1
|
Arranz-Ledo M, Infante M, Lastra E, Olaverri A, Orozco M, Mateo LC, Martínez N, Hernández L, Durán M. Genetic Features of Tumours Arising in the Context of Suspected Hereditary Cancer Syndromes with RAD50, RAD51C/D, and BRIP1 Germline Mutations, Results of NGS-Reanalysis of BRCA/MMR-Negative Families. Genes (Basel) 2025; 16:458. [PMID: 40282418 PMCID: PMC12026886 DOI: 10.3390/genes16040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Despite the well-established role of the BRCA and mismatch repair (MMR) genes in DNA damage repair pathways, a substantial proportion of familial cancer cases still lack pathogenic variants in those genes. Next Generation Sequencing (NGS) panels have emerged as a powerful tool to identify hereditary cancer at-risk individuals and subsequently provide them with accurate management. MATERIALS AND METHODS Families harbouring PVs in RAD50, RAD51C, RAD51D, and BRIP1 were identified by analysing a cancer-predisposing genes panel using Ion S5 system technology. A retrospective cohort of 155 families tested only for the BRCAs of MMR genes were reanalysed, prompted by an increase in familial cases or new cancer diagnoses among index cases. RESULTS We identified 40 families through molecular reanalysis (33 with Hereditary Breast and Ovarian Cancer (HBOC) and 7 with Lynch Syndrome (LS)), with positive test results among 155 families lacking BRCA or MMR mutations. The most frequently mutated genes after ATM and CHEK2 were BRIP1, RAD51D, and RAD51C with 16, 13, and 9 positive families, respectively. The phenotype-genotype correlations not only revealed ovarian and HER-negative breast cancer predispositions but also other cancer types, particularly lung and gastric, and individuals with a second or third distinct cancer episode. CONCLUSIONS Broader ranges of malignancies, including gastric, lung, and bladder, have been identified among BRIP1, RAD51D, and RAD51C positive families. The results generated using NGS provide a comprehensive genetic landscape in each patient that could explain the diversity of phenotypes shown in PV families that, combined with non-genetic factors, might enable accurate surveillance and personalized treatments. NGS reanalysis doubled our diagnostic yield and was a good strategy to identify hereditary cancer families that would otherwise be overlooked.
Collapse
Affiliation(s)
- Mónica Arranz-Ledo
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-Spanish National Research Council (UVa-CSIC), C/Sanz y Forés 3, 47003 Valladolid, Spain; (M.A.-L.); (N.M.); (L.H.); (M.D.)
| | - Mar Infante
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-Spanish National Research Council (UVa-CSIC), C/Sanz y Forés 3, 47003 Valladolid, Spain; (M.A.-L.); (N.M.); (L.H.); (M.D.)
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, 09006 Burgos, Spain;
| | - Amaya Olaverri
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (A.O.); (M.O.); (L.C.M.)
| | - Marta Orozco
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (A.O.); (M.O.); (L.C.M.)
| | - Lucia C. Mateo
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (A.O.); (M.O.); (L.C.M.)
| | - Noemí Martínez
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-Spanish National Research Council (UVa-CSIC), C/Sanz y Forés 3, 47003 Valladolid, Spain; (M.A.-L.); (N.M.); (L.H.); (M.D.)
| | - Lara Hernández
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-Spanish National Research Council (UVa-CSIC), C/Sanz y Forés 3, 47003 Valladolid, Spain; (M.A.-L.); (N.M.); (L.H.); (M.D.)
| | - Mercedes Durán
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-Spanish National Research Council (UVa-CSIC), C/Sanz y Forés 3, 47003 Valladolid, Spain; (M.A.-L.); (N.M.); (L.H.); (M.D.)
| |
Collapse
|
2
|
Goldfeld EI, Kelly BE, Ring KL. What About the Others? Clinical Management of Gynecologic Cancer Risk in Patients With Moderate-Risk Hereditary Cancer Genes ( ATM , BRIP1 , RAD51C , RAD51D , and PALB2 ). Clin Obstet Gynecol 2024; 67:696-701. [PMID: 39324947 DOI: 10.1097/grf.0000000000000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hereditary cancer syndromes associated with gynecologic malignancies account for up to 18% of all cases of ovarian, uterine, and cervical cancers, and identification of these syndromes has implications for cancer screening and risk reduction techniques in affected patients. The associated cancer risks with moderate-penetrance genes are rapidly evolving and present variable risks for the provider counseling the patient. In this review, we detail the cancer risk and management of patients with germline PV in the moderate-risk hereditary cancer genes ATM , BRIP1 , RAD51C , RAD51D , and PALB2 .
Collapse
Affiliation(s)
- Ester I Goldfeld
- Department of Obstetrics and Gynecology, University of Virginia Health System, Charlottesville, Virginia
| | | | | |
Collapse
|
3
|
Witjes VM, Hermkens DMA, Swillens JEM, Smolders YHCM, Mourits MJE, Ausems MGEM, de Hullu JA, Ligtenberg MJL, Hoogerbrugge N. Optimizing the detection of hereditary predisposition in women with epithelial ovarian cancer: nationwide implementation of the Tumor-First workflow. Fam Cancer 2024; 23:429-436. [PMID: 38811422 PMCID: PMC11512879 DOI: 10.1007/s10689-024-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Genetic testing in patients with ovarian carcinoma (OC) is crucial, as around 10-15% of these women have a genetic predisposition to OC. Although guidelines have recommended universal germline testing for all patients with OC for a decade, implementation has proved challenging, thus resulting in low germline-testing rates (around 30-50%). Many new initiatives to improve genetic-testing rates have emerged, but most have been carried out at the local level, leading to differences in workflows within and between countries. We present an example of a nationwide implementation project that has successfully led to a uniform, high-quality genetic-testing workflow for women with OC. Nationwide multidisciplinary meetings generated consensus on the preferred workflow for OC genetic testing: the "Tumor-First" workflow. This workflow means starting by testing the tumor DNA for the presence of pathogenic variants in OC-risk genes, thus providing a prescreen to germline testing while yielding information on the effectiveness of treatment with PARP inhibitors. This new workflow efficiently stratifies genetic counseling and germline testing and reduces healthcare costs. Although challenging, the nationwide implementation of this workflow was successful, resulting in tumor-DNA testing rates exceeding 80%. In this article, we present our structured implementation approach, illustrate our implementation strategies-which were tailored to identified factors important to implementation-and share the lessons learned from the Tumor-First implementation project. This knowledge could facilitate the future implementation of workflows aimed at optimizing the recognition of hereditary cancers.
