1
|
Gray OA, Witonsky DB, Jousma J, Sobreira DR, Van Alstyne A, Huang RT, Fang Y, Di Rienzo A. Transcriptomic analysis of iPSC-derived endothelium reveals adaptations to high altitude hypoxia in energy metabolism and inflammation. PLoS Genet 2025; 21:e1011570. [PMID: 39928692 PMCID: PMC11809796 DOI: 10.1371/journal.pgen.1011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
Tibetan adaptation to high-altitude hypoxia remains a classic example of Darwinian selection in humans. Amongst Tibetan populations, alleles in the EPAS1 gene - whose protein product, HIF-2α, is a central regulator of the hypoxia response - have repeatedly been shown to carry some of the strongest signals of positive selection in humans. However, selective sweep signals alone may only account for some of the phenotypes that differentiate high-altitude adapted populations from closely related lowlanders. Therefore, there is a pressing need to functionally probe adaptive alleles and their impact at both the locus-specific and genome-wide levels and across cell types to uncover the full range of beneficial traits. To this end, we established a library of induced pluripotent stem cells (iPSCs) derived from Tibetan and Han Chinese individuals, a robust model system allowing precise exploration of allelic effects on transcriptional responses, and we differentiated them into vascular endothelium. Using this system, we focus first on a hypoxia-dependent enhancer (ENH5) that contributes to the regulation of EPAS1 to investigate its locus-specific effects in endothelium. Then, to cast a wider net, we harness the same experimental system to compare the transcriptome of Tibetan and Han Chinese cells in hypoxia and find evidence that angiogenesis, energy metabolism and immune pathways differ between these two populations with different histories of long-term residence at high altitude. Coupled with evidence of polygenic adaptations targeting the same pathways, these results suggests that the observed transcriptional differences between the two populations were shaped by natural selection.
Collapse
Affiliation(s)
- Olivia A. Gray
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Jordan Jousma
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Débora R. Sobreira
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Alexander Van Alstyne
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Ru-Ting Huang
- Department of Medicine, Section of Pulmonary and Intensive Care, University of Chicago Hospital: The University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Intensive Care, University of Chicago Hospital: The University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
Li Y, Liu L, Li B. Role of ENO1 and its targeted therapy in tumors. J Transl Med 2024; 22:1025. [PMID: 39543641 PMCID: PMC11566422 DOI: 10.1186/s12967-024-05847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
ENO1, also called 2-phospho-D-glycerate hydrolase in cellular glycolysis, is an enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate and plays an important role in the Warburg effect. In various tumors, ENO1 overexpression correlates with poor prognosis. ENO1 is a multifunctional oncoprotein that, when located on the cell surface, acts as a "moonlighting protein" to promote tumor invasion and metastasis. When located intracellularly, ENO1 facilitates glycolysis to dysregulate cellular energy and sustain tumor proliferation. Additionally, it promotes tumor progression by activating oncogenic signaling pathways. ENO1 is a tumor biomarker and represents a promising target for tumor therapy. This review summarizes recent advances from 2020 to 2024 in understanding the relationship between ENO1 and tumors and explores the latest targeted therapeutic strategies involving ENO1.
Collapse
Affiliation(s)
- Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Ma Z, Wang Y, Shen J, Yan W, Cao C, Feng M, Zhu J, Pang W. Overexpression of ALDOC Promotes Porcine Intramuscular and Intermuscular Fat Deposition by Activating the AKT-mTORC1 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23893-23907. [PMID: 39428631 DOI: 10.1021/acs.jafc.4c07781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Skeletal muscle fat accumulation, a common complication of obesity, has garnered increasing attention. For livestock animals, intramuscular fat content is a key determinant of meat quality and directly influences consumer preferences for different meat products. However, genes effectively regulating intramuscular and intermuscular fat (IIMF) deposition remain largely unexplored. To address this gap, we employed transcriptome sequencing of muscle from pigs with high and low IIMF contents, uncovering Aldolase C (ALDOC) as a novel key gene controlling IIMF. ALDOC overexpression significantly enhanced the IIMF content both in vivo and in vitro. Mechanistic investigations revealed that ALDOC activates the AKT-mTORC1 axis to promote lipid accumulation in myotubes and intramuscular adipocytes. Notably, the mTORC1 inhibitor rapamycin abrogated ALDOC's proadipogenic effect. Our findings establish ALDOC as a novel key gene regulating IIMF deposition and identify the ALDOC-AKT-mTORC1 signaling pathway as a promising therapeutic target for treating skeletal muscle fat infiltration and improving pork quality.
