1
|
Chaudhary B, Arya P, Sharma V, Kumar P, Singla D, Grewal AS. Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem 2025; 159:108388. [PMID: 40107036 DOI: 10.1016/j.bioorg.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Anti-cancer drug's cytotoxicity is determined by their ability to induce predetermined cell demise, commonly called apoptosis. The cancer-causing cells are able to evade cell death, which has been affiliated with both malignancy as well as resistance to cancer treatments. In order to avoid cell death, cancerous tumour cells often produce an abundance of anti-apoptotic proteins, becoming "dependent" on them. Consequently, protein inhibitors of cell death may prove to be beneficial as pharmacological targets for the future creation of cancer therapies. This article examines the molecular routes of apoptosis, its clinical manifestations, anti-cancer therapy options that target the intrinsic mechanism of apoptosis, proteins that prevent cell death, and members of the B-lymphoma-2 subset. In addition, novel approaches to cell death are highlighted, including how curcumin mitigates chemotherapy-induced apoptosis in healthy tissues and the various ways melatonin modifies apoptosis to improve cancer treatment efficacy, particularly through the TNF superfamily. Cancer treatment-induced increases in anti-apoptotic proteins lead to drug resistance; yet, ligands that trigger cell death by inhibiting these proteins are expected to improve chemotherapy's efficacy. The potential of frequency-modulated dietary phytochemicals as a cancer therapeutic pathway, including autophagy and apoptosis, is also explored. This approach may be more efficient than inhibition alone in overcoming drug resistance. Consequently, this method has the potential to allow for lower medication concentrations, reducing cytotoxicity and unwanted side effects.
Collapse
Affiliation(s)
- Benu Chaudhary
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Preeti Arya
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Parveen Kumar
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Deepak Singla
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | | |
Collapse
|
2
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
3
|
Boroujeni AF, Ates-Alagoz Z. Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family. Anticancer Agents Med Chem 2025; 25:164-178. [PMID: 39313901 DOI: 10.2174/0118715206320224240910054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
Collapse
Affiliation(s)
- Ali Farhang Boroujeni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Del Bufalo D, Damia G. Overview of BH3 mimetics in ovarian cancer. Cancer Treat Rev 2024; 129:102771. [PMID: 38875743 DOI: 10.1016/j.ctrv.2024.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Ovarian carcinoma is the leading cause of gynecological cancer-related death, still with a dismal five-year prognosis, mainly due to late diagnosis and the emergence of resistance to cytotoxic and targeted agents. Bcl-2 family proteins have a key role in apoptosis and are associated with tumor development/progression and response to therapy in different cancer types, including ovarian carcinoma. In tumors, evasion of apoptosis is a possible mechanism of resistance to therapy. BH3 mimetics are small molecules that occupy the hydrophobic pocket on pro-survival proteins, allowing the induction of apoptosis, and are currently under study as single agents and/or in combination with cytotoxic and targeted agents in solid tumors. Here, we discuss recent advances in targeting anti-apoptotic proteins of the Bcl-2 family for the treatment of ovarian cancer, focusing on BH3 mimetics, and how these approaches could potentially offer an alternative/complementary way to treat patients and overcome or delay resistance to current treatments.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy.
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy.