Collapse
Affiliation(s)
- Vera M Witjes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien M A Hermkens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julie E M Swillens
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvonne H C M Smolders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marian J E Mourits
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanne A de Hullu
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Llinares-Burguet I, Sanoguera-Miralles L, Valenzuela-Palomo A, García-Álvarez A, Bueno-Martínez E, Velasco-Sampedro EA. Splicing Dysregulation of Non-Canonical GC-5' Splice Sites of Breast Cancer Susceptibility Genes ATM and PALB2. Cancers (Basel) 2024; 16:3562. [PMID: 39518003 PMCID: PMC11545216 DOI: 10.3390/cancers16213562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The non-canonical GC-5' splice sites (5'ss) are the most common exception (~1%) to the classical GT/AG splicing rule. They constitute weak 5'ss and can be regulated by splicing factors, so they are especially sensitive to genetic variations inducing the misrecognition of their respective exons. We aimed to investigate the GC-5'ss of the breast/ovarian cancer susceptibility genes, ATM (exon 50), BRIP1 (exon 1), and PALB2 (exon 12), and their dysregulation induced by DNA variants. Methods: Splicing assays of the minigenes, mgATM_49-52, mgBRIP1_1-2, and mgPALB2_5-12, were conducted to study the regulation of the indicated GC-5'ss. Results: A functional map of the splicing regulatory elements (SRE) formed by overlapping exonic microdeletions revealed three essential intervals, ATM c.7335_7344del, PALB2 c.3229_3258del, and c.3293_3322del, which are likely targets for spliceogenic SRE-variants. We then selected 14 ATM and 9 PALB2 variants (Hexplorer score < -40) located at these intervals that were assayed in MCF-7 cells. Nine ATM and three PALB2 variants affected splicing, impairing the recognition of exons 50 and 12, respectively. Therefore, these variants likely disrupt the active SREs involved in the inclusion of both exons in the mature mRNA. DeepCLIP predictions suggested the participation of several splicing factors in exon recognition, including SRSF1, SRSF2, and SRSF7, involved in the recognition of other GC sites. The ATM spliceogenic variants c.7336G>T (p.(Glu2446Ter)) and c.7340T>A (p.(Leu2447Ter)) produced significant amounts of full-length transcripts (55-59%), which include premature termination stop codons, so they would inactivate ATM through both splicing disruption and protein truncation mechanisms. Conclusions: ATM exon 50 and PALB2 exon 12 require specific sequences for efficient recognition by the splicing machinery. The mapping of SRE-rich intervals in minigenes is a valuable approach for the identification of spliceogenic variants that outperforms any prediction software. Indeed, 12 spliceogenic SRE-variants were identified in the critical intervals.
Collapse
Affiliation(s)
| | | | | | | | | | - Eladio A. Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM) de Valladolid, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), 47003 Valladolid, Spain; (I.L.-B.); (L.S.-M.); (A.V.-P.); (A.G.-Á.); (E.B.-M.)
| |
Collapse
|
5
|
Ahmed I, Anwar S, Akram MA, Zeb U, Bharadwaj A, Zia R, Usman MA, Almutairi SM, Al Farraj DA, Aljarba NH, Alkhateeb MA, Alshammeri AF. Exploration of BRCA1 and BRCA2 mutations in gastric cancer patients through next generation sequencing: implications for diagnosis and therapy. Am J Transl Res 2024; 16:5357-5370. [PMID: 39544817 PMCID: PMC11558441 DOI: 10.62347/kjyy7691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/02/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES The study aims to characterize BRCA1/2 mutations in Pakistani gastric cancer (GC) patients, identifying unique pathogenic variants and evaluating their potential as diagnostic biomarkers, while also exploring therapeutic avenues for personalized treatment strategies. METHODOLOGY In this study, we investigated the role of Breast Cancer gene 1 (BRCA1) and Breast Cancer gene 2 (BRCA2) mutations in Pakistani GC patients and their functional implications using Next-Generation Sequencing (NGS). RESULTS Through NGS, we identified a total of 19 mutations in BRCA1 and 11 mutations in BRCA2, all with high mutation quality scores. In silico analysis revealed one pathogenic mutation in BRCA1 and one in BRCA2, indicating a potential link to disease development. Notably, two pathogenic mutations (BRCA1 p.Ala1823Ser and BRCA2 p.Gln92fs) were exclusively observed in the Pakistani GC population, suggesting unique genetic markers. Further examination utilizing The Cancer Genome Atlas (TCGA) data confirmed the absence of these mutations in non-Pakistani GC samples, emphasizing their specificity. Sanger sequencing validated these findings. Real Time Quantitative PCR (RT-qPCR) analysis indicated significantly decreased BRCA1/2 gene expression in samples harboring pathogenic mutations, suggesting their potential as biomarkers for GC diagnosis. Immunohistochemistry corroborated this by showing reduced protein expression levels in mutated samples. Enrichment analysis highlighted associations of BRCA1/2 genes with DNA damage response pathways and cancer-related processes. DrugBank exploration revealed potential therapeutic agents targeting mutated BRCA1/2, such as Cisplatin and Estradiol, offering new avenues for treatment. CONCLUSION Our study identifies novel BRCA1/2 mutations specific to Pakistani GC patients, suggesting a distinct genetic susceptibility profile. These findings not only contribute to understanding GC pathogenesis but also hold implications for personalized treatment strategies in this population.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture UniversityRawalpindi 46000, Pakistan
- Metropole Laboratories (Private) LimitedIslamabad 44000, Pakistan
| | - Sania Anwar
- Department of Chemistry, University of LahoreLahore 5400, Pakistan
| | - Muhammad Aitzaz Akram
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture UniversityRawalpindi 46000, Pakistan
| | - Usman Zeb
- Department of Biotechnology, Institute of Biotechnology and Genetic Engineering, The University of AgriculturePeshawar 25130, Pakistan
| | - Alok Bharadwaj
- Department of Biotechnology, GLA UniversityMathura 281406, UP, India
| | - Rabeea Zia
- Pakistan Kidney and Liver Institute and Research CenterLahore 54000, Pakistan
| | - Muhammad Asadullah Usman
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture UniversityRawalpindi 46000, Pakistan
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Nada H Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman UniversityP.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mariam Abdulaziz Alkhateeb
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman UniversityP.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
6
|
Olvera-León R, Zhang F, Offord V, Zhao Y, Tan HK, Gupta P, Pal T, Robles-Espinoza CD, Arriaga-González FG, Matsuyama LSAS, Delage E, Dicks E, Ezquina S, Rowlands CF, Turnbull C, Pharoah P, Perry JRB, Jasin M, Waters AJ, Adams DJ. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 2024; 187:5719-5734.e19. [PMID: 39299233 DOI: 10.1016/j.cell.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Pathogenic variants in RAD51C confer an elevated risk of breast and ovarian cancer, while individuals homozygous for specific RAD51C alleles may develop Fanconi anemia. Using saturation genome editing (SGE), we functionally assess 9,188 unique variants, including >99.5% of all possible coding sequence single-nucleotide alterations. By computing changes in variant abundance and Gaussian mixture modeling (GMM), we functionally classify 3,094 variants to be disruptive and use clinical truth sets to reveal an accuracy/concordance of variant classification >99.9%. Cell fitness was the primary assay readout allowing us to observe a phenomenon where specific missense variants exhibit distinct depletion kinetics potentially suggesting that they represent hypomorphic alleles. We further explored our exhaustive functional map, revealing critical residues on the RAD51C structure and resolving variants found in cancer-segregating kindred. Furthermore, through interrogation of UK Biobank and a large multi-center ovarian cancer cohort, we find significant associations between SGE-depleted variants and cancer diagnoses.