Collapse
Affiliation(s)
- Zeqiang Ma
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingqian Wang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junnan Shen
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenyong Yan
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chaoyue Cao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Feng
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiahua Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Ishikawa A, Shiwa Y, Katsuya N, Maruyama R, Fukui T, Kuraoka K, Suzuki T, Takigawa H, Oka S, Yasui W. Fructose-bisphosphate Aldolase C Expression is Associated with Poor Prognosis and Stemness in Gastric Cancer. Acta Histochem Cytochem 2024; 57:165-174. [PMID: 39552933 PMCID: PMC11565221 DOI: 10.1267/ahc.24-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 11/19/2024] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths in Japan, underscoring the urgent need for deeper insights into its pathogenesis. Spheroids provide a more realistic and versatile model for studying cancers and cancer stem cells (CSCs). While fructose-bisphosphate aldolase C (ALDOC) has been identified in colorectal cancer spheroids, its role in GC has remained largely unexplored. This study aimed to elucidate the role of ALDOC in GC by performing single-cell and functional analyses of GC spheroids and cell lines, along with immunohistochemistry of 127 GC samples to assess its correlation with CSC markers. Our single-cell analysis revealed upregulation of ALDOC in spheroids, with pseudotime analysis indicating that ALDOC-expressing cells were predominantly undifferentiated and co-expressed LGR5 and CD44. Further investigation into cell-cell interactions suggested that the stem cell state may be maintained by WNT, BMP, and EGF signaling. Functional assays demonstrated that ALDOC knockdown led to a marked reduction in the growth, invasiveness, and spheroid colony formation capacity of GC cell lines. Clinically, ALDOC was detected in the cytoplasm of 56.7% (72/127) of GC cases, and high ALDOC expression was significantly associated with poor overall survival (p < 0.01), and was an independent prognostic factor. Moreover, a significant association between ALDOC and CD44 expression in GC (p = 0.031). Conclusively, our findings identify ALDOC as a crucial prognostic marker and provide new insights into GC pathogenesis.
Collapse
Affiliation(s)
- Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Yuki Shiwa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Narutaka Katsuya
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Ryota Maruyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Takafumi Fukui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Kazuya Kuraoka
- Department of Diagnostic Pathology, National Hospital Organization (NHO), Kure Medical Center, and Chugoku Cancer Center, 3–1 Aoyama, Kure 737–0023, Japan
| | - Takahisa Suzuki
- Department of Surgery, National Hospital Organization (NHO), Kure Medical Center, and Chugoku Cancer Center, 3–1 Aoyama, Kure 737–0023, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
- Division of Pathology, Hiroshima City Medical Association Clinical Laboratory, 3 Chome-8-6 Sendamachi, Naka-ku, Hiroshima 730–8611, Japan
| |
Collapse
|
5
|
Li K, Zhong W, Fan J, Wang S, Yu D, Xu T, Lyu J, Wu S, Qin T, Wu Z, Xu L, Wu K, Liu Z, Hu Z, Li F, Wang J, Wang Q, Min J, Zhang Z, Yu L, Ding S, Huang L, Zhao T, Huang J, Lin T. Neoadjuvant gemcitabine-cisplatin plus tislelizumab in persons with resectable muscle-invasive bladder cancer: a multicenter, single-arm, phase 2 trial. NATURE CANCER 2024; 5:1465-1478. [PMID: 39256488 DOI: 10.1038/s43018-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Programmed death 1 blockade (tislelizumab) has been approved for metastatic urothelial carcinoma but not as part of neoadjuvant therapy for muscle-invasive bladder cancer (MIBC). In this multicenter single-arm trial (ChiCTR2000037670), 65 participants with cT2-4aN0M0 MIBC received neoadjuvant gemcitabine-cisplatin plus tislelizumab; 57 of them underwent radical cystectomy (RC). The primary endpoint of pathologic complete response (pCR) rate was 50.9% (29/57, 95% confidence interval (CI) 37.3-64.4%) and the pathologic downstaging (secondary endpoint) rate was 75.4% (43/57, 95% CI 62.2-85.9%) in participants undergoing RC. Genomic and transcriptomic analyses revealed three MIBC molecular subtypes (S): S1 (immune-desert) with activated cell-cycle pathway, S2 (immune-excluded) with activated transforming growth factor-β pathway and S3 (immune-inflamed) with upregulated interferon-α and interferon-γ response. Post hoc analysis showed pCR rates of 16% (3/19, S1), 77% (10/13, S2) and 80% (12/15, S3) (P = 0.006). In conclusion, neoadjuvant gemcitabine-cisplatin plus tislelizumab for MIBC was compatible with an enhanced pCR rate.