| |
Collapse
|
5
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
6
|
Tang J, Yao F, Yao Z, Xing XL. Characterization of tumor microenvironment and sensitive chemotherapy drugs based on cuproptosis-related signatures in renal cell carcinoma. Aging (Albany NY) 2023; 15:9695-9717. [PMID: 37728407 PMCID: PMC10564438 DOI: 10.18632/aging.205043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Cuproptosis is a novel type of copper-induced cell death and is considered as a new therapeutic target for many cancers. Distant metastases occur in about 40% of patients with advanced renal cell carcinoma (RCC), with a poor 5-year prognosis of about 10%. Through a series of comprehensive analyses, four differentially expressed cuproptosis-related lncRNAs (DECRLs) were identified as candidate biomarkers for RCC. The risk model constructed by using these four DECRLs can better predict the prognosis of patients with RCC, which is determined by the receiver operating characteristic (Time dependent area under curve value at 1-year, 3-year, 5-year, and 10-year were 0.82, 0.80, 0.76, and 0.73 respectively). There were significant differences in immune status between high-risk and low-risk RCC patients. The differentially expressed gene enrichment terms between high- and low-risk patients was also dominated by immune-related terms. The risk score was also correlated with immunotherapy as measured by the tumor immune dysfunction and exclusion (TIDE) score. In addition, we also found that the sensitivity of many chemotherapy drugs varies widely between high- and low-risk patients. The sensitivity of the three chemotherapy drugs (AZD4547, Vincristine, and WEHI-539) varied among high- and low-risk patients, and was significantly negatively correlated with risk values, suggesting that they could be used as clinical treatment drugs for RCC. Our study not only obtained four potential biomarkers, but also provided guidance for immunotherapy and chemotherapy treatment of RCC, as well as new research strategies for the screening of other cancer biomarkers and sensitive drugs.
Collapse
Affiliation(s)
- Jiefu Tang
- The First Affiliated Hospital of Hunan University of Medicine, School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, P.R. China
| | - Fan Yao
- The First Affiliated Hospital of Hunan University of Medicine, School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, P.R. China
| | - Zhiyong Yao
- The First Affiliated Hospital of Hunan University of Medicine, School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, P.R. China
| | - Xiao-Liang Xing
- The First Affiliated Hospital of Hunan University of Medicine, School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, P.R. China
| |
Collapse
|
7
|
Abstract
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.
Collapse
Affiliation(s)
- Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
9
|
Puglisi M, Molife LR, de Jonge MJ, Khan KH, Doorn LV, Forster MD, Blanco M, Gutierrez M, Franklin C, Busman T, Yang J, Eskens FA. A Phase I study of the safety, pharmacokinetics and efficacy of navitoclax plus docetaxel in patients with advanced solid tumors. Future Oncol 2021; 17:2747-2758. [PMID: 33849298 DOI: 10.2217/fon-2021-0140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: This Phase I study investigated safety of navitoclax and docetaxel in patients (n = 41) with advanced solid tumors. Patients & methods: Two navitoclax plus docetaxel dosing schedules (21 and 28 days) were evaluated. Maximum tolerated dose, dose-limiting toxicities and preliminary antitumor activity were assessed. Results: Ten (24%) patients experienced dose-limiting toxicities; dose-escalation cohorts: n = 7 (21-day schedule: n = 5; 28-day schedule: n = 2) and 21-day expanded safety cohort: n = 3. Navitoclax 150-mg days 1-5 every 21 days with docetaxel 75 mg/m2 day 1 was the maximum tolerated dose and optimal schedule. Adverse events included thrombocytopenia (63%), fatigue (61%), nausea (59%) and neutropenia (51%). Four confirmed partial responses occurred. Conclusion: Navitoclax 150-mg orally once/day was safely administered with docetaxel. Myelosuppression limited dose escalation; antitumor activity was observed. Clinical trial registration: NCT00888108 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Martina Puglisi
- Drug Development Unit, Institute of Cancer Research/The Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - L Rhoda Molife
- Drug Development Unit, Institute of Cancer Research/The Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Maja Ja de Jonge
