1
|
Xu X, Fei X, Wang H, Wu X, Zhan Y, Li X, Zhou Y, Shu C, He C, Hu Y, Liu J, Lv N, Li N, Zhu Y. Helicobacter pylori infection induces DNA double-strand breaks through the ACVR1/IRF3/POLD1 signaling axis to drive gastric tumorigenesis. Gut Microbes 2025; 17:2463581. [PMID: 39924917 PMCID: PMC11812335 DOI: 10.1080/19490976.2025.2463581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/06/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection plays a pivotal role in gastric carcinogenesis through inflammation-related mechanisms. Activin A receptor type I (ACVR1), known for encoding the type I receptor for bone morphogenetic proteins (BMPs), has been identified as a cancer diver gene across various tumors. However, the specific role of AVCR1 in H. pylori-induced gastric tumorigenesis remains incompletely understood. We conducted a comprehensive analysis of the clinical relevance of ACVR1 by integrating data from public databases and our local collection of human gastric tissues. In vitro cell cultures, patient-derived gastric organoids, and transgenic INS-GAS mouse models were used for Western blot, qRT-PCR, immunofluorescence, immunohistochemistry, luciferase assays, ChIP, and comet assays. Furthermore, to investigate the therapeutic potential, we utilized the ACVR1 inhibitor DM3189 in our in vivo studies. H. pylori infection led to increased expression of ACVR1 in gastric epithelial cells, gastric organoid and gastric mucosa of INS-GAS mice. ACVR1 activation led to DNA double-strand break (DSB) accumulation by inhibiting POLD1, a crucial DNA repair enzyme. The activation of POLD1 was facilitated by the transcription factor IRF3, with identified binding sites. Additionally, treatment with the ACVR1 inhibitor DM3189 significantly ameliorated H. pylori-induced gastric pathology and reduced DNA damage in INS-GAS mice. Immunohistochemistry analysis showed elevated levels of ACVR1 in H. pylori-positive gastritis tissues, showing a negative correlation with POLD1 expression. This study uncovers a novel signaling axis of AVCR1/IRF3/POLD1 in the pathogenesis of H. pylori infection. The upregulation of ACVR1 and the suppression of POLD1 upon H. pylori infection establish a connection between the infection, genomic instability, and the development of gastric carcinogenesis.
Collapse
Affiliation(s)
- Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Instruments, Nanchang, China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan’an Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chunxi Shu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lv
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Duan H, Zhang Y, Liu J, Ren G, Li Z, Tian Y. Transcriptome analysis reveals the DNA replication genes response to Vibrio anguillarum and NNV infection in Jinhu grouper (Epinephelus fuscoguttatus♀ × Epinephelus tukulal♂). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101421. [PMID: 39813918 DOI: 10.1016/j.cbd.2025.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Vibrio anguillarum acts as an infectious agent in the aquaculture industry that causes a fatal hemolytic septicaemic disease in fish and shellfish. Viral nervous necrosis (VNN) disease seriously impacts the healthy development of the aquaculture industry. While the detrimental effects of V. anguillarum and NNV have been widely researched on freshwater and marine fish, whether they affect DNA replication in fish is unclear. In this study, we used Jinhu grouper as a model to investigate the influence of V. anguillarum and NNV on their DNA replication. By RNA-seq analysis in conjunction with gene set enrichment analysis, we found a significant upregulation of genes related to DNA replication in the liver and spleen of the Jinhu grouper after V. anguillarum infection while a prominent downregulation of genes related to DNA replication in the brain of the Jinhu grouper after NNV infection. We identified 27, 29 and 18 key genes involved in DNA replication that may respond to V. anguillarum and NNV infection and selected and identified six DNA replication genes (pole, pole2, pold1, pola1, pcna and mcm2). In addition, our results indicated that these genes exhibit tissue-specific expression patterns, with an increasing pattern of expression when V. anguillarum infected and a decreasing pattern when NNV infected. These results may provide valuable understanding on the underlying mechanisms of V. anguillarum and NNV infection in fish.
Collapse
Affiliation(s)
- Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining 272067, China; Jining Medical University, Jining 272067, China.
| | | | - Jia Liu
- Jining Medical University, Jining 272067, China
| | - Gehui Ren
- Jining Medical University, Jining 272067, China
| | - Zhentong Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yongsheng Tian
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Lee KW, Zang DY, Kim HD, Kim JW, Kim BJ, Kang YK, Ryu MH, Kim HK. Multicenter phase Ib/II study of second-line durvalumab and tremelimumab in combination with paclitaxel in patients with biomarker-selected metastatic gastric cancer. Br J Cancer 2025:10.1038/s41416-025-03052-y. [PMID: 40399487 DOI: 10.1038/s41416-025-03052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND This multicenter phase Ib/II trial aimed to evaluate the safety and efficacy of combining durvalumab, tremelimumab, and paclitaxel as second-line treatment for biomarker-selected patients with metastatic gastric cancer. METHODS In phase Ib, the standard 3 + 3 dose escalation method was used. Durvalumab and tremelimumab were administered every 4 weeks for 13 and 4 cycles, respectively, combining paclitaxel 80 mg/m2 (dose level 2) or 60 mg/m2 (dose level 1) on days 1, 8, and 15. The primary outcome for phase II was the objective response rate (ORR). RESULTS In phase Ib (n = 7), dose level-1 was selected as the recommended phase II dose. In phase II, 48 patients were enrolled: microsatellite instability-high or deficient mismatch repair protein tumors (n = 16); EBV-positive tumors (n = 15); high tumor mutation burden ( ≥ 5/Mb) (n = 11); CD274 amplification (n = 5); and POLD1 mutation (n = 1). The ORR was 52.1%, meeting the primary endpoint. The median progression-free survival and overall survival were 5.3 and 13.1 months, respectively. The most common any-grade and grade 3-4 adverse events were anemia (41.7%) and neutropenia (10.4%), respectively. CONCLUSIONS Durvalumab-tremelimumab with paclitaxel was tolerable and efficacious in biomarker-selected gastric cancer patients as a second-line treatment, highlighting the importance of biomarker-based approaches for immunotherapy in gastric cancer. CLINICAL TRIAL REGISTRATION NCT03751761.
Collapse
Affiliation(s)
- Keun Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Da Young Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hyung-Don Kim
- Departmentof Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Bum Jun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Yoon-Koo Kang
- Departmentof Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Hee Ryu
- Departmentof Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Hark Kyun Kim
- Center for Gastric Cancer, National Cancer Center, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Awosika JA, Gulley JL, Pastor DM. Deficient Mismatch Repair and Microsatellite Instability in Solid Tumors. Int J Mol Sci 2025; 26:4394. [PMID: 40362635 PMCID: PMC12072705 DOI: 10.3390/ijms26094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
The integrity of the genome is maintained by mismatch repair (MMR) proteins that recognize and repair base mismatches and insertion/deletion errors generated during DNA replication and recombination. A defective MMR system results in genome-wide instability and the progressive accumulation of mutations. Tumors exhibiting deficient MMR (dMMR) and/or high levels of microsatellite instability (termed "microsatellite instability high", or MSI-H) have been shown to possess fundamental differences in clinical, pathological, and molecular characteristics, distinguishing them from their "microsatellite stable" (MSS) counterparts. Molecularly, they are defined by a high mutational burden, genetic instability, and a distinctive immune profile. Their distinct genetic and immunological profiles have made dMMR/MSI-H tumors particularly amenable to treatment with immune checkpoint inhibitors (ICIs). The ongoing development of biomarker-driven therapies and the evaluation of novel combinations of immune-based therapies, with or without the use of conventional cytotoxic treatment regimens, continue to refine treatment strategies with the goals of maximizing therapeutic efficacy and survival outcomes in this distinct patient population. Moreover, the resultant knowledge of the mechanisms by which these features are suspected to render these tumors more responsive, overall, to immunotherapy may provide information regarding the potential optimization of this therapeutic approach in tumors with proficient MMR (pMMR)/MSS tumors.
Collapse
Affiliation(s)
- Joy A. Awosika
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M. Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Li Y, Song C, Wang H, Di W, Chen Y, Hu Y, Li P, Chen J, Ren Y, Gong J, Wang Q. Novel prognostic biomarkers in small cell lung cancer reveal mutational signatures, genomic mutations, and immune implications. Sci Rep 2025; 15:15592. [PMID: 40320401 PMCID: PMC12050310 DOI: 10.1038/s41598-025-00222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Small cell lung cancer (SCLC) is a highly malignant lung cancer subtype with a dismal prognosis and limited treatment options. This study aimed to identify new prognostic molecular biomarkers for SCLC and explore their immune-related implications for treatment strategies. We analyzed 200 SCLC samples via whole-exome sequencing (WES) and 313 samples by targeted sequencing. A smoking-related SBS4 mutational signature was linked to poorer prognosis and lower tumor mutational burden (TMB), while the APOBEC-mediated SBS13 signature was associated with better prognosis and higher TMB. We identified a molecular subtype with the worst outcomes and lowest TMB in both cohorts. Among 38 high-frequency mutated genes associated with SCLC prognosis, only UNC13A mutations were beneficial. Patients with UNC13A mutations had favorable immune infiltration and tumor immunogenicity. Additionally, TP53 splice site mutations were related to the worst survival outcomes. In conclusion, we discovered new molecular biomarkers for SCLC prognosis. Our findings on their immunological characteristics offer insights for developing novel SCLC treatment strategies.
Collapse
Affiliation(s)
- Yuting Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Chen Song
- Department of Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Wenyu Di
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Yangyang Chen
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Yuanyuan Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Peiheng Li
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Jie Chen
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Yanfeng Ren
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Baotong Xi Street, Weicheng District, Weifang, 261053, Shandong, China.
| | - Jing Gong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qinghua Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China.