Collapse
Affiliation(s)
- Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Jinhai Fan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dexin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Jiaju Lyu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Wu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longhao Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyou Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Min
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Luping Yu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Longfei Huang
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Tingting Zhao
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China.
| |
Collapse
|
6
|
Tang J, Wang W, Tang G. ENO2 in progression and treatment of colon adenocarcinoma: integrative bioinformatics analysis on non-apoptotic cell death. Discov Oncol 2024; 15:478. [PMID: 39331182 PMCID: PMC11436658 DOI: 10.1007/s12672-024-01208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common types of cancer. The interconnection between non-apoptotic cell death and COAD has not been adequately addressed. In our study, an integrative bioinformatics analysis was performed to explore non-apoptotic cell death-related biomarkers in COAD. ENO2 was determined as a potent biomarker for prognosis, drug response, immunity, and immunotherapy prediction. We used EdU and RT-qPCR assays to test our hypothesis and investigate how the ENO2 gene may influence or regulate cancer-related processes. ENO2 was expected to be a potential target in COAD.
Collapse
Affiliation(s)
- Jia Tang
- Department of Gastroenterology, The Seventh People's Hospital of Chongqing, Chongqing, 401320, People's Republic of China
| | - Weiqiang Wang
- Department of Gastroenterology, The Seventh People's Hospital of Chongqing, Chongqing, 401320, People's Republic of China
| | - Guangming Tang
- Department of Gastroenterology, The Seventh People's Hospital of Chongqing, Chongqing, 401320, People's Republic of China.
| |
Collapse
|
7
|
Sun J, Liu J, Hou Y, Bao J, Wang T, Liu L, Zhang Y, Zhong R, Sun Z, Ye Y, Liu J. ZFP64 drives glycolysis-mediated stem cell-like properties and tumorigenesis in breast cancer. Biol Direct 2024; 19:83. [PMID: 39294751 PMCID: PMC11409756 DOI: 10.1186/s13062-024-00533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a great clinical challenge because of its aggressiveness and poor prognosis. Zinc Finger Protein 64 (ZFP64), as a transcriptional factor, is responsible for the development and progression of cancers. This study aims to investigate whether ZFP64 regulates stem cell-like properties and tumorigenesis in BC by the glycolytic pathway. RESULTS It was demonstrated that ZFP64 was overexpressed in BC specimens compared to adjacent normal tissues, and patients with high ZFP64 expression had shorter overall survival and disease-free survival. The analysis of the association of ZFP64 expression with clinicopathological characteristics showed that high ZFP64 expression is closely associated with N stage, TNM stage, and progesterone receptor status. Knockdown of ZFP64 suppressed the viability and colony formation capacity of BC cells by CCK8 and colony formation assays. The subcutaneous xenograft models revealed that ZFP64 knockdown reduced the volume of formatted tumors, and decreased Ki67 expression in tumors. The opposite effects on cell proliferation and tumorigenesis were demonstrated by ZFP64 overexpression. Furthermore, we suggested that the stem cell-like properties of BC cells were inhibited by ZFP64 depletion, as evidenced by the decreased size and number of formatted mammospheres, the downregulated expressions of OCT4, Nanog, and SOX2 proteins, as well as the reduced proportion of CD44+/CD24- subpopulations. Mechanistically, glycolysis was revealed to mediate the effect of ZFP64 using mRNA-seq analysis. Results showed that ZFP64 knockdown blocked the glycolytic process, as indicated by decreasing glycolytic metabolites, inhibiting glucose consumption, and reducing lactate and ATP production. As a transcription factor, we identified that ZFP64 was directly bound to the promoters of glycolysis-related genes (ALDOC, ENO2, HK2, and SPAG4), and induced the transcription of these genes by ChIP and dual-luciferase reporter assays. Blocking the glycolytic pathway by the inhibition of glycolytic enzymes ENO2/HK2 suppressed the high proliferation and stem cell-like properties of BC cells induced by ZFP64 overexpression. CONCLUSIONS These data support that ZFP64 promotes stem cell-like properties and tumorigenesis of BC by activating glycolysis in a transcriptional mechanism.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Thyroid Breast Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, People's Republic of China
| | - Jinquan Liu
- Shanxi Datong University, Datong, Shanxi, People's Republic of China
| | - Yudong Hou
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jianheng Bao
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Teng Wang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Longbi Liu
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yidan Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Rui Zhong
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Zhenxuan Sun
- Graduate School, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yan Ye
- Hainan Women and Children's Medical Center, Haikou, Hainan, People's Republic of China
| | - Jintao Liu
- Hainan Women and Children's Medical Center, Haikou, Hainan, People's Republic of China.