- Department of Medical Oncology, Erasmus MC Cancer Institute, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Khurum H Khan
- UCL Cancer Institute, University College London Hospital, Gower Street, London, WC1E 6BT, UK
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Martin D Forster
- UCL Cancer Institute, University College London Hospital, Gower Street, London, WC1E 6BT, UK
| | - Montserrat Blanco
- Drug Development Unit, Institute of Cancer Research/The Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Martin Gutierrez
- John Theurer Cancer Center, Hackensack University Medical Center, 92 2nd St, Hackensack, NJ 07601, USA
| | | | - Todd Busman
- AbbVie, Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Jianning Yang
- AbbVie, Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Ferry Alm Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
10
|
Yuan J, Lan H, Jiang X, Zeng D, Xiao S. Bcl‑2 family: Novel insight into individualized therapy for ovarian cancer (Review). Int J Mol Med 2020; 46:1255-1265. [PMID: 32945348 PMCID: PMC7447322 DOI: 10.3892/ijmm.2020.4689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance to platinum‑based chemotherapy for ovarian cancer in the advanced stage remains a formidable concern clinically. Increasing evidence has revealed that apoptosis represents the terminal events of the anti‑tumor mechanisms of a number of chemical drugs and has a close association with chemoresistance in ovarian cancer. The B‑cell lymphoma‑2 (Bcl‑2) family plays a crucial role in apoptosis and has a close association with chemoresistance in ovarian cancer. Some drugs that target Bcl‑2 family members have shown efficacy in overcoming the chemoresistance of ovarian cancer. A BH3 profiling assay was found to be able to predict how primed a cell is when treated with antitumor drugs. The present review summarizes the role of the Bcl‑2 family in mediating cell death in response to antitumor drugs and novel drugs that target Bcl‑2 family members. The application of the new functional assay, BH3 profiling, is also discussed herein. Furthermore, the present review presents the hypothesis that targeting Bcl‑2 family members may prove to be helpful for the individualized therapy of ovarian cancer in clinical practice and in laboratory research.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Da Zeng
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
11
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Wang J, Li S, Lin S, Fu S, Qiu L, Ding K, Liang K, Du H. B-cell lymphoma 2 family genes show a molecular pattern of spatiotemporal heterogeneity in gynaecologic and breast cancer. Cell Prolif 2020; 53:e12826. [PMID: 32419250 PMCID: PMC7309952 DOI: 10.1111/cpr.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives BCL2 family proteins have been widely studied over the past decade due to their essential roles in apoptosis, oncogenesis and anti‐cancer therapy. However, the similarities and differences in the spatial pattern of the BCL2 gene family within the context of chromatin have not been well characterized. We sought to fill this knowledge gap by assessing correlations between gene alteration, gene expression, chromatin accessibility, and clinical outcomes in gynaecologic and breast cancer. Materials and methods In this study, the molecular characteristics of the BCL2 gene family in gynaecologic cancer were systematically analysed by integrating multi‐omics datasets, including transcriptomics, chromatin accessibility, copy number variation, methylomics and clinical outcome. Results We evaluated spatiotemporal associations between long‐range regulation peaks and tumour heterogeneity. Differential expression of the BCL2 family was coupled with widespread chromatin accessibility changes in gynaecologic cancer, accompanied by highly heterogeneous distal non‐coding accessibility surrounding the BCL2L1 gene loci. A relationship was also identified between gene expression, gene amplification, enhancer signatures, DNA methylation and overall patient survival. Prognostic analysis implied clinical correlations with BAD, BIK and BAK1. A shared protein regulatory network was established in which the co‐mutation signature of TP53 and PIK3CA was linked to the BCL2L1 gene. Conclusions Our results provide the first systematic identification of the molecular features of the BCL2 family under the spatial pattern of chromatin in gynaecologic and breast cancer. These findings broaden the therapeutic scope of the BCL2 family to the non‐coding region by including a significantly conserved distal region overlaying an enhancer.