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Baotong Xi Street, Weicheng District, Weifang, 261053, Shandong, China.
| |
Collapse
|
6
|
Lara MS, Riess JW, Kaleka G, Borowsky A, McPherson JD, Godoy LA, Grego L, Lara PN, Mitsiades N. POLE Mutation Associated With Microsatellite Instability and High Tumor Mutational Burden Confers Exquisite Sensitivity to Immune Checkpoint Inhibitor Therapy in Non-Small Cell Lung Cancer: A Case Report and Genomic Database Analysis. Clin Lung Cancer 2025; 26:e207-e213. [PMID: 39894709 DOI: 10.1016/j.cllc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Affiliation(s)
- Matthew S Lara
- ARC-MD Program, UC Davis School of Medicine, Sacramento, CA
| | - Jonathan W Riess
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA
| | - Guneet Kaleka
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA
| | - Alexander Borowsky
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA
| | - John D McPherson
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA
| | - Luis A Godoy
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA
| | | | - Primo N Lara
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA
| | - Nicholas Mitsiades
- Davis Comprehensive Cancer Center, University of California (UC), Sacramento, CA.
| |
Collapse
|
7
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025; 308:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
8
|
Oh H, Jang I, Hwang J, Lee S, An J, Sim J. Clinicopathologic Analysis of Five Patients with POLE-Mutated Colorectal Cancer in a Single Korean Institute. Diagnostics (Basel) 2025; 15:972. [PMID: 40310397 PMCID: PMC12025746 DOI: 10.3390/diagnostics15080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Mutations in RAS/RAF are common in colorectal cancer (CRC) and play a pivotal role in guiding treatment selection. With the recent advent of immunotherapy, microsatellite (MSI) status, tumor mutation burden (TMB), and POLE mutations, particularly those leading to high TMB, have gained importance in CRC. This study aimed to examine the clinicopathological characteristics of patients with CRC with POLE mutations. Methods: We identified POLE mutations in patients with colorectal cancer who had available next-generation sequencing (NGS) results from a single institute in Korea. RAS/RAF status, MSI status, and TMB were evaluated, and based on the TMB results, patients with POLE mutations were classified as having either pathogenic or non-pathogenic mutations. After excluding non-Korean patients, we compared the groups based on the presence of pathogenic POLE mutations. Results: Five POLE mutations (A456P, P286R, R1111W, R609W, and V922I) were identified. Only A456P and P286R were associated with an exceptionally high TMB, resulting in two patients (1.1%) being categorized as having pathogenic POLE. The POLE-mutant group showed an extremely high TMB and tended to include younger patients. Among the two pathogenic cases, one showed poor histological differentiation, and the tumors were split between the right and left colons (one in each). Conclusions: CRC with POLE mutations tend to exhibit TMB-high, occur in younger patients, localize to the right colon, and display poor histological differentiation. Given that POLE mutations can serve as indicators for immunotherapy, recognizing these mutations is of clinical importance.
Collapse
Affiliation(s)
- Harim Oh
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, 73 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Inho Jang
- Department of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Jinha Hwang
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Soohyeon Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Jungsuk An
- Department of Pathology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Republic of Korea;
| | - Jongmin Sim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, 73 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| |
Collapse
|
9
|
Zhai Z, Wang Y, Li H, Kang N, Liu Y, Wang J. Analysis of fertility-preserving treatment outcomes in patients with POLE-mutated endometrioid carcinoma. J Gynecol Oncol 2025; 36:36.e101. [PMID: 40275683 DOI: 10.3802/jgo.2025.36.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/26/2025] Open
Abstract
To explore the clinical outcomes of fertility-sparing treatment (FST) in patients with POLE-mutated endometrioid carcinoma (EEC). A total of 9 EEC patients who received FST and were classified to the POLE-mutated subtype in Peking University People's Hospital from April 2020 to October 2023, were retrospectively collected. Clinical and pathological data were analyzed to describe the outcomes of FST in patients with POLE-mutated EEC. A total of 9 patients with EEC including 6 cases with well-differentiated (G1) and 3 cases with moderately-differentiated (G2). The average age was 34.8±2.1 years. POLE mutation sites were P286R (5 cases), V411L (2 cases), L424I (1 cases), and S459F (1 cases), respectively. The median follow-up time was 16 months (9-41 months). The complete response (CR) rate was 88.9% (8/9), with a median time to CR of 5.5 months (3-18 months). The partial response (PR) rate was 11.1% (1/9). The relapse rate was 50.0% (4/8), with a median recurrence time of 9.5 months (5-25 months). Of these, 75% (3/4) underwent secondary FST, with all achieving CR again (3/3). Three of 5 who were out-of-indication patients achieved CR by individual therapy. FST in patients with POLE-mutated EEC achieve a CR rate of 88.9% in this study, the largest number of retrievable reports. In certain patients who are out-of-indication, individualized treatment may also result in remission. However, unlike surgical patients, some patients experience disease recurrence and whether POLE-mutated EEC is sensitive to conventional therapy in FST is controversial given its pathogenesis.
Collapse
Affiliation(s)
- Zhuoyu Zhai
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Yiqin Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - He Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Nan Kang
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Yuanyuan Liu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
10
|
Jantus-Lewintre E, Rappa A, Ruano D, van Egmond D, Gallach S, Gozuyasli D, Durães C, Costa JL, Camps C, Lacroix L, Kashofer K, van Wezel T, Barberis M. Multicenter In-House Evaluation of an Amplicon-Based Next-Generation Sequencing Panel for Comprehensive Molecular Profiling. Mol Diagn Ther 2025; 29:249-261. [PMID: 39798063 PMCID: PMC11860996 DOI: 10.1007/s40291-024-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods. METHODS This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors. A series of 193 research samples (125 DNA and 68 RNA samples) was analyzed to evaluate the correlation and concordance of the OCA Plus panel with orthogonal methods, as well as its reproducibility (n = 5 DNA samples) across laboratories. RESULTS The success rate for DNA and RNA sequencing was 96.6% and 89.7%, respectively. In a single workflow, the OCA Plus panel provided a detailed genomic profile with a high success rate for all biomarkers tested: single nucleotide variants/indels, copy number variants, and fusions, as well as complex biomarkers such as microsatellite instability, tumor mutational burden, and homologous recombination deficiency. The concordance for single nucleotide variants/indels was 94.8%, for copy number variants 96.5%, for fusions 94.2%, for microsatellite instability 80.8%, for tumor mutational burden 81.3%, and for homologous recombination deficiency 100%. The results showed high reproducibility across the five European research centers, each analyzing shared pre-characterized tissue biopsies (average of 1890 single nucleotide variants/indels per sample). CONCLUSIONS This multicenter evaluation of the OCA Plus panel confirms the results of previous single-center studies and demonstrates the high reproducibility and accuracy of this assay.
Collapse
Affiliation(s)
- Eloisa Jantus-Lewintre
- Fundación Investigación Hospital General Universitario de València, Universitat Politècnica de València, CIBERONC, Valencia, Spain
| | - Alessandra Rappa
- Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Dina Ruano
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sandra Gallach
- Fundación Investigación Hospital General Universitario de València, Universitat Politècnica de València, CIBERONC, Valencia, Spain
| | | | | | | | - Carlos Camps
- Consorcio Hospital General Universitario de València, Universitat de València, CIBERONC, Valencia, Spain
| | | | | | - Tom van Wezel
- Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Massimo Barberis
- Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
11
|
Cui J, Zhao G, Xie W, Yang Y, Fu X, Meng H, Liu H, Tan M, Chen D, Rong C, Wang Y, Wang Y, Zhang LW. Exacerbated hepatotoxicity in in vivo and in vitro non-alcoholic fatty liver models by biomineralized copper sulfide nanoparticles. BIOMATERIALS ADVANCES 2025; 168:214117. [PMID: 39580989 DOI: 10.1016/j.bioadv.2024.214117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Copper sulfide nanoparticles (NPs) synthesized through biomineralization have significant commercial potential as photothermal agents, while the safety evaluation of these NPs, especially for patients with non-alcoholic fatty liver (NAFL), remains insufficient. To explore the differential hepatotoxicity of copper sulfide NPs in NAFL conditions, we synthesized large-sized (LNPs, 15.1 nm) and small-sized (SNPs, 3.5 nm) BSA@Cu2-xS NPs. A NAFL rat model fed with high fat diet (HFD) was successfully established for a 14-day subacute toxicity study by daily repeated administration of BSA@Cu2-xS NPs. Our findings from serum biochemistry and histopathological examinations revealed that copper sulfide at both sizes NPs induced more pronounced liver damage in NAFL rats than rats fed with normal diet. Transcriptome sequencing analysis showed that LNPs activated inflammation and DNA damage repair pathways in the livers of NAFL rats, while SNPs displayed minimal inflammation. A three-dimensional spheroid model of NAFL developed in our in-house cell spheroid culture honeycomb chips demonstrated that LNPs, but not SNPs, triggered a distinct release of inflammatory factors and increased reactive oxygen species through Kupffer cells. These results highlight that NAFL condition exacerbated the hepatotoxicity of BSA@Cu2-xS NPs, with SNPs emerging as safer photothermal agents compared to LNPs, suggesting superior potential for clinical applications.
Collapse
Affiliation(s)
- Jinbin Cui
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Zhao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Xie
- The College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Yang Yang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Fu
- Suzhou Vivoid Biotechnology Co., Ltd, Suzhou 215124, China
| | - Hezhang Meng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - He Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengfei Tan
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Chen
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Rong
- Department of Pathology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Zhang N, Qiu X, Chen X, Du C, Dong J, Li X, Chen B, Zhang L, Zhang Y. Survival expectations in melanoma patients: a molecular prognostic model associated with aging. Discov Oncol 2025; 16:253. [PMID: 40019657 PMCID: PMC11874052 DOI: 10.1007/s12672-025-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Aging and long non-coding RNAs (lncRNAs) are research hotspots in melanoma. However, no study has so far explored the relationship between melanoma prognosis and aging-related lncRNAs (ARLs). METHODS The Cancer Genome Atlas database, the GTEx database, and the HAGR database were used in this study in a combined manner. Univariate and multivariate cox regression analyses were used to screen out lncRNA signatures associated with overall survival (OS) in the primary dataset. The risk scoring model was analyzed by risk stratification and tested internally. The protein expression levels of possible target genes of ARLs were verified by immunohistochemistry analysis in HPA database. Finally, gene enrichment analysis was performed. RESULTS In the primary dataset, five OS-related lncRNA signatures (AC011481.1, USP30-AS1, EBLN3P, LINC01527, HLA-DQB1-AS1) were screened out. The survival curve showed that the high-risk group had a worse prognosis than the low-risk group. The immunohistochemical analysis revealed that reduced expression of Epidermal Growth Factor Receptor (EGFR), along with increased expression of Activating Transcription Factor 2 (ATF2) and DNA Polymerase Delta 1 (POLD1), was linked to a worse prognosis. Finally, enrichment analysis revealed that OS-related DELs were significantly enriched in the regulation of reactive oxygen metabolism, etc. The ARGs were significantly activated in the SKCM tissues. The regulation of aging in melanoma cells may be realized through ferroptosis, immunity, and autophagy and so on. CONCLUSION The ARL signature obtained in this study had better prognostic ability than individual clinical features.