| |
Collapse
|
8
|
Wang T, Wang X, Zheng X, Guo Z, Mohsin A, Zhuang Y, Wang G. Overexpression of SLC2A1, ALDOC, and PFKFB4 in the glycolysis pathway drives strong drug resistance in 3D HeLa tumor cell spheroids. Biotechnol J 2024; 19:e2400163. [PMID: 39295558 DOI: 10.1002/biot.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/21/2024]
Abstract
The 3D multicellular tumor spheroid (MTS) model exhibits enhanced fidelity in replicating the tumor microenvironment and demonstrates exceptional resistance to clinical drugs compared to the 2D monolayer model. In this study, we used multiomics (transcriptome, proteomics, and metabolomics) tools to explore the molecular mechanisms and metabolic differences of the two culture models. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways revealed that the differentially expressed genes between the two culture models were mainly enriched in cellular components and biological processes associated with extracellular matrix, extracellular structural organization, and mitochondrial function. An integrated analysis of three omics data revealed 11 possible drug resistance targets. Among these targets, seven genes, AKR1B1, ALDOC, GFPT2, GYS1, LAMB2, PFKFB4, and SLC2A1, exhibited significant upregulation. Conversely, four genes, COA7, DLD, IFNGR1, and QRSL1, were significantly downregulated. Clinical prognostic analysis using the TCGA survival database indicated that high-expression groups of SLC2A1, ALDOC, and PFKFB4 exhibited a significant negative correlation with patient survival. We further validated their involvement in chemotherapy drug resistance, indicating their potential significance in improving prognosis and chemotherapy outcomes. These results provide valuable insights into potential therapeutic targets that can potentially enhance treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xuli Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Zhongfang Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Liu P, Li Q, Tang YF, Cui CY, Liu Q, Zhang Y, Tang B, Lai QC. Multiple algorithms highlight key brain genes driven by multiple anesthetics. Comput Biol Med 2024; 179:108805. [PMID: 38991319 DOI: 10.1016/j.compbiomed.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Anesthesia serves as a pivotal tool in modern medicine, creating a transient state of sensory deprivation to ensure a pain-free surgical or medical intervention. While proficient in alleviating pain, anesthesia significantly modulates brain dynamics, metabolic processes, and neural signaling, thereby impairing typical cognitive functions. Furthermore, anesthesia can induce notable impacts such as memory impairment, decreased cognitive function, and diminished intelligence, emphasizing the imperative need to explore the concealed repercussions of anesthesia on individuals. In this investigation, we aggregated gene expression profiles (GSE64617, GSE141242, GSE161322, GSE175894, and GSE178995) from public repositories following second-generation sequencing analysis of various anesthetics. Through scrutinizing post-anesthesia brain tissue gene expression utilizing Gene Set Enrichment Analysis (GSEA), Robust Rank Aggregation (RRA), and Weighted Gene Co-expression Network Analysis (WGCNA), this research aims to pinpoint pivotal genes, pathways, and regulatory networks linked to anesthesia. This undertaking not only enhances comprehension of the physiological changes brought about by anesthesia but also lays the groundwork for future investigations, cultivating new insights and innovative perspectives in medical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi-Fan Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hejiang Hospital of Traditional Chinese Medicine, Southwest Medical University, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hejiang Hospital of Traditional Chinese Medicine, Southwest Medical University, China.
