of tumor-associated macrophages (TAMs) in the TME. Our study provided novel insights into the roles of circ_0009092 as a novel promising prognostic and therapeutic target in CRC.
Collapse
Affiliation(s)
- Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Tiantian Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Xinyao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Qiuming He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Chenxi Liang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China
| | - Shuai Zhu
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, 430071, China.
| |
Collapse
|
40
|
Yao S, Han Y, Yang M, Jin K, Lan H. Integration of liquid biopsy and immunotherapy: opening a new era in colorectal cancer treatment. Front Immunol 2023; 14:1292861. [PMID: 38077354 PMCID: PMC10702507 DOI: 10.3389/fimmu.2023.1292861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Immunotherapy has revolutionized the conventional treatment approaches for colorectal cancer (CRC), offering new therapeutic prospects for patients. Liquid biopsy has shown significant potential in early screening, diagnosis, and postoperative monitoring by analyzing circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). In the era of immunotherapy, liquid biopsy provides additional possibilities for guiding immune-based treatments. Emerging technologies such as mass spectrometry-based detection of neoantigens and flow cytometry-based T cell sorting offer new tools for liquid biopsy, aiming to optimize immune therapy strategies. The integration of liquid biopsy with immunotherapy holds promise for improving treatment outcomes in colorectal cancer patients, enabling breakthroughs in early diagnosis and treatment, and providing patients with more personalized, precise, and effective treatment strategies.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Zhu H, Chen J, Wen Z, Li J, Yu Q, Liao W, Luo X. The role of circadian clock genes in colorectal carcinoma: Novel insights into regulatory mechanism and implications in clinical therapy. Life Sci 2023; 333:122145. [PMID: 37797685 DOI: 10.1016/j.lfs.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Colorectal cancer (CRC) is a lethal malignancy with limited treatment strategies. Accumulating evidence indicates that CRC tumorigenesis, progression and metastasis are intimately associated with circadian clock, an inherent 24-h cycle oscillation of biochemical, physiological functions in almost every eukaryote. In the present review, we summarize the altered expression level of circadian genes in CRC and the prognosis associated with gene abundance switch. We illustrate the function and potential mechanisms of circadian genes in CRC pathogenesis and progression. Moreover, circadian based-therapeutic strategies including chronotherapy, therapeutics targeting potential circadian components, and melatonin treatment in CRC are also highlighted.
Collapse
Affiliation(s)
- Haodong Zhu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Jiawei Chen
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Jinfei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Qinyang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, PR China.
| |
Collapse
|
42
|
Yu X, Yang X, Nie H, Jiang W, He X, Ou C. Immunological role and prognostic value of somatostatin receptor family members in colon adenocarcinoma. Front Pharmacol 2023; 14:1255809. [PMID: 37900156 PMCID: PMC10603271 DOI: 10.3389/fphar.2023.1255809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Colon adenocarcinoma (COAD) is among the most prevalent cancers worldwide, ranking as the third most prevalent malignancy in incidence and mortality. The somatostatin receptor (SSTR) family comprises G-protein-coupled receptors (GPCRs), which couple to inhibitory G proteins (Gi and Go) upon binding to somatostatin (SST) analogs. GPCRs are involved in hormone release, neurotransmission, cell growth inhibition, and cancer suppression. However, their roles in COAD remain unclear. This study used bioinformatics to investigate the expression, prognosis, gene alterations, functional enrichment, and immunoregulatory effects of the SSTR family members in COAD. SSTR1-4 are differentially downregulated in COAD, and low SSTR2 expression indicates poor survival. Biological processes and gene expression enrichment of the SSTR family in COAD were further analyzed using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology. A strong correlation was observed between SSTR expression and immune cell infiltration. We also quantified SSTR2 expression in 25 COAD samples and adjacent normal tissues using quantitative real-time polymerase chain reaction. We analyzed its correlation with the dendritic cell-integrin subunit alpha X marker gene. The biomarker exploration of the solid tumors portal was used to confirm the correlation between SSTR2 with immunomodulators and immunotherapy responses. Our results identify SSTR2 as a promising target for COAD immunotherapy. Our findings provide new insights into the biological functions of the SSTR family and their implications for the prognosis of COAD.