Collapse
Affiliation(s)
- Rebeca Olvera-León
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fang Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Hong Kee Tan
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Prashant Gupta
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Tuya Pal
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center (VUMC)/Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN, USA
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fernanda G Arriaga-González
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | | | - Erwan Delage
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Ed Dicks
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Suzana Ezquina
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Charlie F Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; National Cancer Registration and Analysis Service, National Health Service (NHS) England, London, UK; Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Paul Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Waters
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
7
|
Liu Y, Chen X, Lu H, Wu X, Liu X, Xu F, Ye D, Ding B, Lu X, Qiu L, Zhu J, Wang Y, Huang X, Shen Z, Zhu T, Shen Y, Zhou Y. Is the Homologous Recombination Repair Mutation Defined by a 15-Gene Panel Associated with the Prognosis of Epithelial Ovarian Cancer? Mol Diagn Ther 2024; 28:621-632. [PMID: 38967864 DOI: 10.1007/s40291-024-00726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND There is no consensus regarding the specific genes included in the homologous recombination repair (HRR) gene panel for identifying the HRR deficiency (HRD) status and predicting the prognosis of epithelial ovarian cancer (EOC) patients. OBJECTIVE We aimed to explore a 15-gene panel involving the HRR pathway as a predictive prognostic indicator in Chinese patients newly diagnosed with EOC. PATIENTS AND METHODS We reviewed the previously published reports about different HRR gene panels and prespecified the 15-gene panel. The genetic testing results in a 15-gene panel from 308 EOC patients diagnosed between 2014 and 2022 from six centers were collected. The association of clinicopathologic characteristics, the use of poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPis) and progression-free survival (PFS) with 15-gene panel HRR mutations (HRRm) status was assessed. RESULTS 43.2% (133/308) of patients were determined to carry 144 deleterious HRRm, among which 68.1% (98/144) were germline mutations and 32.8% (101/308) were BRCA1/2 gene lethal mutations. The hazard ratio (HR) (95% confidence interval, CI) for PFS (HRRm v HRR wild type, HRRwt) using the 15-gene panel HRRm was 0.42 (0.28-0.64) at all stages and 0.42 (0.27-0.65) at stages IIIC-IV. However, a prognostic difference was observed only between the BRCA mutation group and the HRRwt group, not between the non-BRCA HRRm group and the HRRwt group. For the subgroups of patients not using PARPis, the HR (95% CI) was 0.41 (0.24-0.68) at stages IIIC-IV. CONCLUSIONS This study provides evidence that 15-gene panel HRRm can predict the prognosis of EOC, of these only the BRCA1/2 mutations, not non-BRCA HRRm, contribute to prognosis prediction. Among patients without PARPis, the HRRm group presented a better PFS. This is the first study of this kind in the Chinese population.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
| | - Huaiwu Lu
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Xin Wu
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200082, China
| | - Xuehan Liu
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
| | - Dongdong Ye
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Bo Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaoyan Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ling Qiu
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200082, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yingying Wang
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tao Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
8
|
Ishihara E, Matsubayashi H, Nishimura S, Isaka M, Konno H, Goto S, Yamaguchi K, Urakami K. Four cancer cases with pathological germline variant RAD51D c.270_271dup. J Obstet Gynaecol Res 2024; 50:1742-1747. [PMID: 39117461 DOI: 10.1111/jog.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Pathological germline variants (PGVs) of RAD51D increase the risk of breast and ovarian cancer. In East Asia, c.270_271dup is the most frequently detected PGV of RAD51D; however, only a few cases have been reported in Japan. We report four cancer cases with a germline RAD51D c.270_271dup PGV. Three of them (lung cancer: 2, oral cancer: 1) were incidentally identified by whole genome sequencing in patients negative for the associated cancer histories, homologous recombination (HR) deficiency, or a second hit of RAD51D in the cancer DNA. For genetic counseling, we provided information on surveillance and cascade testing based on Western guidelines. The PGVs of moderate-risk HR-related genes are difficult to detect based on phenotype, especially in male-predominant pedigrees. The current spread of cancer genomic analysis will increase opportunities for incidental variant identification. The establishment of Japanese guidelines is expected to aid in the management of PGV carriers of moderate-risk genes.
Collapse
Affiliation(s)
- Eiko Ishihara
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
- Division of Breast Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Mitsuhiro Isaka
- Division of Respiratory Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hayato Konno
- Division of Respiratory Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Seiya Goto
- Division of Head and Neck Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ken Yamaguchi
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichi Urakami
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
9
|
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J Pers Med 2024; 14:866. [PMID: 39202057 PMCID: PMC11355318 DOI: 10.3390/jpm14080866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND RAD51C and RAD51D are crucial in homologous recombination (HR) DNA repair. The prevalence of the RAD51C and RAD51D mutations in breast cancer varies across ethnic groups. Associations of RAD51C and RAD51D germline pathogenic variants (GPVs) with breast and ovarian cancer predisposition have been recently reported and are of interest. METHODS We performed multi-gene panel sequencing to study the prevalence of RAD51C and RAD51D germline mutations among 3728 patients with hereditary breast and/or ovarian cancer (HBOC). RESULTS We identified 18 pathogenic RAD51C and RAD51D mutation carriers, with a mutation frequency of 0.13% (5/3728) and 0.35% (13/3728), respectively. The most common recurrent mutation was RAD51D c.270_271dupTA; p.(Lys91Ilefs*13), with a mutation frequency of 0.30% (11/3728), which was also commonly identified in Asians. Only four out of six cases (66.7%) of this common mutation tested positive for homologous recombination deficiency (HRD). CONCLUSIONS Taking the family studies in our registry and tumor molecular pathology together, we concluded that this relatively common RAD51D variant showed incomplete penetrance in our local Chinese community. Personalized genetic counseling emphasizing family history for families with this variant, as suggested at the UK Cancer Genetics Group (UKCGG) Consensus meeting, would also be appropriate in Chinese families.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Yuen Sze Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Sze Keong Tey
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
10
|
Muhammad N, Afzal MS, Hamann U, Rashid MU. Marginal Contribution of Pathogenic RAD51D Germline Variants to Pakistani Early-Onset and Familial Breast/Ovarian Cancer Patients. JOURNAL OF CANCER & ALLIED SPECIALTIES 2024; 10:617. [PMID: 39156943 PMCID: PMC11326667 DOI: 10.37029/jcas.v10i2.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 08/20/2024]
Abstract
Introduction RAD51D has been reported as a breast cancer (BC) and ovarian cancer (OC) predisposition gene, particularly among Caucasian populations. We studied the prevalence of RAD51D variants in Pakistani BC/OC patients. Materials and Methods In total, 371 young or familial BC/OC patients were thoroughly analyzed for RAD51D sequence variants using denaturing high-performance liquid chromatography pursued by DNA sequencing of differentially eluted amplicons. We also assessed the pathogenic effects of novel variants using in-silico algorithms. All detected RAD51D variants were investigated in 400 unaffected controls. Results No pathogenic RAD51D variant was detected. However, we identified nine unique heterozygous variants. Of these, two missense variants (p.Pro10Leu and p.Ile311Asn) and one intronic variant (c.481-26_23delGTTC) were classified as in silico-predicted variants of uncertain significance, with a frequency of 0.8% (3/371). The p.Pro10Leu variant was detected in a 28-year-old female BC patient of Punjabi ethnic background, whose mother and maternal cousin had BCs at ages 53 and 40, respectively. This variant was also detected in 1/400 (0.25%) healthy controls, where the control subject's daughter had acute lymphoblastic leukemia. The p.Ile311Asn variant was identified in a female BC patient at age 29 of Punjabi ethnicity and in 1/400 (0.25%) healthy controls, where the control subject's daughter had Hodgkin's disease at age 14. A novel intronic variant, c.481-26_-23delGTTC, was found in a 30-year-old Punjabi female BC patient but not in 400 healthy controls. Conclusion No pathogenic RAD51D variant was identified in the current study. Our study data suggested a negligible association of RAD51D variants with BC/OC risk in Pakistani women.