Collapse
Affiliation(s)
- Jiajian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Sidi Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Stover EH, Baco MB, Cohen O, Li YY, Christie EL, Bagul M, Goodale A, Lee Y, Pantel S, Rees MG, Wei G, Presser AG, Gelbard MK, Zhang W, Zervantonakis IK, Bhola PD, Ryan J, Guerriero JL, Montero J, Liang FJ, Cherniack AD, Piccioni F, Matulonis UA, Bowtell DDL, Sarosiek KA, Letai A, Garraway LA, Johannessen CM, Meyerson M. Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Mol Cancer Res 2019; 17:2281-2293. [PMID: 31462500 DOI: 10.1158/1541-7786.mcr-18-1243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/07/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is often sensitive to initial treatment with platinum and taxane combination chemotherapy, but most patients relapse with chemotherapy-resistant disease. To systematically identify genes modulating chemotherapy response, we performed pooled functional genomic screens in HGSOC cell lines treated with cisplatin, paclitaxel, or cisplatin plus paclitaxel. Genes in the intrinsic pathway of apoptosis were among the top candidate resistance genes in both gain-of-function and loss-of-function screens. In an open reading frame overexpression screen, followed by a mini-pool secondary screen, anti-apoptotic genes including BCL2L1 (BCL-XL) and BCL2L2 (BCL-W) were associated with chemotherapy resistance. In a CRISPR-Cas9 knockout screen, loss of BCL2L1 decreased cell survival whereas loss of proapoptotic genes promoted resistance. To dissect the role of individual anti-apoptotic proteins in HGSOC chemotherapy response, we evaluated overexpression or inhibition of BCL-2, BCL-XL, BCL-W, and MCL1 in HGSOC cell lines. Overexpression of anti-apoptotic proteins decreased apoptosis and modestly increased cell viability upon cisplatin or paclitaxel treatment. Conversely, specific inhibitors of BCL-XL, MCL1, or BCL-XL/BCL-2, but not BCL-2 alone, enhanced cell death when combined with cisplatin or paclitaxel. Anti-apoptotic protein inhibitors also sensitized HGSOC cells to the poly (ADP-ribose) polymerase inhibitor olaparib. These unbiased screens highlight anti-apoptotic proteins as mediators of chemotherapy resistance in HGSOC, and support inhibition of BCL-XL and MCL1, alone or combined with chemotherapy or targeted agents, in treatment of primary and recurrent HGSOC. IMPLICATIONS: Anti-apoptotic proteins modulate drug resistance in ovarian cancer, and inhibitors of BCL-XL or MCL1 promote cell death in combination with chemotherapy.
Collapse
Affiliation(s)
- Elizabeth H Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Maria B Baco
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ofir Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Mukta Bagul
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Amy Goodale
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yenarae Lee
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sasha Pantel
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matthew G Rees
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Guo Wei
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Maya K Gelbard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Weiqun Zhang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer L Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joan Montero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Felice J Liang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Cory M Johannessen
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
14
|
Lu P, Bowman KER, Brown SM, Joklik-Mcleod M, Mause ERV, Nguyen HTN, Lim CS. p53-Bad: A Novel Tumor Suppressor/Proapoptotic Factor Hybrid Directed to the Mitochondria for Ovarian Cancer Gene Therapy. Mol Pharm 2019; 16:3386-3398. [PMID: 31241338 PMCID: PMC10760809 DOI: 10.1021/acs.molpharmaceut.9b00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clinical trials involving p53 gene therapy for ovarian cancer failed due to the dominant negative inhibition of wild-type p53 and multiple genetic aberrations in ovarian cancer. To overcome this problem, we have designed a more potent chimeric gene fusion, called p53-Bad, that combines p53 with the mitochondrial pro-apoptotic factor Bad. Unlike wild-type p53, which acts as a nuclear transcription factor, this novel p53-Bad construct has multiple unique mechanisms of action including a direct and rapid apoptotic effect at the mitochondria. The mitochondrial localization, transcription activity, and apoptotic activity of the constructs were tested. The results suggest that p53 can be effectively targeted to the mitochondria by controlling the phosphorylation of pro-apoptotic Bad, which can only localize to the mitochondria when Ser-112 and Ser-136 of Bad are unphosphorylated. By introducing S112A and S136A mutations, p53-Bad fusion cannot be phosphorylated at these two sites and always localizes to the mitochondria. p53-Bad constructs also have superior activity over p53 and Bad alone. The apoptotic activity is consistent in many ovarian cancer cell lines regardless of the endogenous p53 status. Both p53 and the BH3 domain of Bad contribute to the superior activity of p53-Bad. Our data suggests that p53-Bad fusions are capable of inducing apoptosis and should be further pursued for gene therapy for ovarian cancer.