| | - Bo Tang
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qian-Cheng Lai
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Wang H, Yang Z, Wang S, Zhao A, Wang H, Liu Z, Sui M, Bao L, Zeng Q, Hu J, Bao Z, Huang X. Genome-wide association analysis reveals the genetic basis of thermal tolerance in dwarf surf clam Mulinia lateralis. Genomics 2024; 116:110904. [PMID: 39084476 DOI: 10.1016/j.ygeno.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Recently, elevated seawater temperatures have resulted numerous adverse effects, including significant mortality among bivalves. The dwarf surf clam, Mulinia lateralis, is considered a valuable model species for bivalve research due to its rapid growth and short generation time. The successful cultivation in laboratory setting throughout its entire life cycle makes it an ideal candidate for exploring the potential mechanisms underlying bivalve responses to thermal stress. In this study, a total of 600 clams were subjected to a 17-day thermal stress experiment at a temperature of 30 °C which is the semi-lethal temperature for this species. Ninety individuals who perished initially were classified as heat-sensitive populations (HSP), while 89 individuals who survived the experiment were classified as heat-tolerant populations (HTP). Subsequently, 179 individuals were then sequenced, and 21,292 single nucleotide polymorphisms (SNPs) were genotyped for downstream analysis. The heritability estimate for survival status was found to be 0.375 ± 0.127 suggesting a genetic basis for thermal tolerance trait. Furthermore, a genome-wide association study (GWAS) identified three SNPs and 10 candidate genes associated with thermal tolerance trait in M. lateralis. These candidate genes were involved in the ETHR/EHF signaling pathway and played pivotal role in signal sensory, cell adhesion, oxidative stress, DNA damage repair, etc. Additionally, qPCR results indicated that, excluding MGAT4A, ZAN, and RFC1 genes, all others exhibited significantly higher expression in the HTP (p < 0.05), underscoring the critical involvement of the ETHR/EHF signaling pathway in M. lateralis' thermal tolerance. These results unveil the presence of standing genetic variations associated with thermal tolerance in M. lateralis, highlighting the regulatory role of the ETHR/EHF signaling pathway in the bivalve's response to thermal stress, which contribute to comprehension of the genetic basis of thermal tolerance in bivalves.
Collapse
Affiliation(s)
- Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lijingjing Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Ibello E, Saracino F, Delle Cave D, Buonaiuto S, Amoroso F, Andolfi G, Corona M, Guardiola O, Colonna V, Sainz B, Altucci L, De Cesare D, Cobellis G, Lonardo E, Patriarca EJ, D'Aniello C, Minchiotti G. Three-dimensional environment sensitizes pancreatic cancer cells to the anti-proliferative effect of budesonide by reprogramming energy metabolism. J Exp Clin Cancer Res 2024; 43:165. [PMID: 38877560 PMCID: PMC11177459 DOI: 10.1186/s13046-024-03072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. METHODS We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. RESULTS We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. CONCLUSIONS Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.
Collapse
Affiliation(s)
- Eduardo Ibello
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federica Saracino
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | | | - Silvia Buonaiuto
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Filomena Amoroso
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gennaro Andolfi
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Marco Corona
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Ombretta Guardiola
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC- UAM, Madrid, 28029, Spain
- Cancer, Area 3-Instituto Ramon Y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, 28034, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, 28029, Spain
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Ariano Irpino, Ariano Irpino, AV, 83031, Italy
- IEOS-CNR, Naples, 80100, Italy
- Medical Epigenetics Program, AOU Vanvitelli, Naples, Italy
| | - Dario De Cesare
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | | | - Cristina D'Aniello
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
| | - Gabriella Minchiotti
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
| |
Collapse
|
12
|
Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024; 35:518-532. [PMID: 38212233 DOI: 10.1016/j.tem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials, Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Ascenzi F, Esposito A, Bruschini S, Salvati V, De Vitis C, De Arcangelis V, Ricci G, Catizione A, di Martino S, Buglioni S, Bassi M, Venuta F, De Nicola F, Massacci A, Grassucci I, Pallocca M, Ricci A, Fanciulli M, Ciliberto G, Mancini R. Identification of a set of genes potentially responsible for resistance to ferroptosis in lung adenocarcinoma cancer stem cells. Cell Death Dis 2024; 15:303. [PMID: 38684666 PMCID: PMC11059184 DOI: 10.1038/s41419-024-06667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.