Collapse
Affiliation(s)
- Noor Muhammad
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Muhammad Usman Rashid
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
11
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Soyer SM, Ozbek P, Kasavi C. Lung Adenocarcinoma Systems Biomarker and Drug Candidates Identified by Machine Learning, Gene Expression Data, and Integrative Bioinformatics Pipeline. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:408-420. [PMID: 38979602 DOI: 10.1089/omi.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust systems biomarkers that can help with early cancer diagnosis, prediction of treatment outcomes, and design of precision/personalized medicines for LUAD. The present study aimed at systems biomarkers of LUAD and deployed integrative bioinformatics and machine learning tools to harness gene expression data. Predictive models were developed to stratify patients based on prognostic outcomes. Importantly, we report here several potential key genes, for example, PMEL and BRIP1, and pathways implicated in the progression and prognosis of LUAD that could potentially be targeted for precision/personalized medicine in the future. Our drug repurposing analysis and molecular docking simulations suggested eight drug candidates for LUAD such as heat shock protein 90 inhibitors, cardiac glycosides, an antipsychotic agent (trifluoperazine), and a calcium ionophore (ionomycin). In summary, this study identifies several promising leads on systems biomarkers and drug candidates for LUAD. The findings also attest to the importance of integrative bioinformatics, structural biology and machine learning techniques in biomarker discovery, and precision oncology research and development.
Collapse
Affiliation(s)
- Semra Melis Soyer
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| |
Collapse
|
13
|
Kim J, Choi CH. Basic knowledge for counseling patients undergoing risk-reducing salpingo-oophorectomy. Obstet Gynecol Sci 2024; 67:343-355. [PMID: 38817104 PMCID: PMC11266848 DOI: 10.5468/ogs.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Significant progress has been made in the molecular diagnosis of cancer. It provides personalized medicine, including cancer diagnosis, prognosis, targeted therapy, and risk detection. These advances allow physicians to identify patients at risk for cancer before it develops and offer them an opportunity to prevent its development. Mutations in breast cancer susceptibility genes 1 and 2 (BRCA1 and 2) are one of the most well-known cancer-related gene mutations since actor Angelina Jolie shared her experience with genetic mutations and risk-reducing surgery in the media. In Korea, tests for germline BRCA1/2 mutations have been covered by insurance since May 2012 and the number of women of BRCA1/2 mutations has continued to increase over the past decade. Most carriers of BRCA1/2 mutations consider risk-reducing salpingo-oophorectomy (RRSO) resulting in early menopause and want to know the lifetime risks and benefits of RRSO. However, despite the increasing number of carriers of BRCA1/2 mutations, the counseling and management of patients requiring RRSO varies among physicians. This article provides basic knowledge on RRSO to help physicians comprehensively assess its risks and benefits and manage at-risk women.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Obstetrics and Gynecology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
McDevitt T, Durkie M, Arnold N, Burghel GJ, Butler S, Claes KBM, Logan P, Robinson R, Sheils K, Wolstenholme N, Hanson H, Turnbull C, Hume S. EMQN best practice guidelines for genetic testing in hereditary breast and ovarian cancer. Eur J Hum Genet 2024; 32:479-488. [PMID: 38443545 PMCID: PMC11061103 DOI: 10.1038/s41431-023-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) is a genetic condition associated with increased risk of cancers. The past decade has brought about significant changes to hereditary breast and ovarian cancer (HBOC) diagnostic testing with new treatments, testing methods and strategies, and evolving information on genetic associations. These best practice guidelines have been produced to assist clinical laboratories in effectively addressing the complexities of HBOC testing, while taking into account advancements since the last guidelines were published in 2007. These guidelines summarise cancer risk data from recent studies for the most commonly tested high and moderate risk HBOC genes for laboratories to refer to as a guide. Furthermore, recommendations are provided for somatic and germline testing services with regards to clinical referral, laboratory analyses, variant interpretation, and reporting. The guidelines present recommendations where 'must' is assigned to advocate that the recommendation is essential; and 'should' is assigned to advocate that the recommendation is highly advised but may not be universally applicable. Recommendations are presented in the form of shaded italicised statements throughout the document, and in the form of a table in supplementary materials (Table S4). Finally, for the purposes of encouraging standardisation and aiding implementation of recommendations, example report wording covering the essential points to be included is provided for the most common HBOC referral and reporting scenarios. These guidelines are aimed primarily at genomic scientists working in diagnostic testing laboratories.
Collapse
Affiliation(s)
- Trudi McDevitt
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland.
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust Western Bank, Sheffield, UK
| | - Norbert Arnold
- UKSH Campus Kiel, Gynecology and Obstetrics, Institut of Clinical Chemistry, Institut of Clinical Molecular Biology, Kiel, Germany
| | - George J Burghel
- Manchester University NHS Foundation Trust, North West Genomic Laboratory Hub, Manchester, UK
| | - Samantha Butler
- Central and South Genomic Laboratory Hub, West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Peter Logan
- HSCNI / Belfast Trust Laboratories, Regional Molecular Diagnostics Service, Belfast, Northern Ireland
| | - Rachel Robinson
- Leeds Teaching Hospitals NHS Trust, Genetics Department, Leeds, UK
| | | | | | - Helen Hanson
- St George's University Hospitals NHS Foundation Trust, Clinical Genetics, London, UK
| | | | - Stacey Hume
- University of British Columbia, Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Torres-Esquius S, Llop-Guevara A, Gutiérrez-Enríquez S, Romey M, Teulé À, Llort G, Herrero A, Sánchez-Henarejos P, Vallmajó A, González-Santiago S, Chirivella I, Cano JM, Graña B, Simonetti S, Díaz de Corcuera I, Ramon y Cajal T, Sanz J, Serrano S, Otero A, Churruca C, Sánchez-Heras AB, Servitja S, Guillén-Ponce C, Brunet J, Denkert C, Serra V, Balmaña J. Prevalence of Homologous Recombination Deficiency Among Patients With Germline RAD51C/D Breast or Ovarian Cancer. JAMA Netw Open 2024; 7:e247811. [PMID: 38648056 PMCID: PMC11036141 DOI: 10.1001/jamanetworkopen.2024.7811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
Importance RAD51C and RAD51D are involved in DNA repair by homologous recombination. Germline pathogenic variants (PVs) in these genes are associated with an increased risk of ovarian and breast cancer. Understanding the homologous recombination deficiency (HRD) status of tumors from patients with germline PVs in RAD51C/D could guide therapeutic decision-making and improve survival. Objective To characterize the clinical and tumor characteristics of germline RAD51C/D PV carriers, including the evaluation of HRD status. Design, Setting, and Participants This retrospective cohort study included 91 index patients plus 90 relatives carrying germline RAD51C/D PV (n = 181) in Spanish hospitals from January 1, 2014, to December 31, 2021. Genomic and functional HRD biomarkers were assessed in untreated breast and ovarian tumor samples (n = 45) from June 2022 to February 2023. Main Outcomes and Measures Clinical and pathologic characteristics were assessed using descriptive statistics. Genomic HRD by genomic instability scores, functional HRD by RAD51, and gene-specific loss of heterozygosity were analyzed. Associations between HRD status and tumor subtype, age at diagnosis, and gene-specific loss of heterozygosity in RAD51C/D were investigated using logistic regression or the t test. Results A total of 9507 index patients were reviewed, and 91 patients (1.0%) were found to carry a PV in RAD51C/D; 90 family members with a germline PV in RAD51C/D were also included. A total of 157 of carriers (86.7%) were women and 181 (55.8%) had received a diagnosis of cancer, mainly breast cancer or ovarian cancer. The most prevalent PVs were c.1026+5_1026+7del (11 of 56 [19.6%]) and c.709C>T (9 of 56 [16.1%]) in RAD51C and c.694C>T (20 of 35 [57.1%]) in RAD51D. In untreated breast cancer and ovarian cancer, the prevalence of functional and genomic HRD was 55.2% (16 of 29) and 61.1% (11 of 18) for RAD51C, respectively, and 66.7% (6 of 9) and 90.0% (9 of 10) for RAD51D. The concordance between HRD biomarkers was 91%. Tumors with the same PV displayed contrasting HRD status, and age at diagnosis did not correlate with the occurrence of HRD. All breast cancers retaining the wild-type allele were estrogen receptor positive and lacked HRD. Conclusions and Relevance In this cohort study of germline RAD51C/D breast cancer and ovarian cancer, less than 70% of tumors displayed functional HRD, and half of those that did not display HRD were explained by retention of the wild-type allele, which was more frequent among estrogen receptor-positive breast cancers. Understanding which tumors are associated with RAD51C/D and HRD is key to identify patients who can benefit from targeted therapies, such as PARP (poly [adenosine diphosphate-ribose] polymerase) inhibitors.