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenying Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
44
|
Zhu Z, Gong M, Gong W, Wang B, Li C, Hou Q, Guo H, Chai J, Guan J, Jia Y. SHF confers radioresistance in colorectal cancer by the regulation of mitochondrial DNA copy number. Clin Exp Med 2023; 23:2457-2471. [PMID: 36527512 DOI: 10.1007/s10238-022-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Altered mitochondrial function contributes greatly to pathogenesis and progression of colorectal cancer. In this study, we report a functional pool of Src homology 2 domain-containing F (SHF) in mitochondria controlling the response of colorectal cancer cells to radiation therapy. We found that elevated expression of SHF in cancer cells is essential for promoting mitochondrial function by increasing mitochondrial DNA copy number, thus reducing the sensitivity of colorectal cancer cells to radiation. Mechanistically, SHF binds to mitochondrial DNA and promotes POLG/SSBP1-mediated mitochondrial DNA synthesis. Importantly, SHF loss-mediated radiosensitization was phenocopied by depletion of mitochondrial DNA. Thus, our data demonstrate that mitochondrial SHF is an important regulator of radioresistance in colorectal cancer cells, identifying SHF as a promising therapeutic target to enhance radiotherapy efficacy in colorectal cancer.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meihua Gong
- Thoracic Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weipeng Gong
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bishi Wang
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Changhao Li
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingsheng Hou
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongliang Guo
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Gastrointestinal Surgery Ward I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Guan
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
45
|
Purnama A, Lukman K, Rudiman R, Prasetyo D, Fuadah Y, Nugraha P, Candrawinata VS. The prognostic value of COX-2 in predicting metastasis of patients with colorectal cancer: A systematic review and meta analysis. Heliyon 2023; 9:e21051. [PMID: 37876424 PMCID: PMC10590949 DOI: 10.1016/j.heliyon.2023.e21051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction COX-2 is overexpressed in colorectal tumour tissue relative to the healthy colonic mucosa, thus we investigated the prognostic significance of COX-2 in determining the metastasis of patients with colorectal cancer. Methods PubMed, EMBASE, and Cochrane Library were searched using the following terms colorectal cancer, colon cancer, rectal cancer, colorectal carcinoma, Cyclooxygenase-2, and prognosis to identify articles providing information on the prognostic importance of COX-2 in adult patients with metastatic colorectal cancer. Review papers, non-research letters, comments, case reports, animal studies, original research with sample sizes of fewer than 20, case reports and series, non-English language articles, and pediatric studies (those under the age of 17) were excluded. The Newcastle Ottawa Scale (NOS) was used to assess the credibility of the included studies. The full texts were evaluated and this study complied with the terms of the local protocol and the Helsinki Declaration. Results Eight relevant studies were included in this review involving 937 patients. The meta-analysis revealed that COX-2 expression is associated with lymph node invasion (RR 1.85 [1.21, 2.83], P = 0.005, I2 = 88 %) and liver metastasis (RR 4.90 [1.12, 21.57], P = 0.04, I2 = 42 %), but not with venous dissemination (RR 1.48 [0.72, 3.03], P = 0.28, I2 = 87 %). Conclusion COX-2 expression is associated with lymph node invasion in colorectal cancer but further studies are required to determine the prognostic significance of COX-2 expression in determining metastasis status for colorectal cancer patients.