Collapse
Affiliation(s)
- Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314033, China
| | - Xinyi Qiu
- The First School of Clinical Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xingying Chen
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314033, China
| | - Cheng Du
- Ophthalmology Department, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314033, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaohong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bing Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Li Y, Chen Z, Xiao H, Liu Y, Zhao C, Yang N, Yuan C, Yan S, Li P. Targeting the splicing factor SNRPB inhibits endometrial cancer progression by retaining the POLD1 intron. Exp Mol Med 2025; 57:420-435. [PMID: 39910288 PMCID: PMC11873159 DOI: 10.1038/s12276-025-01407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 02/07/2025] Open
Abstract
Dysregulated alternative splicing has been closely linked to the initiation and progression of tumors. Nevertheless, the precise molecular mechanisms through which splicing factors regulate endometrial cancer progression are still not fully understood. This study demonstrated elevated expression of the splicing factor SNRPB in endometrial cancer samples. Furthermore, our findings indicate that high SNRPB expression is correlated with poor prognosis in patients with endometrial cancer. Functionally, SNRPB inhibition hindered the proliferative and metastatic capacities of endometrial cancer cells. Mechanistically, we revealed that SNRPB knockdown decreased POLD1 expression and that POLD1 intron 22 was retained after SNRPB silencing in endometrial cancer cells, as determined via RNA sequencing data analysis. The retained intron 22 of POLD1 created a premature termination codon, leading to the absence of amino acids 941-1,107 and the loss of the site of interaction with PCNA, which is essential for POLD1 enzyme activity. In addition, POLD1 depletion decreased the increase in the malignancy of endometrial cancer cells overexpressing SNRPB. Furthermore, miR-654-5p was found to bind directly to the 3' untranslated region of SNRPB, resulting in SNRPB expression inhibition in endometrial cancer. Antisense oligonucleotide-mediated SNRPB inhibition led to a decrease in the growth capacity of a cell-derived xenograft model and a patient with endometrial cancer-derived xenograft model. Overall, SNRPB promotes the efficient splicing of POLD1 by regulating intron retention, ultimately contributing to high POLD1 expression in endometrial cancer. The oncogenic SNRPB-POLD1 axis is an interesting therapeutic target for endometrial cancer, and antisense oligonucleotide-mediated silencing of SNRPB may constitute a promising therapeutic approach for treating patients with endometrial cancer.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University. Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Huimin Xiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Yanling Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Chen Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Ning Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Peng Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, China.
| |
Collapse
|
14
|
García-Simón N, Valentín F, Romero A. Genetic predisposition to polyposis syndromes. Clin Transl Oncol 2025:10.1007/s12094-024-03825-6. [PMID: 39794684 DOI: 10.1007/s12094-024-03825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025]
Abstract
Hereditary polyposis syndromes are significant contributors to colorectal cancer (CRC). These syndromes are characterized by the development of various types and numbers of polyps, distinct inheritance patterns, and extracolonic manifestations. This review explores these syndromes with a focus on their genetic characteristics. Advances in diagnostics, particularly the identification of pathogenic germline variants through massive sequencing technologies, have enhanced our understanding of the genetic alterations associated with polyp formation and CRC risk. Identifying pathogenic variants beyond traditional diagnostic criteria improves the management and surveillance of these syndromes. Genetic diagnosis not only refines patient treatment and surveillance, but also informs relatives of potential risks, enabling appropriate management. However, challenges persist in determining the pathogenicity of newly discovered mutations due to their low prevalence. This review covers hereditary polyposis syndromes, from well-established to newly recognized types, providing insights into their genetic landscapes and highlighting the need for tailored surveillance based on genotype.
Collapse
Affiliation(s)
- Natalia García-Simón
- Hereditary Cancer Unit, Medical Oncology Department, Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain
| | - Fátima Valentín
- Gastroenterology Department, Biomedical Research Institute (IDIPHISA), Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain
| | - Atocha Romero
- Hereditary Cancer Unit, Medical Oncology Department, Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain.
| |
Collapse
|
15
|
Vickram S, Infant SS, Manikandan S, Jenila Rani D, Mathan Muthu CM, Chopra H. Immune biomarkers and predictive signatures in gastric cancer: Optimizing immunotherapy responses. Pathol Res Pract 2025; 265:155743. [PMID: 39616978 DOI: 10.1016/j.prp.2024.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Gastric cancer is a malignant disease with a poor prognosis and few therapeutic options once it has advanced. Immunotherapy using ICIs has emerged as a viable therapeutic method; nevertheless, reliable immunological biomarkers are required to identify who may benefit from these therapies. It focuses on key immune biomarkers and predictive signatures in gastric cancer, such as PD-L1 expression, microsatellite instability (MSI), tumor mutational burden (TMB), and Epstein-Barr virus (EBV) status, to optimize gastric cancer patients' immunotherapy responses. PD-L1 expression is a popular biomarker for ICI effectiveness. Tumors with high MSI-H and TMB are the most susceptible to ICIs because they are highly immunogenic. EBV-positive stomach tumors are highly immunogenic, and immunotherapy has a high response rate. Combining composite biomarker panels with multi-omics-based techniques improved patient selection accuracy. In recent years, machine learning models have been integrated into next-generation sequencing. Dynamic, real-time-monitorable biomarkers for real-time immune response monitoring are also being considered. Thus, enhancing biomarker-driven immunotherapy is critical for improving clinical outcomes with gastric cancer. There is still more work to be done in this field, and verifying developing biomarkers will be an important component in the future of customized cancer therapy.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Shofia Saghya Infant
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - D Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
16
|
Nishiyama A, Sato S, Sakaguchi H, Kotani H, Yamashita K, Ohtsubo K, Sekiya T, Watanabe A, Tajima A, Shimaguchi C, Mizuguchi K, Ikeda H, Kinoshita M, Nakada M, Takeuchi S. Pembrolizumab efficacy in a tumor mutation burden-high glioblastoma patient: A case study and implications for precision oncology. Cancer Sci 2025; 116:271-276. [PMID: 39453824 PMCID: PMC11711056 DOI: 10.1111/cas.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
A glioblastoma (GBM) patient with a high tumor mutation burden (TMB-high) and mismatch repair deficiency (dMMR) exhibited a significant response to pembrolizumab, an immune checkpoint inhibitor (ICI), despite prior treatment with temozolomide (TMZ), known to induce hypermutation and potential resistance to ICIs. The rapid disease progression, indicated by 80% Ki67 positivity, was markedly countered by the positive outcome of pembrolizumab treatment. This case challenges traditional GBM treatment paradigms, demonstrating the potential of precision oncology in patients with significant TMB and dMMR, and underscores the importance of comprehensive genomic profiling in guiding clinical decisions in GBM management.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Department of Medical OncologyKanazawa University HospitalKanazawaJapan
| | - Shigeki Sato
- Department of Medical OncologyKanazawa University HospitalKanazawaJapan
| | | | - Hiroshi Kotani
- Department of Medical OncologyKanazawa University HospitalKanazawaJapan
| | - Kaname Yamashita
- Department of Medical OncologyKanazawa University HospitalKanazawaJapan
| | - Koushiro Ohtsubo
- Department of Medical OncologyKanazawa University HospitalKanazawaJapan
| | - Tomoko Sekiya
- Division of Clinical GeneticsKanazawa University HospitalKanazawaJapan
| | - Atsushi Watanabe
- Division of Clinical GeneticsKanazawa University HospitalKanazawaJapan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaJapan
| | - Chie Shimaguchi
- Department of Diagnostic PathologyKanazawa University HospitalKanazawaJapan
| | - Keishi Mizuguchi
- Department of Diagnostic PathologyKanazawa University HospitalKanazawaJapan
| | - Hiroko Ikeda
- Department of Diagnostic PathologyKanazawa University HospitalKanazawaJapan
| | | | | | - Shinji Takeuchi
- Department of Medical OncologyKanazawa University HospitalKanazawaJapan
| |
Collapse
|
17
|
Chen Z, Zheng X, Zeng W, Wang J, Lin Q. JAK2 inactivating mutations promotes endometrial cancer progression by targeting HIF-1α. Discov Oncol 2024; 15:836. [PMID: 39720955 DOI: 10.1007/s12672-024-01722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVE Endometrial cancer (EC) is the ninth most common malignancy among women. While mutations in JAK2 are frequently observed in EC, the specific biological functions of JAK2 in endometrial cancer are poorly understood. METHODS The genetic alterations of JAK2 in different cancer types were explored using sequencing dataset deposited at TCGA database. JAK2 mutations were detected in EC formalin-fixed paraffin-embedded (FFPE) samples using Sanger sequencing. The expression levels of JAK2 was accessed using the TCGA database and immunohistochemistry. Furthermore, the relationships between JAK2 expression and staging and prognosis of EC patients were investigated using the TCGA database. Down-regulation of JAK2 were achieved by transient transfection with short hairpin RNAs (shRNAs). Effects of JAK2 on cancer cells proliferation and migration were evaluated by CCK8, colony formation, and transwell assay. The potential biological functions of JAK2 in EC were identified based on bioinformatics analysis. Effects of JAK2 on expression levels of target genes were detected by RT-qPCR and western blotting. Co-immunoprecipitation (co-IP) assays was used to detect the physical association between JAK2 and HIF-1α. RESULTS Frequent mutations and down-regulation of JAK2 were found in EC. Loss-of-function (LOF) assays suggested that JAK2 silencing in endometrial cancer cells promoted cell proliferation and migration, which were partially dependent on HIF-1α signaling pathway. Furthermore, our findings demonstrated that JAK2 interacted with HIF-1α and reduced HIF1α protein expression under hypoxia. CONCLUSION These findings revealed novel molecular mechanisms underlying JAK2 LOF mutations-driven endometrial tumorigenesis and revealed that the HIF-1α pathway may be a potential therapeutic target in JAK2-mutated endometrial cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
| | - Xuan Zheng
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
| | - Weijian Zeng
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
| | - Juan Wang
- Hangzhou Chexmed Technology Co., Ltd., Hangzhou, 310000, China
| | - Qin Lin
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
| |
Collapse
|
18
|
Li Y, Wang Q, Gao X, Zheng J, Zhang W, Ren Y, Shen W, Su W, Lu P. Somatic mutational landscape reveals mutational signatures and significantly mutated genes of cancer immunotherapeutic outcome and sex disparities. Front Immunol 2024; 15:1423796. [PMID: 39555056 PMCID: PMC11563811 DOI: 10.3389/fimmu.2024.1423796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Background Currently developed molecular markers can predict the effectiveness of cancer immunotherapy and screen beneficiaries to some extent, but they are not stable enough. Therefore, there is an urgent need for discovering novel biomarkers. At the same time, sex factor plays a vital role in the response to immunotherapy, so it is particularly important to identify sex-related molecular indicators. Methods We integrated a pan-cancer cohort consisting of 2348 cancer patients who received immune checkpoint inhibitors and targeted sequencing. Using somatic mutation profiles, we identified mutational signatures, molecular subtypes, and frequently mutated genes, and analyzed their relationships with immunotherapeutic outcomes. We also explored sex disparities of determined biomarkers in response to treatments. Results We found that male patients exhibited better immunotherapy outcomes and higher tumor mutational burden. A total of seven mutational signatures were identified, among which signatures 1 and 3 were associated with worse immunotherapy outcomes, while signatures 2 and 6 correlated with better outcomes. Gender-based analysis revealed that mutational signature 1 continued to show a worse immunotherapy outcome in female patients, whereas signature 6 demonstrated a better outcome in male patients. Based on mutational activities, we identified four potential molecular subtypes with gender differences and relevance to treatment outcomes. PI3K-AKT, RAS signaling pathways, and 68 significantly mutated genes were identified to be associated with immunotherapy outcomes, with nine genes (i.e., ATM, ATRX, DOT1L, EP300, EPHB1, NOTCH1, PBRM1, RBM10, and SETD2) exhibiting gender differences. Finally, we discovered co-mutated gene pairs and TP53 p.R282W mutations related to treatment outcomes, highlighting their gender-specific differences. Conclusion This study identified several molecular biomarkers related to cancer immunotherapy outcomes in terms of mutational signatures, molecular subtypes, and mutated genes, and explored their gender-relatedness in order to provide clues and basis for clinical treatment efficacy evaluation and patient selection.