Collapse
Affiliation(s)
- Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Translational Medicine, DNA Damage Response Department, AstraZeneca, Barcelona, Spain
| | | | - Marcel Romey
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Àlex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gemma Llort
- Department of Medical Oncology, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Ana Herrero
- Department of Medical Oncology, Hospital Miguel Servet de Zaragoza, Zaragoza, Spain
| | | | - Anna Vallmajó
- Genetic Counseling Unit, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Isabel Chirivella
- Cancer Genetic Counseling, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Juana Maria Cano
- Department of Medical Oncology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Begoña Graña
- Department of Medical Oncology, Xerencia de Xestión Integrada de A Coruña, Coruña, Spain
| | - Sara Simonetti
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Teresa Ramon y Cajal
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Judit Sanz
- Unidad de Cáncer Familiar y Hereditario, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain
| | - Sara Serrano
- Department of Medical Oncology, Institute of Oncology of Southern Catalonia (IOCS), Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Andrea Otero
- Institute of Oncology and Molecular Medicine of Asturias (IMOMA) S. A., Oviedo, Spain
| | - Cristina Churruca
- Department of Medical Oncology, Hospital Universitario Donostia, San Sebastián, Gipuzkoa, Spain
| | - Ana Beatriz Sánchez-Heras
- Cancer Genetic Counselling Unit, Medical Oncology Department, Hospital General Universitario de Elche, Elche, Spain
| | - Sonia Servitja
- Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Carmen Guillén-Ponce
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Carsten Denkert
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Medical Oncology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
16
|
Barili V, Ambrosini E, Bortesi B, Minari R, De Sensi E, Cannizzaro IR, Taiani A, Michiara M, Sikokis A, Boggiani D, Tommasi C, Serra O, Bonatti F, Adorni A, Luberto A, Caggiati P, Martorana D, Uliana V, Percesepe A, Musolino A, Pellegrino B. Genetic Basis of Breast and Ovarian Cancer: Approaches and Lessons Learnt from Three Decades of Inherited Predisposition Testing. Genes (Basel) 2024; 15:219. [PMID: 38397209 PMCID: PMC10888198 DOI: 10.3390/genes15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Germline variants occurring in BRCA1 and BRCA2 give rise to hereditary breast and ovarian cancer (HBOC) syndrome, predisposing to breast, ovarian, fallopian tube, and peritoneal cancers marked by elevated incidences of genomic aberrations that correspond to poor prognoses. These genes are in fact involved in genetic integrity, particularly in the process of homologous recombination (HR) DNA repair, a high-fidelity repair system for mending DNA double-strand breaks. In addition to its implication in HBOC pathogenesis, the impairment of HR has become a prime target for therapeutic intervention utilizing poly (ADP-ribose) polymerase (PARP) inhibitors. In the present review, we introduce the molecular roles of HR orchestrated by BRCA1 and BRCA2 within the framework of sensitivity to PARP inhibitors. We examine the genetic architecture underneath breast and ovarian cancer ranging from high- and mid- to low-penetrant predisposing genes and taking into account both germline and somatic variations. Finally, we consider higher levels of complexity of the genomic landscape such as polygenic risk scores and other approaches aiming to optimize therapeutic and preventive strategies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Antonietta Taiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maria Michiara
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Angelica Sikokis
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Daniela Boggiani
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Chiara Tommasi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Olga Serra
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Alessia Adorni
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
17
|
Dai Y, Xu J, Gong X, Wei J, Gao Y, Chai R, Lu C, Zhao B, Kang Y. Human Fallopian Tube-Derived Organoids with TP53 and RAD51D Mutations Recapitulate an Early Stage High-Grade Serous Ovarian Cancer Phenotype In Vitro. Int J Mol Sci 2024; 25:886. [PMID: 38255960 PMCID: PMC10815309 DOI: 10.3390/ijms25020886] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
RAD51D mutations have been implicated in the transformation of normal fallopian tube epithelial (FTE) cells into high-grade serous ovarian cancer (HGSOC), one of the most prevalent and aggressive gynecologic malignancies. Currently, no suitable model exists to elucidate the role of RAD51D in disease initiation and progression. Here, we established organoids from primary human FTE and introduced TP53 as well as RAD51D knockdown to enable the exploration of their mutational impact on FTE lesion generation. We observed that TP53 deletion rescued the adverse effects of RAD51D deletion on the proliferation, stemness, senescence, and apoptosis of FTE organoids. RAD51D deletion impaired the homologous recombination (HR) function and induced G2/M phase arrest, whereas concurrent TP53 deletion mitigated G0/G1 phase arrest and boosted DNA replication when combined with RAD51D mutation. The co-deletion of TP53 and RAD51D downregulated cilia assembly, development, and motility, but upregulated multiple HGSOC-associated pathways, including the IL-17 signaling pathway. IL-17A treatment significantly improved cell viability. TP53 and RAD51D co-deleted organoids exhibited heightened sensitivity to platinum, poly-ADP ribose polymerase inhibitors (PARPi), and cell cycle-related medication. In summary, our research highlighted the use of FTE organoids with RAD51D mutations as an invaluable in vitro platform for the early detection of carcinogenesis, mechanistic exploration, and drug screening.