Collapse
Affiliation(s)
- Francesca Ascenzi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Valeria De Arcangelis
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Angiolina Catizione
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Simona di Martino
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Federico Venuta
- Thoracic Surgery Unit, Sapienza University of Rome, Rome, Italy
| | | | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Grassucci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
14
|
Zhang Y, Ji X, Wang Y. ENO2 promotes anoikis resistance in anaplastic thyroid cancer by maintaining redox homeostasis. Gland Surg 2024; 13:209-224. [PMID: 38455357 PMCID: PMC10915417 DOI: 10.21037/gs-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Background Anoikis presents a significant barrier in the metastasis of cancer. As the most aggressive type of thyroid cancer, anaplastic thyroid cancer (ATC) exhibits a high risk of metastasis and is characterized by high mortality. Therefore, investigating the molecular mechanisms of anoikis resistance in ATC is important for devising therapeutic targets in clinical research. Methods Differentially Expressed Genes were screened in ATC cells under attached and detached culture conditions with RNA-seq. Investigate the impact of enolase 2 (ENO2) on apoptosis and spheroid formation by gain and loss of function. Changes of reactive oxygen species (ROS), glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) were detected to assess redox balance. The transcriptional regulatory role of signal transducer and activator of transcription 1 (STAT1) on ENO2 was validated through Dual-Luciferase Reporter Gene Assay. Explore the impact of ENO2 expression on the formation of lung metastases in nude mice. Results We found that the glycolysis process was activated in detached ATC cells. Several genes in the glycolysis process, particularly ENO2, a member of the enolase superfamily was upregulated in ATC cells cultured in suspension. The upregulation of ENO2 enabled the maintenance of redox balance by supplying GSH and NADPH, thereby preventing cells from undergoing anoikis. In terms of mechanism, the expression of STAT1 was enhanced in anoikis resistance cells, which in turn positively regulated the expression of ENO2. In vivo, ENO2-suppressed ATC cells resulted in a significantly lower rate of lung colonization compared to control ATC cells. Conclusions Stable expression of ENO2 and the maintenance of redox balance played a pivotal role in facilitating anoikis resistance of ATC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Ji
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Meng L, Yang J, Gao Y, Cao Q, Jiang S, Xiao Y, Wang H, Liu W, Yuan A, Li Y, Huang H. Biomimetic Nanomedicine Targeting Orchestrated Metabolism Coupled with Regulatory Factors to Disrupt the Metabolic Plasticity of Breast Cancer. ACS NANO 2024; 18:4360-4375. [PMID: 38277483 DOI: 10.1021/acsnano.3c10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Targeting nutrient metabolism has been proposed as an effective therapeutic strategy to combat breast cancer because of its high nutrient requirements. However, metabolic plasticity enables breast cancer cells to survive under unfavorable starvation conditions. The key mammalian target regulators rapamycin (mTOR) and hypoxia-inducible-factor-1 (HIF-1) tightly link the dynamic metabolism of glutamine and glucose to maintain nutrient flux. Blocking nutrient flow also induces autophagy to recycle nutrients in the autophagosome, which exacerbates metastasis and tumor progression. Compared to other common cancers, breast cancer is even more dependent on mTOR and HIF-1 to orchestrate the metabolic network. Therefore, we develop a cascade-boosting integrated nanomedicine to reprogram complementary metabolism coupled with regulators in breast cancer. Glucose oxidase efficiently consumes glucose, while the delivery of rapamycin inside limits the metabolic flux of glutamine and uncouples the feedback regulation of mTOR and HIF-1. The hydroxyl radical generated in a cascade blocks the later phase of autophagy without nutrient recycling. This nanomedicine targeting orchestrated metabolism can disrupt the coordination of glucose, amino acids, nucleotides, lipids, and other metabolic pathways in breast cancer tissues, effectively improving the durable antitumor effect and prognosis of breast cancer. Overall, the cascade-boosting integrated system provides a viable strategy to address cellular plasticity and efficient enzyme delivery.