Collapse
Affiliation(s)
- Yuting Li
- Department of Radiation Oncology, Department of Pathology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaopan Gao
- Department of Pulmonary and Critical Care Medicine, Sunshine Union Hospital, Weifang, Shandong, China
| | - Jinyang Zheng
- Department of Pulmonary and Critical Care Medicine, Sunshine Union Hospital, Weifang, Shandong, China
| | - Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanfeng Ren
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Shen
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
19
|
González-Montero J, Rojas CI, Burotto M. Predictors of response to immunotherapy in colorectal cancer. Oncologist 2024; 29:824-832. [PMID: 38920285 PMCID: PMC11449076 DOI: 10.1093/oncolo/oyae152] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths globally. While treatment advancements have improved survival rates, primarily through targeted therapies based on KRAS, NRAS, and BRAF mutations, personalized treatment strategies for CRC remain limited. Immunotherapy, mainly immune checkpoint blockade, has shown efficacy in various cancers but is effective in only a small subset of patients with CRC with deficient mismatch repair (dMMR) proteins or high microsatellite instability (MSI). Recent research has challenged the notion that CRC is immunologically inert, revealing subsets with high immunogenicity and diverse lymphocytic infiltration. Identifying precise biomarkers beyond dMMR and MSI is crucial to expanding immunotherapy benefits. Hence, exploration has extended to various biomarker sources, such as the tumor microenvironment, genomic markers, and gut microbiota. Recent studies have introduced a novel classification system, consensus molecular subtypes, that aids in identifying patients with CRC with an immunogenic profile. These findings underscore the necessity of moving beyond single biomarkers and toward a comprehensive understanding of the immunological landscape in CRC, facilitating the development of more effective, personalized therapies.
Collapse
Affiliation(s)
- Jaime González-Montero
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
- Basic and Clinical Oncology Department, University of Chile, Santiago 838045, Chile
| | - Carlos I Rojas
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
| | | |
Collapse
|
20
|
Ali-Fehmi R, Krause HB, Morris RT, Wallbillich JJ, Corey L, Bandyopadhyay S, Kheil M, Elbashir L, Zaiem F, Quddus MR, Abada E, Herzog T, Karnezis AN, Antonarakis ES, Kasi PM, Wei S, Swensen J, Elliott A, Xiu J, Hechtman J, Spetzler D, Abraham J, Radovich M, Sledge G, Oberley MJ, Bryant D. Analysis of Concordance Between Next-Generation Sequencing Assessment of Microsatellite Instability and Immunohistochemistry-Mismatch Repair From Solid Tumors. JCO Precis Oncol 2024; 8:e2300648. [PMID: 39565978 PMCID: PMC11594015 DOI: 10.1200/po.23.00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE The new CAP guideline published in August 2022 recommends using immunohistochemistry (IHC) to test for mismatch repair defects in gastroesophageal (GE), small bowel (SB), or endometrial carcinoma (EC) cancers over next-generation sequencing assessment of microsatellite instability (NGS-MSI) for immune checkpoint inhibitor (ICI) therapy eligibility and states there is a preference to use IHC over NGS-MSI in colorectal carcinoma (CRC). METHODS We assessed the concordance of NGS-MSI and IHC-MMR from a very large cohort across the spectrum of solid tumors. RESULTS Of the over 190,000 samples with both NGS-MSI and IHC-MMR about 1,160 were initially flagged as discordant. Of those samples initially flagged as discordant, 50.9% remained discordant after being reviewed by an additional pathologist. This resulted in a final discordance rate of 0.31% (590/191,767). Among CRC, GE, SB and EC, 55.4% of mismatch repair proficient/MSI high (MMRp/MSI-H) tumors had at least one somatic pathogenic mutation in an MMR gene or POLE. Mismatch repair deficient/microsatellite stable (MMRd/MSS) tumors had a significantly lower rate of high tumor mutational burden than MMRp/MSI-H tumors. Across all solid tumors, MMRd/MSI-H tumors had significantly longer overall survival (OS; hazard ratio [HR], 1.47, P < .001) and post-ICI survival (HR, 1.82, P < .001) as compared with MMRp/MSS tumors. The OS for the MMRd/MSS group was slightly worse compared to the MMRp/MSI-H tumors, but this difference was not statistically significant (HR, 0.73, P = .058), with a similar pattern when looking at post-ICI survival (HR, 0.43, P = .155). CONCLUSION This study demonstrates that NGS-MSI is noninferior to IHC-MMR and can identify MSI-H tumors that IHC-MMR is unable to detect and conversely IHC-MMR can identify MMRd tumors that NGS-MSI misses.
Collapse
Affiliation(s)
| | | | - Robert T. Morris
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - John J. Wallbillich
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Logan Corey
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Sudeshna Bandyopadhyay
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Mira Kheil
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Leana Elbashir
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Fadi Zaiem
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - M. Ruhul Quddus
- Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI
| | - Evi Abada
- Karmanos Cancer Institute, Detroit, MI
- Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI
| | - Thomas Herzog
- University of Cincinnati Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gristina V, Pepe F, Genova C, Bazan Russo TD, Gottardo A, Russo G, Incorvaia L, Galvano A, Badalamenti G, Bazan V, Troncone G, Russo A, Malapelle U. Harnessing the potential of genomic characterization of mutational profiles to improve early diagnosis of lung cancer. Expert Rev Mol Diagn 2024; 24:793-802. [PMID: 39267426 DOI: 10.1080/14737159.2024.2403081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Lung Cancer (LC) continues to be a leading cause of cancer-related mortality globally, largely due to the asymptomatic nature of its early stages and the limitations of current diagnostic methods such as Low-Dose Computed Tomography (LDCT), whose often result in late diagnosis, highlighting an urgent need for innovative, minimally invasive diagnostic techniques that can improve early detection rates. AREAS COVERED This review delves into the potential of genomic characterization and mutational profiling to enhance early LC diagnosis, exploring the current state and limitations of traditional diagnostic approaches and the revolutionary role of Liquid Biopsies (LB), including cell-free DNA (cfDNA) analysis through fragmentomics and methylomics. New genomic technologies that allow for earlier detection of LC are scrutinized, alongside a detailed discussion on the literature that shaped our understanding in this field. EXPERT OPINION Despite the promising advancements in genomic characterization techniques, several challenges remain, such as the heterogeneity of LC mutations, the high cost, and limited accessibility of Next-Generation Sequencing (NGS) technologies. Additionally, there is a critical need of standardized protocols for interpreting mutational data. Future research should focus on overcoming these barriers to integrate these novel diagnostic methods into standard clinical practice, potentially revolutionizing the management of LC patients.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Academic Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Lyu P, Li F, Deng R, Wei Q, Lin B, Cheng L, Zhao B, Lu Z. Lnc-PIK3R1, transcriptionally suppressed by YY1, inhibits hepatocellular carcinoma progression via the Lnc-PIK3R1/miR-1286/GSK3β axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167233. [PMID: 38744342 DOI: 10.1016/j.bbadis.2024.167233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Hepatocellular carcinoma (HCC) poses a significant threat due to its highly aggressive and high recurrence characteristics, necessitating urgent advances in diagnostic and therapeutic approaches. Long non-coding RNAs exert vital roles in HCC tumorigenesis, however the mechanisms of their expression regulation and functions are not fully elucidated yet. Herein, we identify that a novel tumor suppressor 'lnc-PIK3R1' was significantly downregulated in HCC tissues, which was correlated with poor prognosis. Functionally, lnc-PIK3R1 played tumor suppressor roles to inhibit the proliferation and mobility of HCC cells, and to impede the distant implantation of xenograft in mice. Mechanistic studies revealed that lnc-PIK3R1 interacted with miR-1286 and alleviated the repression on GSK3B by miR-1286. Notably, pharmacological inhibition of GSK3β compromised the tumor suppression effect by lnc-PIK3R1, confirming their functional relevance. Moreover, we identified that oncogenic YY1 acts as a specific transcriptional repressor to downregulate the expression of lnc-PIK3R1 in HCC. In summary, this study highlights the tumor-suppressive effect of lnc-PIK3R1, and provides new insights into the regulation of GSK3β expression in HCC, which would benefit the development of innovative intervention strategies for HCC.
Collapse
Affiliation(s)
- Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Fengyue Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Runzhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Bingkai Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Lei Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology, Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
23
|
Singer L, Singer J, Horbinski C, Penas-Prado M, Lukas RV. Immunotherapy for Solitary Fibrous Tumor (Hemangiopericytoma): A Unique Treatment Approach for a Rare Central Nervous System Tumor. Neurologist 2024; 29:250-253. [PMID: 38797934 DOI: 10.1097/nrl.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Solitary fibrous tumors (SFTs) of the central nervous system represent a unique entity with limited data on best treatment practices. CASE REPORT Here, we present a case of multiply recurrent central nervous system SFT treated with radiation and immunotherapy. Immunotherapy was chosen based on mutations of genes encoding DNA repair enzymes detected through next-generation sequencing of the tumor, DNA polymerase epsilon catalytic subunit ( POLE ) and mutL homolog 1. The use of radiation and immunotherapy led to slight shrinkage and no recurrence of the tumor for over 2 years. CONCLUSION The presence of somatic DNA repair enzyme gene mutations in SFT may suggest a benefit from a combination of radiotherapy and immunotherapy. This may serve as a biomarker for guiding management in patients with this rare tumor.