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Katherine E. Redd Bowman
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah M. Brown
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Madeline Joklik-Mcleod
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Erica R. Vander Mause
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Han T. N. Nguyen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Screening a library of approved drugs reveals that prednisolone synergizes with pitavastatin to induce ovarian cancer cell death. Sci Rep 2019; 9:9632. [PMID: 31270377 PMCID: PMC6610640 DOI: 10.1038/s41598-019-46102-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
The survival rate for patients with ovarian cancer has changed little in the past three decades since the introduction of platinum-based chemotherapy and new drugs are needed. Statins are drugs used for the treatment and prevention of cardiovascular diseases. Recent work from our laboratory has shown that pitavastatin has potential as a treatment for ovarian cancer if dietary geranylgeraniol is controlled. However, relatively high doses of statins are required to induce apoptosis in cancer cells, increasing the risk of myopathy, the most common adverse effect associated with statins. This makes it desirable to identify drugs which reduce the dose of pitavastatin necessary to treat cancer. A drug-repositioning strategy was employed to identify suitable candidates. Screening a custom library of 100 off-patent drugs for synergistic activity with pitavastatin identified prednisolone as the most prominent hit. Prednisolone potentiated the activity of pitavastatin in several assays measuring the growth, survival or apoptosis in several ovarian cancer cells lines. Prednisolone, alone or in some cases in combination with pitavastatin, reduced the expression of genes encoding enzymes in the mevalonate pathway, providing a mechanistic explanation for the synergy.
Collapse
|
16
|
Lucantoni F, Lindner AU, O'Donovan N, Düssmann H, Prehn JHM. Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis 2018; 9:42. [PMID: 29352235 PMCID: PMC5833806 DOI: 10.1038/s41419-017-0039-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive form of breast cancer which accounts for 15-20% of this disease and is currently treated with genotoxic chemotherapy. The BCL2 (B-cell lymphoma 2) family of proteins controls the process of mitochondrial outer membrane permeabilization (MOMP), which is required for the activation of the mitochondrial apoptosis pathway in response to genotoxic agents. We previously developed a deterministic systems model of BCL2 protein interactions, DR_MOMP that calculates the sensitivity of cells to undergo mitochondrial apoptosis. Here we determined whether DR_MOMP predicts responses of TNBC cells to genotoxic agents and the re-sensitization of resistant cells by BCL2 inhibitors. Using absolute protein levels of BAX, BAK, BCL2, BCL(X)L and MCL1 as input for DR_MOMP, we found a strong correlation between model predictions and responses of a panel of TNBC cells to 24 and 48 h cisplatin (R2 = 0.96 and 0.95, respectively) and paclitaxel treatments (R2 = 0.94 and 0.95, respectively). This outperformed single protein correlations (best performer BCL(X)L with R2 of 0.69 and 0.50 for cisplatin and paclitaxel treatments, respectively) and BCL2 proteins ratio (R2 of 0.50 for cisplatin and 0.49 for paclitaxel). Next we performed synergy studies using the BCL2 selective antagonist Venetoclax /ABT199, the BCL(X)L selective antagonist WEHI-539, or the MCL1 selective antagonist A-1210477 in combination with cisplatin. In silico predictions by DR_MOMP revealed substantial differences in treatment responses of BCL(X)L, BCL2 or MCL1 inhibitors combinations with cisplatin that were successfully validated in cell lines. Our findings provide evidence that DR_MOMP predicts responses of TNBC cells to genotoxic therapy, and can aid in the choice of the optimal BCL2 protein antagonist for combination treatments of resistant cells.