Collapse
Affiliation(s)
- Andriana Purnama
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Kiki Lukman
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Reno Rudiman
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | - Dwi Prasetyo
- Division of Pediatric Gastroenterology, Department of Pediatric, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Yoni Fuadah
- Department of Forensic and Medicolegal, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Prapanca Nugraha
- Division of Digestive Surgery, Department of Surgery, Padjadjaran University, Bandung, Indonesia
| | | |
Collapse
|
46
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
47
|
Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, Khoncheh A, Zaki-Dizaji M. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:447-454. [PMID: 38301107 PMCID: PMC10685733 DOI: 10.34172/aim.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-associated death universally. Currently, the diagnosis, prognosis, and treatment monitoring of CRC mostly depends on endoscopy integrated with tissue biopsy. Recently, liquid biopsy has gained more and more attention in the area of molecular detection and monitoring of tumors due to ease of sampling, and its safe, non-invasive, and dynamic nature. Platelets, despite their role in hemostasis and thrombosis, are known to have an active, bifacial relationship with cancers. Platelets are the second most common type of cell in the blood and are one of the wealthy liquid biopsy biosources. These cells have the potential to absorb nucleic acids and proteins and modify their transcriptome with regard to external signals, which are termed tumor-educated platelets (TEPs). Liquid biopsies depend on TEPs' biomarkers which can be used to screen and also detect cancer in terms of prognosis, personalized treatment, monitoring, and prediction of recurrence. The value of TEPs as an origin of tumor biomarkers is relatively new, but platelets are commonly isolated using formidable and rapid techniques in clinical practice. Numerous preclinical researches have emphasized the potential of platelets as a new liquid biopsy biosource for detecting several types of tumors. This review discusses the potential use of platelets as a liquid biopsy for CRC.
Collapse
Affiliation(s)
- Hossein Razzaghi
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirzad Moghaddam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Derogar
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
He Y, He X, Zhou Y, Luo S. Clinical value of circulating tumor cells and hematological parameters in 617 Chinese patients with colorectal cancer: retrospective analysis. BMC Cancer 2023; 23:707. [PMID: 37507669 PMCID: PMC10375612 DOI: 10.1186/s12885-023-11204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have been a non-invasive technique which allows investigation of tumor characteristics. The purpose of this study was to investigate the relationship between circulating tumor cells and colorectal cancer. METHODS The clinical data of 617 patients with colorectal cancer from October 2019 to March 2022 were retrospectively collected to analyze the correlation between CTCs and clinicopathologic characteristics. RESULTS The CTCs value increased with the progression of Tumor(T) stage,Metastasis(M) stage and Tumor Node Metastasis(TNM) stage (P < 0.05), but not with Node (N) stage (P > 0.05). Binary logistic regression analysis showed that CTCs, CEA, CA125 and CA199 were independent risk factors for CRC metastasis. Compared with CTCs, CEA, CA125 and CA199, the Logistic model had the highest AUC (AUC = 0.778,95%CI: 0.732-0.824), and the specificity and sensitivity were 82.9% and 63.2%, respectively. After operation, chemo-radiotherapy and other treatment for CRC, CTCs and CEA were significantly decreased compared with before treatment (P < 0.05). In addition, Spearman Correlation showed significant correlation between CTCs and IgG (P = 0.000). CONCLUSION CTCs, CEA, CA125 and CA199 were independent risk factors for CRC metastasis.CTCs can be used for the prediction of tumur metastasis, and the evaluation of therapeutic effect.
Collapse
Affiliation(s)
- Yuhao He
- Department of Comprehensive Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Yubo Zhou
- Department of Geriatrics, Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
- Department of Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China.