Collapse
Affiliation(s)
- Lauren Singer
- Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center
- Department of Neurology at Northwestern University, Chicago, IL
| | - Jorie Singer
- Tulane University School of Medicine, New Orleans, LA
| | - Craig Horbinski
- Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center
- Department of Neurological Surgery at Northwestern University, Chicago, IL
- Department of Pathology, at The Feinberg School of Medicine/Northwestern University, Chicago, IL
| | | | - Rimas V Lukas
- Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center
- Department of Neurology at Northwestern University, Chicago, IL
| |
Collapse
|
24
|
Chen L, Hu H, Yuan Y, Weng S. CSCO guidelines for colorectal cancer version 2024: Updates and discussions. Chin J Cancer Res 2024; 36:233-239. [PMID: 38988483 PMCID: PMC11230882 DOI: 10.21147/j.issn.1000-9604.2024.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Liubo Chen
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hanguang Hu
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Weng
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
25
|
Guo X, Yang Y, Qian Z, Chang M, Zhao Y, Ma W, Wang Y, Xing B. Immune landscape and progress in immunotherapy for pituitary neuroendocrine tumors. Cancer Lett 2024; 592:216908. [PMID: 38677640 DOI: 10.1016/j.canlet.2024.216908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Yang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Gao R, Lou N, Li L, Xie T, Xing P, Tang L, Yao J, Han X, Shi Y. Mutational variant allele frequency profile as a biomarker of response to immune checkpoint blockade in non-small cell lung Cancer. J Transl Med 2024; 22:576. [PMID: 38890738 PMCID: PMC11184775 DOI: 10.1186/s12967-024-05400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Identifying new biomarkers for predicting immune checkpoint inhibitors (ICIs) response in non-small cell lung cancer (NSCLC) is crucial. We aimed to assess the variant allele frequency (VAF)-related profile as a novel biomarker for NSCLC personalized therapy. METHODS We utilized genomic data of 915 NSCLC patients via cBioPortal and a local cohort of 23 patients for model construction and mutational analysis. Genomic, transcriptomic data from 952 TCGA NSCLC patients, and immunofluorescence (IF) assessment with the local cohort supported mechanism analysis. RESULTS Utilizing the random forest algorithm, a 15-gene VAF-related model was established, differentiating patients with durable clinical benefit (DCB) from no durable benefit (NDB). The model demonstrated robust performance, with ROC-AUC values of 0.905, 0.737, and 0.711 across training (n = 313), internal validation (n = 133), and external validation (n = 157) cohorts. Stratification by the model into high- and low-score groups correlated significantly with both progression-free survival (PFS) (training: P < 0.0001, internal validation: P < 0.0001, external validation: P = 0.0066) and overall survival (OS) (n = 341) (P < 0.0001). Notably, the stratification system was independent of PD-L1 (P < 0.0001) and TMB (P < 0.0001). High-score patients exhibited an increased DCB ratio and longer PFS across both PD-L1 and TMB subgroups. Additionally, the high-score group appeared influenced by tobacco exposure, with activated DNA damage response pathways. Whereas, immune/inflammation-related pathways were enriched in the low-score group. Tumor immune microenvironment analyses revealed higher proportions of exhausted/effector memory CD8 + T cells in the high-score group. CONCLUSIONS The mutational VAF profile is a promising biomarker for ICI therapy in NSCLC, with enhanced therapeutic stratification and management as a supplement to PD-L1 or TMB.
Collapse
Affiliation(s)
- Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
27
|
Liu X, Wang W, Zhang X, Liang J, Feng D, Li Y, Xue M, Ling B. Metabolism pathway-based subtyping in endometrial cancer: An integrated study by multi-omics analysis and machine learning algorithms. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102155. [PMID: 38495844 PMCID: PMC10943971 DOI: 10.1016/j.omtn.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Endometrial cancer (EC), the second most common malignancy in the female reproductive system, has garnered increasing attention for its genomic heterogeneity, but understanding of its metabolic characteristics is still poor. We explored metabolic dysfunctions in EC through a comprehensive multi-omics analysis (RNA-seq datasets from The Cancer Genome Atlas [TCGA], Cancer Cell Line Encyclopedia [CCLE], and GEO datasets; the Clinical Proteomic Tumor Analysis Consortium [CPTAC] proteomics; CCLE metabolomics) to develop useful molecular targets for precision therapy. Unsupervised consensus clustering was performed to categorize EC patients into three metabolism-pathway-based subgroups (MPSs). These MPS subgroups had distinct clinical prognoses, transcriptomic and genomic alterations, immune microenvironment landscape, and unique patterns of chemotherapy sensitivity. Moreover, the MPS2 subgroup had a better response to immunotherapy. Finally, three machine learning algorithms (LASSO, random forest, and stepwise multivariate Cox regression) were used for developing a prognostic metagene signature based on metabolic molecules. Thus, a 13-hub gene-based classifier was constructed to predict patients' MPS subtypes, offering a more accessible and practical approach. This metabolism-based classification system can enhance prognostic predictions and guide clinical strategies for immunotherapy and metabolism-targeted therapy in EC.
Collapse
Affiliation(s)
- Xiaodie Liu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan 250000, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuebo Li
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Ming Xue
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| |
Collapse
|
28
|
Gustav M, Reitsam NG, Carrero ZI, Loeffler CML, van Treeck M, Yuan T, West NP, Quirke P, Brinker TJ, Brenner H, Favre L, Märkl B, Stenzinger A, Brobeil A, Hoffmeister M, Calderaro J, Pujals A, Kather JN. Deep learning for dual detection of microsatellite instability and POLE mutations in colorectal cancer histopathology. NPJ Precis Oncol 2024; 8:115. [PMID: 38783059 PMCID: PMC11116442 DOI: 10.1038/s41698-024-00592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
In the spectrum of colorectal tumors, microsatellite-stable (MSS) tumors with DNA polymerase ε (POLE) mutations exhibit a hypermutated profile, holding the potential to respond to immunotherapy similarly to their microsatellite-instable (MSI) counterparts. Yet, due to their rarity and the associated testing costs, systematic screening for these mutations is not commonly pursued. Notably, the histopathological phenotype resulting from POLE mutations is theorized to resemble that of MSI. This resemblance not only could facilitate their detection by a transformer-based Deep Learning (DL) system trained on MSI pathology slides, but also indicates the possibility for MSS patients with POLE mutations to access enhanced treatment options, which might otherwise be overlooked. To harness this potential, we trained a Deep Learning classifier on a large dataset with the ground truth for microsatellite status and subsequently validated its capabilities for MSI and POLE detection across three external cohorts. Our model accurately identified MSI status in both the internal and external resection cohorts using pathology images alone. Notably, with a classification threshold of 0.5, over 75% of POLE driver mutant patients in the external resection cohorts were flagged as "positive" by a DL system trained on MSI status. In a clinical setting, deploying this DL model as a preliminary screening tool could facilitate the efficient identification of clinically relevant MSI and POLE mutations in colorectal tumors, in one go.
Collapse
Affiliation(s)
- Marco Gustav
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | | | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Titus J Brinker
- Digital Biomarkers for Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Loëtitia Favre
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Bruno Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Anaïs Pujals
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Tang G, Liu X, Cho M, Li Y, Tran DH, Wang X. Pan-cancer discovery of somatic mutations from RNA sequencing data. Commun Biol 2024; 7:619. [PMID: 38783092 PMCID: PMC11116503 DOI: 10.1038/s42003-024-06326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Identification of somatic mutations (SMs) is essential for characterizing cancer genomes. While DNA-seq is the prevalent method for identifying SMs, RNA-seq provides an alternative strategy to discover tumor mutations in the transcribed genome. Here, we have developed a machine learning based pipeline to discover SMs based on RNA-seq data (designated as RNA-SMs). Subsequently, we have conducted a pan-cancer analysis to systematically identify RNA-SMs from over 8,000 tumors in The Cancer Genome Atlas (TCGA). In this way, we have identified over 105,000 novel SMs that had not been reported in previous TCGA studies. These novel SMs have significant clinical implications in designing targeted therapy for improved patient outcomes. Further, we have combined the SMs identified by both RNA-seq and DNA-seq analyses to depict an updated mutational landscape across 32 cancer types. This new online SM atlas, OncoDB ( https://oncodb.org ), offers a more complete view of gene mutations that underline the development and progression of various cancers.
Collapse
Affiliation(s)
- Gongyu Tang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Minsu Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuanxiang Li
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dan-Ho Tran
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
30
|
Wu G, Fang Y, Bi D, Yang W, Sun Y. Case report: Immunotherapy in rare high TMB pancreatic acinar carcinoma. Front Oncol 2024; 14:1357233. [PMID: 38529379 PMCID: PMC10961464 DOI: 10.3389/fonc.2024.1357233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
This case report details a patient with Pancreatic Acinar Cell Carcinoma (PACC), a rare malignancy with distinctive biological and imaging features. In the absence of standardized treatment protocols for PACC, we embarked on a diagnostic journey that led to the adoption of an innovative therapeutic regimen in our institution. A 45-year-old female patient presented with a pancreatic mass, which was histologically confirmed as PACC following a biopsy. Subsequent genomic profiling revealed a high tumor mutational burden (21.4/Mb), prompting the initiation of combined immunotherapy and targeted therapy. Notably, the patient experienced a unique adverse reaction to the immunotherapy-recurrent subcutaneous soft tissue nodules, particularly in the gluteal and lower limb regions, accompanied by pain, yet resolving spontaneously. Following six cycles of the dual therapy, radiological evaluations indicated a decrease in tumor size, leading to a successful surgical excision. Over a 20-month post-surgical follow-up, the patient showed no signs of disease recurrence. This narrative adds to the existing knowledge on PACC and highlights the potential efficacy of immunotherapy in managing this challenging condition, emphasizing the importance of close monitoring for any adverse reactions.
Collapse
Affiliation(s)
- Guifu Wu
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, China
| | - Yuting Fang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deying Bi
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, China
| | - Wenwei Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongkun Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Yao X, Feng M, Wang W. The Clinical and Pathological Characteristics of POLE-Mutated Endometrial Cancer: A Comprehensive Review. Cancer Manag Res 2024; 16:117-125. [PMID: 38463556 PMCID: PMC10921942 DOI: 10.2147/cmar.s445055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Endometrial cancer shows high histological and molecular heterogeneity. The POLE mutation is a significant molecular alteration in endometrial cancer, leading to the identification of a specific subtype known as POLE-mutated endometrial cancer. This subtype exhibits a high tumor mutation burden, abundant lymphocyte infiltration, and a favorable prognosis, making it a promising candidate for immune checkpoint inhibitor therapy. This paper presents a comprehensive review of the clinical and pathological characteristics, outcomes, treatment advancements, pathogenic POLE gene detection, and alternative testing methods for POLE-mutated endometrial cancer.
Collapse
Affiliation(s)
- Xiaohong Yao
- Department of Pathology, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, People’s Republic of China
| | - Min Feng
- Department of Pathology, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
32
|
Rosty C, Brosens LAA. Pathology of Gastrointestinal Polyposis Disorders. Gastroenterol Clin North Am 2024; 53:179-200. [PMID: 38280747 DOI: 10.1016/j.gtc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Gastrointestinal polyposis disorders are a group of syndromes defined by clinicopathologic features that include the predominant histologic type of colorectal polyp and specific inherited gene mutations. Adenomatous polyposis syndromes comprise the prototypical familial adenomatous polyposis syndrome and other recently identified genetic conditions inherited in a dominant or recessive manner. Serrated polyposis syndrome is defined by arbitrary clinical criteria. The diagnosis of hamartomatous polyposis syndromes can be suggested from the histologic characteristics of colorectal polyps and the association with various extraintestinal manifestations. Proper identification of affected individuals is important due to an increased risk of gastrointestinal and extragastrointestinal cancers.