Collapse
Affiliation(s)
- Yilin Dai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jing Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofeng Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ranran Chai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Chong Lu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
18
|
Sokolenko AP, Bakaeva EK, Venina AR, Kuligina ES, Romanko AA, Aleksakhina SN, Belysheva YV, Belogubova EV, Stepanov IA, Zaitseva OA, Yatsuk OS, Togo AV, Khamgokov ZM, Kadyrova AO, Pirmagomedov AS, Bolieva MB, Epkhiev AA, Tsutsaev AK, Chakhieva MD, Khabrieva KM, Khabriev IM, Murachuev MA, Buttaeva BN, Baboshkina LS, Bayramkulova FI, Katchiev IR, Alieva LK, Raskin GA, Orlov SV, Khachmamuk ZK, Levonyan KR, Gichko DM, Kirtbaya DV, Degtyariov AM, Sultanova LV, Musayeva HS, Belyaev AM, Imyanitov EN. Ethnicity-specific BRCA1, BRCA2, PALB2, and ATM pathogenic alleles in breast and ovarian cancer patients from the North Caucasus. Breast Cancer Res Treat 2024; 203:307-315. [PMID: 37851290 DOI: 10.1007/s10549-023-07135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Mountain areas of the North Caucasus host several large ethnic communities that have preserved their national identity over the centuries. METHODS This study involved high-grade serous ovarian cancer (HGSOC) and breast cancer (BC) patients from Dagestan (HGSOC: 37; BC: 198), Kabardino-Balkaria (HGSOC: 68; BC: 155), North Ossetia (HGSOC: 51; BC: 104), Chechnya (HGSOC: 68; BC: 79), Ingushetia (HGSOC: 19; BC: 103), Karachay-Cherkessia (HGSOC: 13; BC: 47), and several Armenian settlements (HGSOC: 16; BC: 101). The group of BC patients was enriched by young-onset and/or family history-positive and/or bilateral and/or receptor triple-negative cases. The entire coding region of BRCA1, BRCA2, PALB2, and ATM genes was analyzed by next-generation sequencing. RESULTS A significant contribution of BRCA1/2 pathogenic variants (PVs) to HGSOC and BC development was observed across all North Caucasus regions (HGSOC: 19-39%; BC: 6-13%). Founder alleles were identified in all ethnic groups studied, e.g., BRCA1 c.3629_3630delAG in Chechens, BRCA2 c.6341delC in North Ossetians, BRCA2 c.5351dupA in Ingush, and BRCA1 c.2907_2910delTAAA in Karachays. Some BRCA1/2 alleles, particularly BRCA2 c.9895C > T, were shared by several nationalities. ATM PVs were detected in 14 patients, with c.1673delG and c.8876_8879delACTG alleles occurring twice each. PALB2 heterozygosity was observed in 5 subjects, with one variant seen in 2 unrelated women. CONCLUSION This study adds to the evidence for the global-wide contribution of BRCA1/2 genes to HGSOC and BC morbidity, although the spectrum of their PVs is a subject of ethnicity-specific variations. The data on founder BRCA1/2 alleles may be considered when adjusting the BRCA1/2 testing procedure to the ethnic origin of patients.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758.
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia.
| | - Elvina Kh Bakaeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Ekaterina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Alexandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Yana V Belysheva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Evgeniya V Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Ilya A Stepanov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Olga A Zaitseva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Olga S Yatsuk
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Alexandr V Togo
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Zaur M Khamgokov
- Republican Cancer Center, The Kabardino-Balkarian Republic, Nalchik, Russia
| | - Azinat O Kadyrova
- Republican Cancer Center, The Kabardino-Balkarian Republic, Nalchik, Russia
| | | | - Marina B Bolieva
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Alexandr A Epkhiev
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Aslan K Tsutsaev
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | | | | | - Idris M Khabriev
- Republican Cancer Center, The Republic of Ingushetia, Pliyevo, Russia
| | - Mirza A Murachuev
- Republican Cancer Center, The Republic of Dagestan, Makhachkala, Russia
| | - Bella N Buttaeva
- Republican Bureau of Pathology, The Republic of Dagestan, Makhachkala, Russia
| | - Liliya S Baboshkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | | | - Islam R Katchiev
- Republican Cancer Center, The Karachay-Cherkess Republic, Cherkessk, Russia
| | - Lina Kh Alieva
- Republican Cancer Center, The Karachay-Cherkess Republic, Cherkessk, Russia
| | - Grigory A Raskin
- Dr. Sergey Berezin Medical Institute of Biological Systems, St. Petersburg, Russia
| | - Sergey V Orlov
- I.P. Pavlov St.-Petersburg State Medical University, St. Petersburg, Russia
| | | | | | | | | | | | | | - Hedi S Musayeva
- Republican Cancer Center, Grozny, The Chechen Republic, Russia
| | - Alexey M Belyaev
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
19
|
D'Angelo E, Espinosa I, Felicioni L, Buttitta F, Prat J. Ovarian high-grade serous carcinoma with transitional-like (SET) morphology: a homologous recombination-deficient tumor. Hum Pathol 2023; 141:15-21. [PMID: 37673346 DOI: 10.1016/j.humpath.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Thirteen years ago, we pointed out that ovarian transitional cell carcinomas (TCCs) and conventional high-grade serous carcinomas (HGSCs) had similar genetic alterations and clinical behavior. Consequently, ovarian TCC is now classified as a morphologic variant of HGSC. Defective homologous recombination, resulting from genetic or epigenetic inactivation of DNA damage repair genes, such as BRCA1/2, occurs in approximately 50% of the HGSCs. Although BRCA mutations have been associated with HGSCs with solid, pseudoendometrioid or transitional (SET) features, little is known about the role of non-BRCA homologous recombinationrepair (HRR) genes and the HRR status in these tumors. Using two commercially available assays (Myriad Genetics MyChoice CDx Plus test and SOPHiA Dx Homologous Recombination Deficiency Solution), we study mutations of BRCA1/2 and non-BRCA HRR genes (ATM, BARD1, BRIP1, CDK12, CHEK1/2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, and RAD54L), and the HRR status in 19 HGSCs with SET features and 20 HGSCs with classic morphology. We also studied, as control cases, 5 endometrioid carcinomas, 1 clear cell carcinoma, 2 low-grade serous carcinomas, and 1 malignant Brenner tumor. Seven HGSCs with SET features (7/19; 37%) showed BRCA mutations (4 BRCA1, 2 BRCA2, and 1 BRCA1/2). Mutations in non-BRCA HRR genes were found in ATM (1/15; 7%), BARD1 (1/15; 7%), and BRIP1 (1/19; 5%). Most HGSCs with SET features (17/19; 90%) were considered to be homologous recombination-deficient tumors. Three HGSCs with classic morphology (3/20; 15%) showed BRCA2 mutations. Mutations in non-BRCA HRR genes were found in CDK12 (2/14; 14%), FANCL (1/14; 7%), RAD51B (1/14; 7%), and RAD54L (1/14; 7%). Eleven HGSCs with classical morphology (11/20; 55%) were considered to be homologous recombination deficient. In contrast, all ovarian carcinoma control cases (5 endometrioid carcinomas, 1 clear cell carcinoma, 2 low-grade serous carcinomas, and 1 malignant Brenner tumor) were homologous recombination proficient and did not have BRCA mutations. Our results show that the majority of HGSCs with SET features are homologous recombination-deficient tumors independently of the BRCA status and highlight the importance of the HRR tumor testing, especially in BRCA wild-type tumors. Recognition of transitional cell variant of HGSCs may help to identify patients most likely to benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Emanuela D'Angelo
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", 66100 Italy; Laboratory of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology (CAST), Chieti-Pescara, 66100 Italy
| | - Iñigo Espinosa
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, Barcelona, 08041 Spain
| | - Lara Felicioni
- Laboratory of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology (CAST), Chieti-Pescara, 66100 Italy
| | - Fiamma Buttitta
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", 66100 Italy; Laboratory of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology (CAST), Chieti-Pescara, 66100 Italy
| | - Jaime Prat
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Institute of Biomedical Research (IIB Sant Pau), Autonomous University of Barcelona, Barcelona, 08041 Spain.