| |
Collapse
|
49
|
Gherman A, Balacescu L, Popa C, Cainap C, Vlad C, Cainap SS, Balacescu O. Baseline Expression of Exosomal miR-92a-3p and miR-221-3p Could Predict the Response to First-Line Chemotherapy and Survival in Metastatic Colorectal Cancer. Int J Mol Sci 2023; 24:10622. [PMID: 37445798 DOI: 10.3390/ijms241310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The status of predictive biomarkers in metastatic colorectal cancer is currently underdeveloped. Our study aimed to investigate the predictive value of six circulating exosomal miRNAs derived from plasma (miR-92a-3p, miR-143-3p, miR-146a-5p, miR-221-3p, miR-484, and miR-486-5p) for chemosensitivity, resistance patterns, and survival. Thirty-one metastatic colorectal cancer patients were selected before receiving first-line irinotecan- or oxaliplatin-based chemotherapy. Blood samples were harvested at baseline and 4-6 months after the initiation of chemotherapy. The levels of exosomal expression for each miRNA were analyzed by qPCR. Our results for patients receiving first-line FOLFOX showed significantly higher baseline levels of miR-92a-3p (p = 0.007 **), miR-146a-5p (p = 0.036 *), miR-221-3p (p = 0.047 *), and miR-484 (p = 0.009 **) in non-responders (NR) vs. responders (R). Of these, miR-92a-3p (AUC = 0.735), miR-221-3p (AUC = 0.774), and miR-484 (AUC = 0.725) demonstrated a predictive ability to discriminate responses from non-responses, regardless of the therapy used. Moreover, Cox regression analysis indicated that higher expression levels of miR-92a-3p (p = 0.008 **), miR-143-3p (p = 0.009 **), miR-221-3p (p = 0.016 *), and miR-486-5p (p = 0.019 *) at baseline were associated with worse overall survival, while patients expressing higher baseline miR-92a-3p (p = 0.003 **) and miR-486-5p (p = 0.003 **) had lower rates of progression-free survival. No predictive values for candidate microRNAs were found for the post-chemotherapy period. In line with these findings, we conclude that the increased baseline exosomal expression of miR-92a-3p and miR-221-3p seems to predict a lack of response to chemotherapy and lower OS. However, further prospective studies on more patients are needed before drawing practice-changing conclusions.
Collapse
Affiliation(s)
- Alexandra Gherman
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Calin Popa
- "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Surgery, Surgery Unit No 3, University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Simona S Cainap
- Department of Mother and Child, Pediatric Cardiology, University of Medicine and Pharmacy "Iuliu Hatieganu", 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Paediatric Cardiology, Pediatric Clinic No 2, Emergency County Hospital for Children, 68 Motilor Street, 400370 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
50
|
Sampaio-Ribeiro G, Ruivo A, Silva A, Santos AL, Oliveira RC, Gama J, Cipriano MA, Tralhão JG, Paiva A. Innate Immune Cells in the Tumor Microenvironment of Liver Metastasis from Colorectal Cancer: Contribution to a Comprehensive Therapy. Cancers (Basel) 2023; 15:3222. [PMID: 37370832 DOI: 10.3390/cancers15123222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent type of cancer, and liver metastasis is the most common site of metastatic development. In the tumor microenvironment (TME), various innate immune cells are known to influence cancer progression and metastasis occurrence. CD274 (PD-L1) and CD206 (MRC1) are proteins that have been associated with poor prognosis and disease progression. We conducted a study on tumoral and non-tumoral biopsies from 47 patients with CRC liver metastasis, using flow cytometry to phenotypically characterize innate immune cells. Our findings showed an increase in the expression of CD274 on classical, intermediate, and non-classical monocytes when comparing tumor with non-tumor samples. Furthermore, tumor samples with a desmoplastic growth pattern exhibited a significantly decreased percentage of CD274- and CD206-positive cells in all monocyte populations compared to non-desmoplastic samples. We found a correlation between a lower expression of CD206 or CD274 on classical, intermediate, and non-classical monocytes and increased disease-free survival, which points to a better prognosis for these patients. In conclusion, our study has identified potential new targets and biomarkers that could be incorporated into a personalized medicine approach to enhance the outcome for colorectal cancer patients.
Collapse
Affiliation(s)
- Gabriela Sampaio-Ribeiro
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ruivo
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Ana Lúcia Santos
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, 3000-377 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Augusta Cipriano
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|