Collapse
Affiliation(s)
- Christophe Rosty
- Envoi Specialist Pathologists, Brisbane, Queensland 4059, Australia; University of Queensland, Brisbane, Queensland 4072, Australia; Department of Clinical Pathology, Colorectal Oncogenomics Group, Victorian Comprehensive Cancer Centre, The University of Melbourne, Victoria 3051, Australia.
| | - Lodewijk A A Brosens
- Department of Pathology University Medical Center Utrecht, Utrecht University, Postbus 85500, 3508, Utrecht, Galgenwaad, The Netherlands
| |
Collapse
|
33
|
Szczepanski JM, Rudolf MA, Shi J. Clinical Evaluation of the Pancreatic Cancer Microenvironment: Opportunities and Challenges. Cancers (Basel) 2024; 16:794. [PMID: 38398185 PMCID: PMC10887250 DOI: 10.3390/cancers16040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Advances in our understanding of pancreatic ductal adenocarcinoma (PDAC) and its tumor microenvironment (TME) have the potential to transform treatment for the hundreds of thousands of patients who are diagnosed each year. Whereas the clinical assessment of cancer cell genetics has grown increasingly sophisticated and personalized, current protocols to evaluate the TME have lagged, despite evidence that the TME can be heterogeneous within and between patients. Here, we outline current protocols for PDAC diagnosis and management, review novel biomarkers, and highlight potential opportunities and challenges when evaluating the PDAC TME as we prepare to translate emerging TME-directed therapies to the clinic.
Collapse
Affiliation(s)
| | | | - Jiaqi Shi
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.S.); (M.A.R.)
| |
Collapse
|
34
|
San-Román-Gil M, Martínez-Delfrade I, Albarrán-Fernández V, Guerrero-Serrano P, Pozas-Pérez J, Chamorro-Pérez J, Rosero-Rodríguez D, Sotoca-Rubio P, Barrill-Corpa AM, Alia-Navarro V, González-Merino C, García-de-Quevedo-Suero C, López V, Ruz-Caracuel I, Perna-Monroy C, Ferreiro-Monteagudo R. Case report: Efficacy of immunotherapy as conversion therapy in dMMR/MSI-H colorectal cancer: a case series and review of the literature. Front Immunol 2024; 15:1352262. [PMID: 38361927 PMCID: PMC10867218 DOI: 10.3389/fimmu.2024.1352262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Immunotherapy has demonstrated a role in the therapeutic landscape of a small subset of patients with colorectal carcinoma (CRC) that harbor a microsatellite instability (MSI-H) status due to a deficient DNA mismatch repair (dMMR) system. The remarkable responses to immune checkpoint inhibitors (ICIs) are now being tested in the neoadjuvant setting in localized CRC, where the dMMR/MSI-H status can be found in up to 15% of patients, with remarkable results obtained in NICHE2 and 3 trials, among others. This case series aims to report our experience at a tertiary center and provide a comprehensive analysis of the possible questions and challenges to overcome if ICIs were established as standard of care in a neoadjuvant setting, as well as the potential role they may have as conversion therapy not only in locoregional advanced CRC but also in oligometastatic disease.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | | | - Javier Pozas-Pérez
- Medical Oncology Department, Royal Marsden Hospital, London, United Kingdom
| | - Jesús Chamorro-Pérez
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Pilar Sotoca-Rubio
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Víctor Alia-Navarro
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | - Victoria López
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Tang M, Yin S, Zeng H, Huang A, Huang Y, Hu Z, Shah AR, Zhang S, Li H, Chen G. The P286R mutation of DNA polymerase ε activates cancer-cell-intrinsic immunity and suppresses endometrial tumorigenesis via the cGAS-STING pathway. Cell Death Dis 2024; 15:69. [PMID: 38238314 PMCID: PMC10796917 DOI: 10.1038/s41419-023-06418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024]
Abstract
Endometrial carcinoma (EC) is a prevalent gynecological tumor in women, and its treatment and prevention are significant global health concerns. The mutations in DNA polymerase ε (POLE) are recognized as key features of EC and may confer survival benefits in endometrial cancer patients undergoing anti-PD-1/PD-L1 therapy. However, the anti-tumor mechanism of POLE mutations remains largely elusive. This study demonstrates that the hot POLE P286R mutation impedes endometrial tumorigenesis by inducing DNA breakage and activating the cGAS-STING signaling pathway. The POLE mutations were found to inhibit the proliferation and stemness of primary human EC cells. Mechanistically, the POLE mutants enhance DNA damage and suppress its repair through the interaction with DNA repair proteins, leading to genomic instability and the upregulation of cytoplasmic DNA. Additionally, the POLE P286R mutant also increases cGAS level, promotes TBK1 phosphorylation, and stimulates inflammatory gene expression and anti-tumor immune response. Furthermore, the POLE P286R mutation inhibits tumor growth and facilitates the infiltration of cytotoxic T cells in human endometrial cancers. These findings uncover a novel mechanism of POLE mutations in antagonizing tumorigenesis and provide a promising direction for effective cancer therapy.
Collapse
Affiliation(s)
- Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Ao Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, UNMC, Omaha, USA
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
- AoBio Medical Co., Shanghai, 200438, China.
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
36
|
Zheng S, Donnelly ED, Strauss JB. Race, Prevalence of POLE and POLD1 Alterations, and Survival Among Patients With Endometrial Cancer. JAMA Netw Open 2024; 7:e2351906. [PMID: 38231514 PMCID: PMC10794941 DOI: 10.1001/jamanetworkopen.2023.51906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Importance Black patients with endometrial cancer (EC) in the United States have higher mortality than patients of other races with EC. The prevalence of POLE and POLD1 pathogenic alterations in patients of different races with EC are not well studied. Objective To explore the prevalence of and outcomes associated with POLE and POLD1 alterations in differential racial groups. Design, Setting, and Participants This retrospective cohort study incorporated the largest available data set of patients with EC, including American Association for Cancer Research Project GENIE (Genomics Evidence Neoplasia Information Exchange; 5087 participants), Memorial Sloan Kettering-Metastatic Events and Tropisms (1315 participants), and the Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (517 participants), collected from 2015 to 2023, 2013 to 2021, and 2006 to 2012, respectively. The prevalence of and outcomes associated with POLE or POLD1 alterations in EC were evaluated across self-reported racial groups. Exposure Patients of different racial groups with EC and with or without POLE or POLD1 alterations. Main Outcomes and Measures The main outcome was overall survival. Data on demographic characteristics, POLE and POLD1 alteration status, histologic subtype, tumor mutation burden, fraction of genome altered, and microsatellite instability score were collected. Results A total of 6919 EC cases were studied, of whom 444 (6.4%), 694 (10.0%), and 4869 (70.4%) patients were self-described as Asian, Black, and White, respectively. Within these large data sets, Black patients with EC exhibited a lower weighted average prevalence of pathogenic POLE alterations (0.5% [3 of 590 cases]) compared with Asian (6.1% [26 of 424]) or White (4.6% [204 of 4520]) patients. By contrast, the prevalence of POLD1 pathogenic alterations was 5.0% (21 cases), 3.2% (19 cases), and 5.6% (255 cases) in Asian, Black, and White patients with EC, respectively. Patients with POLD1 alterations had better outcomes regardless of race, histology, and TP53 alteration status. For a total of 241 clinically annotated Black patients with EC, a composite biomarker panel of either POLD1 or POLE alterations identified 7.1% (17 patients) with positive outcomes (1 event at 70 months follow up) in the small sample of available patients. Conclusions and Relevance In this retrospective clinicopathological study of patients of different racial groups with EC, a composite biomarker panel of either POLD1 or POLE alteration could potentially guide treatment de-escalation, which is especially relevant for Black patients.
Collapse
Affiliation(s)
- Shuhua Zheng
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Eric D. Donnelly
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Jonathan B. Strauss
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
37
|
Jiang D, Zhang H, Yin B, He M, Lu X, He C. The Prognostic Hub Gene POLE2 Promotes BLCA Cell Growth via the PI3K/AKT Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:1984-1998. [PMID: 38963027 DOI: 10.2174/0113862073273633231113060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 07/05/2024]
Abstract
BACKGROUND BLCA is a common urothelial malignancy characterized by a high recurrence rate. Despite its prevalence, the molecular mechanisms underlying its development remain unclear. AIMS This study aimed to explore new prognostic biomarkers and investigate the underlying mechanism of bladder cancer (BLCA). OBJECTIVE The objective of this study is to identify key prognostic biomarkers for BLCA and to elucidate their roles in the disease. METHODS We first collected the overlapping DEGs from GSE42089 and TCGA-BLCA samples for the subsequent weighted gene co-expression network analysis (WGCNA) to find a key module. Then, key module genes were analyzed by the MCODE algorithm, prognostic risk model, expression and immunohistochemical staining to identify the prognostic hub gene. Finally, the hub gene was subjected to clinical feature analysis, as well as cellular function assays. RESULTS In WGCNA on 1037 overlapping genes, the blue module was the key module. After a series of bioinformatics analyses, POLE2 was identified as a prognostic hub gene in BLCA from potential genes (TROAP, POLE2, ANLN, and E2F8). POLE2 level was increased in BLCA and related to different clinical features of BLCA patients. Cellular assays showed that si-POLE2 inhibited BLCA proliferation, and si-POLE2+ 740Y-P in BLCA cells up-regulated the PI3K and AKT protein levels. CONCLUSION In conclusion, POLE2 was identified to be a promising prognostic biomarker as an oncogene in BLCA. It was also found that POLE2 exerts a promoting function by the PI3K/AKT signaling pathway in BLCA.
Collapse
Affiliation(s)
- Dongzhen Jiang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Huawei Zhang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Minke He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Xuwei Lu
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Chang He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| |
Collapse
|
38
|
Zhu M, Benson AB. An update on pharmacotherapies for colorectal cancer: 2023 and beyond. Expert Opin Pharmacother 2024; 25:91-99. [PMID: 38224000 DOI: 10.1080/14656566.2024.2304654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide. The treatment of metastatic colorectal cancer (mCRC) is difficult, and mCRC has a survival rate of only 13-17% compared with 70-90% in locoregional CRC. There is ongoing research effort on pharmacotherapy for CRC to improve the treatment outcome. AREAS COVERED We reviewed the current literature and ongoing clinical trials on CRC pharmacotherapy, with a focus on targeted therapy based on the results of genetic testing. The pharmacotherapies covered in this article include novel agents targeting EGFR and EGFR-related pathways, agents targeting the VEGF pathway, immunotherapy options depending on the MMR/MSI status, and new therapies targeting genetic fusions such as NTRK. We also briefly discuss the value of next-generation sequencing (NGS) in treatment selection and response monitoring. EXPERT OPINION We advocate for the early and routine use of NGS to genetically characterize CRC to assist with pharmacotherapy selection. Targeted therapy is a promising field of ongoing research and improves CRC treatment outcome.