Collapse
Affiliation(s)
- Federico Lucantoni
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Andreas U Lindner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, 9, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, 2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, 2, Ireland.
| |
Collapse
|
17
|
De Wolf E, De Wolf C, Richardson A. ABT-737 and pictilisib synergistically enhance pitavastatin-induced apoptosis in ovarian cancer cells. Oncol Lett 2017; 15:1979-1984. [PMID: 29434898 DOI: 10.3892/ol.2017.7516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
There is considerable interest in redeploying drugs for use in combination with other oncology therapeutics. The single-agent activity of statins in ovarian cancer has been widely reported, however the drug concentration required to cause cell death is considerably higher than that achieved in patients receiving statin treatment for hypercholesterolemia. Unfortunately, statins can cause myopathy when administered in high doses. One solution to this is to identify drugs that could be used in combination with statins to reduce the dose required and those that may potentially reduce the incidence of adverse side effects. When the BH3 mimetic ABT-737, or the phosphatidylinositol 3-kinase inhibitor pictilisib, were combined with pitavastatin in cell growth assays using Ovcar-3 and Igrov-1 cells, the drug combinations were more effective than pitavastatin alone. In support of this, ABT-737 or pictilisib markedly increased cell death induced by pitavastatin in several ovarian cancer cell lines. The drugs were also synergistic in apoptosis assays. These observations suggested that either BH3 mimetics or pictilisib in combination with pitavastatin could be used in a subset of ovarian tumours, particularly those sensitive to BH3 mimetics, and phosphatase and tensin homolog inhibition, in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth De Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent ST4 7QB, UK
| | - Christopher De Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent ST4 7QB, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent ST4 7QB, UK.,School of Pharmacy, Keele University, Stoke-on-Trent ST5 5BG, UK
| |
Collapse
|
18
|
Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients. Blood 2017; 130:2073-2083. [PMID: 28972015 DOI: 10.1182/blood-2017-06-792150] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
The presence and degree of peripheral blood involvement in patients with cutaneous T-cell lymphoma (CTCL) portend a worse clinical outcome. Available systemic therapies for CTCL may variably decrease tumor burden and improve quality of life, but offer limited effects on survival; thus, novel approaches to the treatment of advanced stages of this non-Hodgkin lymphoma are clearly warranted. Mutational analyses of CTCL patient peripheral blood malignant cell samples suggested the antiapoptotic mediator B-cell lymphoma 2 (BCL2) as a potential therapeutic target. To test this, we developed a screening assay for evaluating the sensitivity of CTCL cells to targeted molecular agents, and compared a novel BCL2 inhibitor, venetoclax, alone and in combination with a histone deacetylase (HDAC) inhibitor, vorinostat or romidepsin. Peripheral blood CTCL malignant cells were isolated from 25 patients and exposed ex vivo to the 3 drugs alone and in combination, and comparisons were made to 4 CTCL cell lines (Hut78, Sez4, HH, MyLa). The majority of CTCL patient samples were sensitive to venetoclax, and BCL2 expression levels were negatively correlated (r = -0.52; P =018) to 50% inhibitory concentration values. Furthermore, this anti-BCL2 effect was markedly potentiated by concurrent HDAC inhibition with 93% of samples treated with venetoclax and vorinostat and 73% of samples treated with venetoclax and romidepsin showing synergistic effects. These data strongly suggest that concurrent BCL2 and HDAC inhibition may offer synergy in the treatment of patients with advanced CTCL. By using combination therapies and correlating response to gene expression in this way, we hope to achieve more effective and personalized treatments for CTCL.
Collapse
|
19
|
Abstract
The BCL2-selective BH3 mimetic venetoclax was recently approved for the treatment of relapsed, chromosome 17p-deleted chronic lymphocytic leukemia (CLL) and is undergoing extensive testing, alone and in combination, in lymphomas, acute leukemias, and solid tumors. Here we summarize recent advances in understanding of the biology of BCL2 family members that shed light on the action of BH3 mimetics, review preclinical and clinical studies leading to the regulatory approval of venetoclax, and discuss future investigation of this new class of antineoplastic agent.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Medical Physics and Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - X Wei Meng
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Division of Oncology Research , Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|