Collapse
Affiliation(s)
- Lingtong Meng
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jingpeng Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyan Cao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shunjie Jiang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuyang Xiao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Haoran Wang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ahu Yuan
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yanan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - He Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
16
|
Battaglia AM, Sacco A, Vecchio E, Scicchitano S, Petriaggi L, Giorgio E, Bulotta S, Levi S, Faniello CM, Biamonte F, Costanzo F. Iron affects the sphere-forming ability of ovarian cancer cells in non-adherent culture conditions. Front Cell Dev Biol 2023; 11:1272667. [PMID: 38033861 PMCID: PMC10682100 DOI: 10.3389/fcell.2023.1272667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Detachment from the extracellular matrix (ECM) is the first step of the metastatic cascade. It is a regulated process involving interaction between tumor cells and tumor microenvironment (TME). Iron is a key micronutrient within the TME. Here, we explored the role of iron in the ability of ovarian cancer cells to successfully detach from the ECM. Methods: HEY and PEO1 ovarian cancer cells were grown in 3D conditions. To mimic an iron rich TME, culture media were supplemented with 100 μM Fe3+. Cell mortality was evaluated by cytofluorimetric assay. The invasive potential of tumor spheroids was performed in Matrigel and documented with images and time-lapses. Iron metabolism was assessed by analyzing the expression of CD71 and FtH1, and by quantifying the intracellular labile iron pool (LIP) through Calcein-AM cytofluorimetric assay. Ferroptosis was assessed by quantifying mitochondrial reactive oxygen species (ROS) and lipid peroxidation through MitoSOX and BODIPY-C11 cytofluorimetric assays, respectively. Ferroptosis markers GPX4 and VDAC2 were measured by Western blot. FtH1 knockdown was performed by using siRNA. Results: To generate spheroids, HEY and PEO1 cells prevent LIP accumulation by upregulating FtH1. 3D HEY moderately increases FtH1, and LIP is only slightly reduced. 3D PEO1upregulate FtH1 and LIP results significantly diminished. HEY tumor spheroids prevent iron import downregulating CD71, while PEO1 cells strongly enhance it. Intracellular ROS drop down during the 2D to 3D transition in both cell lines, but more significantly in PEO1 cells. Upon iron supplementation, PEO1 cells continue to enhance CD71 and FtH1 without accumulating the LIP and ROS and do not undergo ferroptosis. HEY, instead, accumulate LIP, undergo ferroptosis and attenuate their sphere-forming ability and invasiveness. FtH1 knockdown significantly reduces the generation of PEO1 tumor spheroids, although without sensitizing them to ferroptosis. Discussion: Iron metabolism reprogramming is a key event in the tumor spheroid generation of ovarian cancer cells. An iron-rich environment impairs the sphere-forming ability and causes cell death only in ferroptosis sensitive cells. A better understanding of ferroptosis sensitivity could be useful to develop effective treatments to kill ECM-detached ovarian cancer cells.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Eleonora Vecchio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Scicchitano
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Laboratory of Biochemistry and Biology, Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Sonia Levi
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Concetta Maria Faniello
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
Jiang R, Chen Z, Ni M, Li X, Ying H, Fen J, Wan D, Peng C, Zhou W, Gu L. A traditional gynecological medicine inhibits ovarian cancer progression and eliminates cancer stem cells via the LRPPRC-OXPHOS axis. J Transl Med 2023; 21:504. [PMID: 37496051 PMCID: PMC10373366 DOI: 10.1186/s12967-023-04349-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal malignant gynecological tumor type for which limited therapeutic targets and drugs are available. Enhanced mitochondrial oxidative phosphorylation (OXPHOS), which enables cell growth, migration, and cancer stem cell maintenance, is a critical driver of disease progression and a potential intervention target of OC. However, the current OXPHOS intervention strategy mainly suppresses the activity of the electron transport chain directly and cannot effectively distinguish normal tissues from cancer tissues, resulting in serious side effects and limited efficacy. METHODS We screened natural product libraries to investigate potential anti-OC drugs that target OXPHOS. Additionally, LC-MS, qRT-PCR, western-blot, clonogenic assay, Immunohistochemistry, wound scratch assay, and xenograft model was applied to evaluate the anti-tumor mechanism of small molecules obtained by screening in OC. RESULTS Gossypol acetic acid (GAA), a widely used gynecological medicine, was screened out from the drug library with the function of suppressing OXPHOS and OC progression by targeting the leucine-rich pentatricopeptide repeat containing (LRPPRC) protein. Mechanically, LRPPRC promotes the synthesis of OXPHOS subunits by binding to RNAs encoded by mitochondrial DNA. GAA binds to LRPPRC directly and induces LRPPRC rapid degradation in a ubiquitin-independent manner. LRPPRC was overexpressed in OC, which is highly correlated with the poor outcomes of OC and could promote the malignant phenotype of OC cells in vitro and in vivo. GAA management inhibits cell growth, clonal formation, and cancer stem cell maintenance in vitro, and suppresses subcutaneous graft tumor growth in vivo. CONCLUSIONS Our study identified a therapeutic target and provided a corresponding inhibitor for OXPHOS-based OC therapy. GAA inhibits OC progression by suppressing OXPHOS complex synthesis via targeting LRPPRC protein, supporting its potential utility as a natural therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Ruibin Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xia Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Hangjie Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jianguo Fen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Danying Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chanjuan Peng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, 310022, Hangzhou, People's Republic of China.