Collapse
Affiliation(s)
- Mengou Zhu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Al B Benson
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
39
|
Wang L, Diao M, Zhang Z, Jiang M, Chen S, Zhao D, Liu Z, Zhou C. Comparison of the somatic genomic landscape between central- and peripheral-type non-small cell lung cancer. Lung Cancer 2024; 187:107439. [PMID: 38113653 DOI: 10.1016/j.lungcan.2023.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Lung cancer is classified into central and peripheral types based on the anatomic location. The present study aimed to explore the distinct patterns of genomic alterations between central- and peripheral-type non-small cell lung cancers (NSCLCs) with negative driver genes and identify potential driver genes and biomarkers to improve therapy strategies for NSCLC. METHODS Whole-exome sequencing (WES) was performed with 182 tumor/control pairs of samples from 145 Chinese NSCLC patients without EGFR, ALK, or ROS1 alterations. Significantly mutated genes (SMGs) and somatic copy number alterations (SCNAs) were identified. Subsequently, tumor mutation burden (TMB), weighted genome integrity index (wGII), copy number alteration (CNA) burden, Shannon diversity index (SDI), intratumor heterogeneity (ITH), neoantigen load (NAL), and clonal variations were evaluated in central- and peripheral-type NSCLCs. Furthermore, mutational signature analysis and survival analysis were performed. RESULTS TP53 was the most frequently mutated gene in NSCLC and more frequently mutated in central-type NSCLC. Higher wGII, ITH, and SDI were found in central-type lung adenocarcinoma (LUAD) than in peripheral-type LUAD. The NAL of central-type lung squamous cell carcinoma (LUSC) with stage III/IV was significantly higher than that of peripheral-type LUSC. Mutational signature analysis revealed that SBS10b, SBS24, and ID7 were significantly different in central- and peripheral-type NSCLCs. Furthermore, central-type NSCLC was found to evolve at a higher level with fewer clones and more subclones, particularly in central-type LUSC. Survival analysis revealed that TMB, CNA burden, NAL, subclonal driver mutations, and subclonal mutations were negatively related to the overall survival (OS) and the progression-free survival (PFS) of central-type LUAD. CONCLUSIONS Central-type NSCLC tended to evolve at a higher level and might suggest a favorable response to immunotherapy. Our study also identified several potential driver genes and promising biomarkers for the prognosis and prediction of chemotherapy responses in NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Meng Diao
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Zheng Zhang
- Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Minlin Jiang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Shifu Chen
- HaploX Biotechnology Co., Shenzhen, PR China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| | - Zhenguo Liu
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong Province, PR China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| |
Collapse
|
40
|
Haynes T, Gilbert MR, Breen K, Yang C. Pathways to hypermutation in high-grade gliomas: Mechanisms, syndromes, and opportunities for immunotherapy. Neurooncol Adv 2024; 6:vdae105. [PMID: 39022645 PMCID: PMC11252568 DOI: 10.1093/noajnl/vdae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Despite rapid advances in the field of immunotherapy, including the success of immune checkpoint inhibition in treating multiple cancer types, clinical response in high-grade gliomas (HGGs) has been disappointing. This has been in part attributed to the low tumor mutational burden (TMB) of the majority of HGGs. Hypermutation is a recently characterized glioma signature that occurs in a small subset of cases, which may open an avenue to immunotherapy. The substantially elevated TMB of these tumors most commonly results from alterations in the DNA mismatch repair pathway in the setting of extensive exposure to temozolomide or, less frequently, from inherited cancer predisposition syndromes. In this review, we discuss the genetics and etiology of hypermutation in HGGs, with an emphasis on the resulting genomic signatures, and the state and future directions of immuno-oncology research in these patient populations.
Collapse
Affiliation(s)
- Tuesday Haynes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Kevin Breen
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Maryland, USA
| |
Collapse
|
41
|
Ahmed J, Das B, Shin S, Chen A. Challenges and Future Directions in the Management of Tumor Mutational Burden-High (TMB-H) Advanced Solid Malignancies. Cancers (Basel) 2023; 15:5841. [PMID: 38136385 PMCID: PMC10741991 DOI: 10.3390/cancers15245841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
A standardized assessment of Tumor Mutational Burden (TMB) poses challenges across diverse tumor histologies, treatment modalities, and testing platforms, requiring careful consideration to ensure consistency and reproducibility. Despite clinical trials demonstrating favorable responses to immune checkpoint inhibitors (ICIs), not all patients with elevated TMB exhibit benefits, and certain tumors with a normal TMB may respond to ICIs. Therefore, a comprehensive understanding of the intricate interplay between TMB and the tumor microenvironment, as well as genomic features, is crucial to refine its predictive value. Bioinformatics advancements hold potential to improve the precision and cost-effectiveness of TMB assessments, addressing existing challenges. Similarly, integrating TMB with other biomarkers and employing comprehensive, multiomics approaches could further enhance its predictive value. Ongoing collaborative endeavors in research, standardization, and clinical validation are pivotal in harnessing the full potential of TMB as a biomarker in the clinic settings.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic (DTC), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Biswajit Das
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sarah Shin
- Developmental Therapeutics Clinic (DTC), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Alice Chen
- Developmental Therapeutics Clinic (DTC), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Lu M, Zhang X, Chu Q, Chen Y, Zhang P. Susceptibility Genes Associated with Multiple Primary Cancers. Cancers (Basel) 2023; 15:5788. [PMID: 38136334 PMCID: PMC10741435 DOI: 10.3390/cancers15245788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
With advancements in treatment and screening techniques, we have been witnessing an era where more cancer survivors harbor multiple primary cancers (MPCs), affecting approximately one in six patients. Identifying MPCs is crucial for tumor staging and subsequent treatment choices. However, the current clinicopathological criteria for clinical application are limited and insufficient, making it challenging to differentiate them from recurrences or metastases. The emergence of next-generation sequencing (NGS) technology has provided a genetic perspective for defining multiple primary cancers. Researchers have found that, when considering multiple tumor pairs, it is crucial not only to examine well-known essential mutations like MLH1/MSH2, EGFR, PTEN, BRCA1/2, CHEK2, and TP53 mutations but also to explore certain pleiotropic loci. Moreover, specific deleterious mutations may serve as regulatory factors in second cancer development following treatment. This review aims to discuss these susceptibility genes and provide an explanation of their functions based on the signaling pathway background. Additionally, the association network between genetic signatures and different tumor pairs will be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.)
| |
Collapse
|
43
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
44
|
Catalano M, Iannone LF, Nesi G, Nobili S, Mini E, Roviello G. Immunotherapy-related biomarkers: Confirmations and uncertainties. Crit Rev Oncol Hematol 2023; 192:104135. [PMID: 37717881 DOI: 10.1016/j.critrevonc.2023.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
Immunotherapy profoundly changed oncology treatment, becoming one of the main therapeutical strategies. Remarkable improvement has been achieved in survival outcomes, but the percentage of patients who benefit from immunotherapy is still limited. Only one-third of patients receiving immune checkpoint inhibitors (ICIs) achieve long-term response. Several patients are not responsive to treatment or relapse after an initial response. To date, programmed death-ligand 1, microsatellite instability, and tumor mutational burden are the three biomarkers validated to predict the ICIs response, but a single variable seems still insufficient in the patient's selection. Considering the substantial and increasing use of these drugs, the identification of new predictive biomarkers of ICI response is of paramount importance. We summarize the state of the art and the clinical use of immune biomarkers in oncology, highlighting the strength and weaknesses of currently approved biomarkers, describing the emerging tissues and circulating biomarkers, and outlining future perspectives.
Collapse
Affiliation(s)
- Martina Catalano
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Luigi Francesco Iannone
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Gabriella Nesi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Enrico Mini
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Giandomenico Roviello
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy.
| |
Collapse
|
45
|
Zheng L, Zhou N, Yang X, Wei Y, Yi C, Gou H. Clinicopathological features of a rare cancer: Intrahepatic lymphoepithelioma-like cholangiocarcinoma with Epstein-Barr virus infection. Clin Res Hepatol Gastroenterol 2023; 47:102244. [PMID: 37944749 DOI: 10.1016/j.clinre.2023.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Epstein-Barr virus-related lymphoepithelioma-like cholangiocarcinoma (EBV-LELCC), a subtype of intrahepatic cholangiocarcinoma (IHCC), is an extremely rare cancer. To date, only few cases have been reported. Therefore, more studies are needed to provide new insights into its clinicopathological characteristics and treatment. METHODS We retrospectively collected data from 16 EBV-LELCC patients admitted to our hospital between January 2013 and February 2022. We summarized their clinical characteristics and analyzed the genomic features of 5 patients by whole-exon sequencing. In addition, the Kaplan-Meier method was used to assess the prognostic differences between EBV-LELCC and EBV-negative IHCC. RESULTS A total of 16 EBV-LELCC patients aged between 35 and 70 were included in this study and were characterized by female predominance. Eight genetic mutations including KMT2C, ARID1B, BAZ1A, NPM1, POLE, PER3, TOPBP1, USP1 were identified from 5 patients. There were 11 stage I, 2 stage III and 3 stage IV patients in this study. The overall survival of stage I and stage III EBV-LELCC patients after radical surgery was significantly better than that of EBV-negative IHCC patients with matched stage (p = 0.0119). Notably, a stage IV patient treated with a variety of antitumor modalities including surgery, interventional therapy, radiotherapy, chemotherapy, targeted therapy and immunotherapy achieved long-term survival of more than seven years. CONCLUSION Altogether, EBV-LELCC presents a more favorable prognosis than IHCC. This study suggests that patients with early EBV-LELCC have a good prognosis after radical surgery, and even patients with advanced EBV-LELCC are expected to have a longer survival under appropriate and timely treatment. For such a rare cancer with unique clinicopathological features and molecular patterns, more research is needed to facilitate its diagnosis and treatment.