| |
Collapse
|
20
|
Rein HL, Bernstein KA. Finding significance: New perspectives in variant classification of the RAD51 regulators, BRCA2 and beyond. DNA Repair (Amst) 2023; 130:103563. [PMID: 37651978 PMCID: PMC10529980 DOI: 10.1016/j.dnarep.2023.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
For many individuals harboring a variant of uncertain functional significance (VUS) in a homologous recombination (HR) gene, their risk of developing breast and ovarian cancer is unknown. Integral to the process of HR are BRCA1 and regulators of the central HR protein, RAD51, including BRCA2, PALB2, RAD51C and RAD51D. Due to advancements in sequencing technology and the continued expansion of cancer screening panels, the number of VUS identified in these genes has risen significantly. Standard practices for variant classification utilize different types of predictive, population, phenotypic, allelic and functional evidence. While variant analysis is improving, there remains a struggle to keep up with demand. Understanding the effects of an HR variant can aid in preventative care and is critical for developing an effective cancer treatment plan. In this review, we discuss current perspectives in the classification of variants in the breast and ovarian cancer genes BRCA1, BRCA2, PALB2, RAD51C and RAD51D.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, 421 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
21
|
El Gazzar WB, Albakri KA, Hasan H, Badr AM, Farag AA, Saleh OM. Poly(ADP-ribose) polymerase inhibitors in the treatment landscape of triple-negative breast cancer (TNBC). J Oncol Pharm Pract 2023; 29:1467-1479. [PMID: 37559370 DOI: 10.1177/10781552231188903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE Chemotherapy is the mainstay for triple-negative breast cancer (TNBC) patients. Over the years, the use of chemotherapy for these patients has demonstrated many adversities, including toxicity and resistance, which suggested the need to develop novel alternative therapeutic options, such as poly(ADP-ribose) polymerase inhibitors (PARPi). Herein, we provide an overview on PARPi, mechanisms of action and the role of biomarkers in PARPi sensitivity trials, clinical advances in PARPi therapy for TNBC patients based on the most recent studies and findings of clinical trials, and challenges that prevent PARP inhibitors from achieving high efficacy such as resistance and overlapping toxicities with other chemotherapies. DATA SOURCES Searching for relevant articles was done using PubMed and Cochrane Library databases by using the keywords including TNBC; chemotherapy; PARPi; BRCA; homologous recombination repair (HRR). Studies had to be published in full-text in English in order to be considered. DATA SUMMARY Although PARPi have been used in the treatment of local/metastatic breast malignancies that are HER2 negative and has a germline BRCA mutation, several questions are still to be answered in order to maximize the clinical benefit of PARP inhibitors in TNBC treatment, such as questions related to the optimal use in the neoadjuvant and metastatic settings as well as the best combinations with various chemotherapies. CONCLUSIONS PARPi are emerging treatment options for patients with gBRCA1/2 mutations. Determining patients that are most likely to benefit from PARPi and identifying the optimal treatment combinations with high efficacy and fewer side effects are currently ongoing.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | | | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Egypt
| | | |
Collapse
|
22
|
O'Brien TD, Potter AB, Driscoll CC, Goh G, Letaw JH, McCabe S, Thanner J, Kulkarni A, Wong R, Medica S, Week T, Buitrago J, Larson A, Camacho KJ, Brown K, Crist R, Conrad C, Evans-Dutson S, Lutz R, Mitchell A, Anur P, Serrato V, Shafer A, Marriott LK, Hamman KJ, Mulford A, Wiszniewski W, Sampson JE, Adey A, O'Roak BJ, Harrington CA, Shannon J, Spellman PT, Richards CS. Population screening shows risk of inherited cancer and familial hypercholesterolemia in Oregon. Am J Hum Genet 2023; 110:1249-1265. [PMID: 37506692 PMCID: PMC10432140 DOI: 10.1016/j.ajhg.2023.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.
Collapse
Affiliation(s)
- Timothy D O'Brien
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amiee B Potter
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine C Driscoll
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA; Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Gregory Goh
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA; Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - John H Letaw
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sarah McCabe
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jane Thanner
- Information Technology Group, Oregon Health & Science University, Portland, OR 97201, USA
| | - Arpita Kulkarni
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rossana Wong
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel Medica
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tiana Week
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Buitrago
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aaron Larson
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Katie Johnson Camacho
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kim Brown
- Knight Cancer Institute, Community Outreach and Engagement, Oregon Health & Science University, Portland, OR 97201, USA
| | - Rachel Crist
- Knight Cancer Institute, Community Outreach and Engagement, Oregon Health & Science University, Portland, OR 97201, USA
| | - Casey Conrad
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sara Evans-Dutson
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ryan Lutz
- Knight Cancer Institute, Community Outreach and Engagement, Oregon Health & Science University, Portland, OR 97201, USA
| | - Asia Mitchell
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Pavana Anur
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Vanessa Serrato
- Knight Cancer Institute, Community Outreach and Engagement, Oregon Health & Science University, Portland, OR 97201, USA
| | - Autumn Shafer
- University of Oregon, School of Journalism and Communication, Portland, OR 97209, USA
| | | | - K J Hamman
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amelia Mulford
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wojciech Wiszniewski
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jone E Sampson
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew Adey
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian J O'Roak
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christina A Harrington
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jackilen Shannon
- Knight Cancer Institute, Community Outreach and Engagement, Oregon Health & Science University, Portland, OR 97201, USA; Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - C Sue Richards
- Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
23
|
Burke W, Barkley J, Barrows E, Brooks R, Gecsi K, Huber-Keener K, Jeudy M, Mei S, O'Hara JS, Chelmow D. Executive Summary of the Ovarian Cancer Evidence Review Conference. Obstet Gynecol 2023; 142:179-195. [PMID: 37348094 PMCID: PMC10278568 DOI: 10.1097/aog.0000000000005211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 06/24/2023]
Abstract
The Centers for Disease Control and Prevention awarded funding to the American College of Obstetricians and Gynecologists to develop educational materials for clinicians on gynecologic cancers. The American College of Obstetricians and Gynecologists convened a panel of experts in evidence review from the Society for Academic Specialists in General Obstetrics and Gynecology and content experts from the Society of Gynecologic Oncology to review relevant literature, best practices, and existing practice guidelines as a first step toward developing evidence-based educational materials for women's health care clinicians about ovarian cancer. Panel members conducted structured literature reviews, which were then reviewed by other panel members and discussed at a virtual meeting of stakeholder professional and patient advocacy organizations in February 2022. This article is the executive summary of the relevant literature and existing recommendations to guide clinicians in the prevention, early diagnosis, and special considerations of ovarian cancer. Substantive knowledge gaps are noted and summarized to provide guidance for future research.
Collapse
Affiliation(s)
- William Burke
- Departments of Obstetrics and Gynecology, Stony Brook University Hospital, New York, New York, Creighton University School of Medicine, Phoenix, Arizona, Virginia Commonwealth University School of Medicine, Richmond, Virginia, the University of California, Davis, Davis, California, the Medical College of Wisconsin, Milwaukee, Wisconsin, the University of Iowa Hospitals and Clinics, Iowa City, Iowa, and New York University Langone School of Medicine, New York; and the American College of Obstetricians and Gynecologists, Washington, DC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bouras A, Guidara S, Leone M, Buisson A, Martin-Denavit T, Dussart S, Lasset C, Giraud S, Bonnet-Dupeyron MN, Kherraf ZE, Sanlaville D, Fert-Ferrer S, Lebrun M, Bonadona V, Calender A, Boutry-Kryza N. Overview of the Genetic Causes of Hereditary Breast and Ovarian Cancer Syndrome in a Large French Patient Cohort. Cancers (Basel) 2023; 15:3420. [PMID: 37444530 DOI: 10.3390/cancers15133420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The use of multigene panel testing for patients with a predisposition to Hereditary Breast and Ovarian Cancer syndrome (HBOC) is increasing as the identification of mutations is useful for diagnosis and disease management. Here, we conducted a retrospective analysis of BRCA1/2 and non-BRCA gene sequencing in 4630 French HBOC suspected patients. Patients were investigated using a germline cancer panel including the 13 genes defined by The French Genetic and Cancer Group (GGC)-Unicancer. In the patients analyzed, 528 pathogenic and likely pathogenic variants (P/LP) were identified, including BRCA1 (n = 203, 38%), BRCA2 (n = 198, 37%), PALB2 (n = 46, 9%), RAD51C (n = 36, 7%), TP53 (n = 16, 3%), and RAD51D (n = 13, 2%). In addition, 35 novel (P/LP) variants, according to our knowledge, were identified, and double mutations in two distinct genes were found in five patients. Interestingly, retesting a subset of BRCA1/2-negative individuals with an expanded panel produced clinically relevant results in 5% of cases. Additionally, combining in silico (splicing impact prediction tools) and in vitro analyses (RT-PCR and Sanger sequencing) highlighted the deleterious impact of four candidate variants on splicing and translation. Our results present an overview of pathogenic variations of HBOC genes in the southeast of France, emphasizing the clinical relevance of cDNA analysis and the importance of retesting BRCA-negative individuals with an expanded panel.