| | - Linhui Gu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
18
|
Battaglia AM, Sacco A, Aversa I, Santamaria G, Palmieri C, Botta C, De Stefano R, Bitetto M, Petriaggi L, Giorgio E, Faniello CM, Costanzo F, Biamonte F. Iron-mediated oxidative stress induces PD-L1 expression via activation of c-Myc in lung adenocarcinoma. Front Cell Dev Biol 2023; 11:1208485. [PMID: 37377735 PMCID: PMC10291098 DOI: 10.3389/fcell.2023.1208485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction: The PD-1/PD-L1 axis is hijacked by lung adenocarcinoma (LUAD) cells to escape immune surveillance. PD-L1 expression in LUAD is affected, among others, by the metabolic trafficking between tumor cells and the tumor microenvironment (TME). Methods: Correlation between PD-L1 expression and iron content within the TME was established on FFPE LUAD tissue samples. The effects of an iron rich microenvironment on PD-L1 mRNA and protein levels were assessed in vitro in H460 and A549 LUAD by using qPCR, western blot and flow citometry. c-Myc knockdown was performed to validate the role of this transcription factor on PD-L1 expression. The effects of iron-induced PD-L1 on T cell immune function was assessed by quantifying IFN-γ release in a co-colture system. TCGA dataset was used to analyse the correlation between PD-L1 and CD71 mRNA expression in LUAD patients. Results: In this study, we highlight a significant correlation between iron density within the TME and PD-L1 expression in 16 LUAD tissue specimens. In agreement, we show that a more pronounced innate iron-addicted phenotype, indicated by a higher transferrin receptor CD71 levels, significantly correlates with higher PD-L1 mRNA expression levels in LUAD dataset obtained from TCGA database. In vitro, we demonstrate that the addition of Fe3+ within the culture media promotes the significant overexpression of PD-L1 in A549 and H460 LUAD cells, through the modulation of its gene transcription mediated by c-Myc. The effects of iron lean on its redox activity since PD-L1 up-regulation is counteracted by treatment with the antioxidant compound trolox. When LUAD cells are co-cultured with CD3/CD28-stimulated T cells in an iron-rich culture condition, PD-L1 up-regulation causes the inhibition of T-lymphocytes activity, as demonstrated by the significant reduction of IFN-γ release. Discussion: Overall, in this study we demonstrate that iron abundance within the TME may enhance PD-L1 expression in LUAD and, thus, open the way for the identification of possible combinatorial strategies that take into account the iron levels within the TME to improve the outcomes of LUAD patients treated with anti-PD-1/PD-L1-based therapies.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ilenia Aversa
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Cirino Botta
- Department of Health Promotion, Mother, and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Roberto De Stefano
- Operational Unit of Anatomic Pathology, Annunziata Hospital, Cosenza, Italy
| | - Maurizio Bitetto
- Operational Unit of Thoracic Surgery, Annunziata Hospital, Cosenza, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Concetta Maria Faniello
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Center of Interdepartmental Services (CIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|