Collapse
Affiliation(s)
- Lingnan Zheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Nan Zhou
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yang
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuanfeng Wei
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hongfeng Gou
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
46
|
Verschoor N, Smid M, Jager A, Sleijfer S, Wilting SM, Martens JWM. Integrative whole-genome and transcriptome analysis of HER2-amplified metastatic breast cancer. Breast Cancer Res 2023; 25:145. [PMID: 37968696 PMCID: PMC10648326 DOI: 10.1186/s13058-023-01743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In breast cancer, the advent of anti-HER2 therapies has made HER2+ tumors a highly relevant subgroup. However, the exact characteristics which prohibit clinical response to anti-HER2 therapies and drive disease progression are not yet fully known. Integrative whole-genome and transcriptomic sequencing data from both primary and metastatic HER2-positive breast cancer will enhance our understanding of underlying biological processes. METHODS Here, we used WGS and RNA sequencing data of 700 metastatic breast tumors, of which 68 being HER2+, to search for specific genomic features of HER2+ disease and therapy resistance. Furthermore, we integrated results with transcriptomic data to associate tumors exhibiting a HER2+-specific gene expression profile with ERBB2 mutation status, prior therapy and relevant gene expression signatures. RESULTS Overall genomic profiles of primary and metastatic HER2+ breast cancers were similar, and no specific acquired genomics traits connected to prior anti-HER2 treatment were observed. However, specific genomic features were predictive of progression-free survival on post-biopsy anti-HER2 treatment. Furthermore, a HER2-driven expression profile grouped HER2-amplified tumors with ERBB2-mutated cases and cases without HER2 alterations. The latter were reported as ER positive in primary disease, but the metastatic biopsy showed low ESR1 expression and upregulation of the MAPK pathway, suggesting transformation to ER independence. CONCLUSIONS In summary, although the quantity of variants increased throughout HER2-positive breast cancer progression, the genomic composition remained largely consistent, thus yielding no new major processes beside those already operational in primary disease. Our results suggest that integrated genomic and transcriptomic analyses may be key in establishing therapeutic options.
Collapse
Affiliation(s)
- Noortje Verschoor
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Chung Y, Nam SK, Chang HE, Lee C, Kang GH, Lee HS, Park KU. Evaluation of an eight marker-panel including long mononucleotide repeat markers to detect microsatellite instability in colorectal, gastric, and endometrial cancers. BMC Cancer 2023; 23:1100. [PMID: 37953261 PMCID: PMC10641958 DOI: 10.1186/s12885-023-11607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Accurate determination of microsatellite instability (MSI) status is critical for optimal treatment in cancer patients. Conventional MSI markers can sometimes display subtle shifts that are difficult to interpret, especially in non-colorectal cases. We evaluated an experimental eight marker-panel including long mononucleotide repeat (LMR) markers for detection of MSI. METHODS The eight marker-panel was comprised of five conventional markers (BAT-25, BAT-26, NR-21, NR-24, and NR-27) and three LMR markers (BAT-52, BAT-59 and BAT-62). MSI testing was performed against 300 specimens of colorectal, gastric, and endometrial cancers through PCR followed by capillary electrophoresis length analysis. RESULTS The MSI testing with eight marker-panel showed 99.3% (295/297) concordance with IHC analysis excluding 3 MMR-focal deficient cases. The sensitivity of BAT-59 and BAT-62 was higher than or comparable to that of conventional markers in gastric and endometrial cancer. The mean shift size was larger in LMR markers compared to conventional markers for gastric and endometrial cancers. CONCLUSIONS The MSI testing with eight maker-panel showed comparable performance with IHC analysis. The LMR markers, especially BAT-59 and BAT-62, showed high sensitivity and large shifts which can contribute to increased confidence in MSI classification, especially in gastric and endometrial cancers. Further study is needed with large number of samples for the validation of these LMR markers.
Collapse
Affiliation(s)
- Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Eun Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
48
|
Wang T, Yu D, Wang J, Zhu N, Tang XB, Chen X, Su XM, Huang YG. Immune signatures of the POLE mutation in endometrial carcinomas: a systematic study based on TCGA data and clinical cohort validation. Front Oncol 2023; 13:1250558. [PMID: 38023184 PMCID: PMC10652564 DOI: 10.3389/fonc.2023.1250558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background POLE is a critical biomarker for endometrial cancer (ECs) prognosis and therapeutic decision. However, the immune infiltration and immunotherapy-related gene expression in the tumor microenvironment (TME) of POLE-mutated ECs remain unresolved. Methods The TCGA database was used to characterize the TME of POLE mutants, which primarily included immune cells and co-expression genes. We used immunohistochemistry (IHC) to determine immune cell abundance and PD-L1 expression in 104 EC tissues, including 11 POLE mutants and 93 wild-type. Results The bioinformatic study found significant differences in gene expression of the chemokine family, immune-cell markers, and lysozyme in POLE mutants, along with immune response activation. In POLE-mutated ECs, the abundance of CD4+T, CD8+T, M1 macrophages, and dendritic cells increased considerably. Furthermore, POLE mutations may enhance immune cell recruitment or activation and lymphocyte homing in ECs. POLE mutants also had increased expression of immune-checkpoint suppressor genes such as PD-L1, CTLA-4, TIM-3, and others. The tumor mutation burden (TMB) was higher in ECs with POLE mutation. In the validation cohort, we discovered that POLE mutations were related to the immune infiltration abundance of CD8+, CD4+, and Foxp3+ cells and PD-L1 expression by IHC. The prognosis of TCGA-ECs showed that the survival time of the CD8, CD4, PD-L1, or Foxp3 over-expression subgroup of the POLE mutants was significantly prolonged compared to the down-regulation subgroup or the POLE wild-type. Conclusion The infiltration abundance of CD8+ T, CD4+ T, Foxp3+ T cells, and the expression of PD-L1 harbor crucial value for the prognosis or individualized therapy of POLE-mutated ECs.
Collapse
Affiliation(s)
- Tieyan Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dan Yu
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Xian-bin Tang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiuwen Chen
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-min Su
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Yu-gang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
49
|
Rüschoff J, Schildhaus HU, Rüschoff JH, Jöhrens K, Bocker Edmonston T, Dietmaier W, Bläker H, Baretton G, Horst D, Dietel M, Hartmann A, Klauschen F, Merkelbach-Bruse S, Stenzinger A, Schöniger S, Tiemann M, Weichert W, Büttner R. Testing for deficient mismatch repair and microsatellite instability : A focused update. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:61-70. [PMID: 37874379 PMCID: PMC10713762 DOI: 10.1007/s00292-023-01208-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 10/25/2023]
Abstract
Testing to detect mismatch repair deficiency (dMMR) and high-grade microsatellite instability (MSI-H) has become an integral part of the routine diagnostic workup for colorectal cancer (CRC). While MSI was initially considered to be a possible indicator of a hereditary disposition to cancer (Lynch syndrome, LS), today the prediction of the therapy response to immune checkpoint inhibitors (ICI) is in the foreground. Corresponding recommendations and testing algorithms are available for use in primary diagnosis (reviewed in: Rüschoff et al. 2021).Given the increasing importance for routine use and the expanding indication spectrum of ICI therapies for non-CRCs, such as endometrial, small intestinal, gastric, and biliary tract cancers, an updated review of dMMR/MSI testing is presented. The focus is on the challenges in the assessment of immunohistochemical stains and the value of PCR-based procedures, considering the expanded ICI indication spectrum. A practice-oriented flowchart for everyday diagnostic decision-making is provided that considers new data on the frequency and type of discordances between MMR-IHC and MSI-PCR findings, and the possible role of Next Generation Sequencing in clarifying them. Reference is made to the significance of systematic quality assurance measures (e.g., QuIP MSI portal and multicenter proficiency testing), including regular continued training and education.
Collapse
Affiliation(s)
- Josef Rüschoff
- Discovery Life Sciences Biomarker GmbH and North Hesse Pathology, Germaniastr. 7, 34119, Kassel, Germany.
| | - Hans-Ulrich Schildhaus
- Discovery Life Sciences Biomarker GmbH and North Hesse Pathology, Germaniastr. 7, 34119, Kassel, Germany
| | - Jan Hendrik Rüschoff
- Institute of Pathology and Molecular Pathology, Zürich University Hospital, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
| | - Korinna Jöhrens
- Institute of Pathology, Carl Gustav Carus University Hospital, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tina Bocker Edmonston
- Department of Pathology, Cooper University Health Care, 401 Haddon Ave, 08103, Camden, NJ, USA
| | - Wolfgang Dietmaier
- Institute of Pathology/Center for Molecular Pathology Diagnosis, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Hendrik Bläker
- Institute for Pathology, Leipzig University Hospital, Leipzig, Germany
| | - Gustavo Baretton
- Institute of Pathology, Carl Gustav Carus University Hospital, Fetscherstr. 74, 01307, Dresden, Germany
| | - David Horst
- Institute of Pathology, Charité University Hospital, Central Campus, Charitéplatz 1, 10117, Berlin, Germany
| | - Manfred Dietel
- Institute of Pathology, Charité University Hospital, Central Campus, Charitéplatz 1, 10117, Berlin, Germany
| | - Arndt Hartmann
- Pathological Institute, University of Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Frederick Klauschen
- Pathological Institute, Ludwig Maximilian University of Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, Cologne University Hospital, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albrecht Stenzinger
- Pathological Institute, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Sandra Schöniger
- Discovery Life Sciences Biomarker GmbH and North Hesse Pathology, Germaniastr. 7, 34119, Kassel, Germany
| | - Markus Tiemann
- Hamburg Institute of Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Reinhard Büttner
- Institute of Pathology, Cologne University Hospital, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
50
|
Zhu M, Kim J, Deng Q, Ricciuti B, Alessi JV, Eglenen-Polat B, Bender ME, Huang HC, Kowash RR, Cuevas I, Bennett ZT, Gao J, Minna JD, Castrillon DH, Awad MM, Xu L, Akbay EA. Loss of p53 and mutational heterogeneity drives immune resistance in an autochthonous mouse lung cancer model with high tumor mutational burden. Cancer Cell 2023; 41:1731-1748.e8. [PMID: 37774698 PMCID: PMC10693909 DOI: 10.1016/j.ccell.2023.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
The role of tumor mutational burden (TMB) in shaping tumor immunity is a key question that has not been addressable using genetically engineered mouse models (GEMMs) of lung cancer. To induce TMB in lung GEMMs, we expressed an ultra-mutator variant of DNA polymerase-E (POLE)P286R in lung epithelial cells. Introduction of PoleP286R allele into KrasG12D and KrasG12D; p53L/L (KP) models significantly increase their TMB. Immunogenicity and sensitivity to immune checkpoint blockade (ICB) induced by Pole is partially dependent on p53. Corroborating these observations, survival of NSCLC patients whose tumors have TP53truncating mutations is shorter than those with TP53WT with immunotherapy. Immune resistance is in part through reduced antigen presentation and in part due to mutational heterogeneity. Total STING protein levels are elevated in Pole mutated KP tumors creating a vulnerability. A stable polyvalent STING agonist or p53 induction increases sensitivity to immunotherapy offering therapeutic options in these polyclonal tumors.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Deng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Buse Eglenen-Polat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Matthew E Bender
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Hai-Cheng Huang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Ileana Cuevas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Zachary T Bennett
- Simmons Comprehensive Cancer Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinming Gao
- Simmons Comprehensive Cancer Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Simmons Comprehensive Cancer Center, Dallas, TX, USA; Department Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, Dallas, TX, USA.
| |
Collapse
|