Collapse
Affiliation(s)
- Ahmed Bouras
- Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Centre Léon Bérard, 69008 Lyon, France
- Team 'Endocrine Resistance, Methylation and Breast Cancer' Research Center of Lyon-CRCL, UMR Inserm 1052 CNRS 5286, 69008 Lyon, France
| | - Souhir Guidara
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
- Department of Genetics, CHU Hédi Chaker, Sfax 3027, Tunisia
| | - Mélanie Leone
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
| | - Adrien Buisson
- Department of Biopathology, Centre Léon Bérard, 69008 Lyon, France
| | - Tanguy Martin-Denavit
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
- Center for Medical Genetics, Alpigène, 69007 Lyon, France
| | - Sophie Dussart
- Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, 69008 Lyon, France
| | - Christine Lasset
- Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, 69008 Lyon, France
| | - Sophie Giraud
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
| | | | - Zine-Eddine Kherraf
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, 38000 Grenoble, France
- UM GI-DPI, University Hospital Grenoble Alpes, 38000 Grenoble, France
| | - Damien Sanlaville
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
| | - Sandra Fert-Ferrer
- Genetics Departement, Centre Hospitalier Métropole Savoie, 73011 Chambery, France
| | - Marine Lebrun
- Department of Genetics, Saint Etienne University Hospital, 42270 Saint Priez en Jarez, France
| | - Valerie Bonadona
- Centre Léon Bérard, Unité de Prévention et Epidémiologie Génétique, 69008 Lyon, France
| | - Alain Calender
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
| | - Nadia Boutry-Kryza
- Department of Genetics, Groupement Hospitalier EST, Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|
25
|
Gunawardena K, Sirisena ND, Anandagoda G, Neththikumara N, Dissanayake VHW. Germline variants of uncertain significance, their frequency, and clinico-pathological features in a cohort of Sri Lankan patients with hereditary breast cancer. BMC Res Notes 2023; 16:95. [PMID: 37277882 DOI: 10.1186/s13104-023-06365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Next-Generation Sequencing (NGS)-based testing in cancer patients has led to increased detection of variants of uncertain significance (VUS). VUS are genetic variants whose impact on protein function is unknown. VUS pose a challenge to clinicians and patients due to uncertainty regarding their cancer predisposition risk. Paucity of data exists on the pattern of VUS in under-represented populations. This study describes the frequency of germline VUS and clinico-pathological features in Sri Lankan hereditary breast cancer patients. METHODS Data of 72 hereditary breast cancer patients who underwent NGS-based testing between January 2015 and December 2021 were maintained prospectively in a database and analyzed retrospectively. Data were subjected to bioinformatics analysis and variants were classified according to international guidelines. RESULTS Germline variants were detected in 33/72(45.8%) patients, comprising 16(48.5%) pathogenic/likely pathogenic variants and 17(51.5%) VUS. Distribution of VUS in breast cancer predisposing genes were :APC:1(5.8%), ATM:2(11.7%), BRCA1:1(5.8%), BRCA2:5(29.4%), BRIP1:1(5.8%), CDKN2A:1(5.8%), CHEK2:2(11.7%), FANC1:1(5.8%), MET:1(5.8%), STK11:1(5.8%), NF2:1(5.8%). Mean age at cancer diagnosis in patients with VUS was 51.2 years. Most common tumour histopathology was ductal carcinoma 11(78.6%). 50% of tumours in patients having VUS in BRCA1/2 genes were hormone receptor negative. 73.3% patients had family history of breast cancer. CONCLUSIONS A significant portion of patients had a germline VUS. Highest frequency was in BRCA2 gene. Majority had family history of breast cancer. This highlights the need to undertake functional genomic studies to determine the biological effects of VUS and identify potentially clinically actionable variants that would be useful for decision-making and patient management.
Collapse
Affiliation(s)
- Kawmadi Gunawardena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Nirmala D Sirisena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
| | - Gayani Anandagoda
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Nilaksha Neththikumara
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| |
Collapse
|
26
|
Witjes VM, Ligtenberg MJL, Vos JR, Braspenning JCC, Ausems MGEM, Mourits MJE, de Hullu JA, Adang EMM, Hoogerbrugge N. The most efficient and effective BRCA1/2 testing strategy in epithelial ovarian cancer: Tumor-First or Germline-First? Gynecol Oncol 2023; 174:121-128. [PMID: 37182432 DOI: 10.1016/j.ygyno.2023.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Genetic testing in epithelial ovarian cancer (OC) is essential to identify a hereditary cause like a germline BRCA1/2 pathogenic variant (PV). An efficient strategy for genetic testing in OC is highly desired. We evaluated costs and effects of two strategies; (i) Tumor-First strategy, using a tumor DNA test as prescreen to germline testing, and (ii) Germline-First strategy, referring all patients to the clinical geneticist for germline testing. METHODS Tumor-First and Germline-First were compared in two scenarios; using real-world uptake of testing and setting implementation to 100%. Decision analytic models were built to analyze genetic testing costs (including counseling) per OC patient and per family as well as BRCA1/2 detection probabilities. With a Markov model, the life years gained among female relatives with a germline BRCA1/2 PV was investigated. RESULTS Focusing on real-world uptake, with the Tumor-First strategy more OC patients and relatives with a germline BRCA1/2 PV are detected (70% versus 49%), at lower genetic testing costs (€1898 versus €2502 per patient, and €2511 versus €2930 per family). Thereby, female relatives with a germline BRCA1/2 PV can live on average 0.54 life years longer with Tumor-First compared to Germline-First. Focusing on 100% uptake, the genetic testing costs per OC patient are substantially lower in the Tumor-First strategy (€2257 versus €4986). CONCLUSIONS The Tumor-First strategy in OC patients is more effective in identifying germline BRCA1/2 PV at lower genetic testing costs per patient and per family. Optimal implementation of Tumor-First can further improve detection of heredity in OC patients.
Collapse
Affiliation(s)
- Vera M Witjes
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Janet R Vos
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Jozé C C Braspenning
- Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of IQ Healthcare, Radboud university medical center, Nijmegen, the Netherlands
| | - Margreet G E M Ausems
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian J E Mourits
- Department of Gynecology, University Medical Center Groningen, Groningen, the Netherlands
| | - Joanne A de Hullu
- Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department of Obstetrics and Gynecology, Radboud university medical center, Nijmegen, the Netherlands
| | - Eddy M M Adang
- Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Department for Health Evidence, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Long G, Hu K, Zhang X, Zhou L, Li J. Spectrum of BRCA1 interacting helicase 1 aberrations and potential prognostic and therapeutic implication: a pan cancer analysis. Sci Rep 2023; 13:4435. [PMID: 36932143 PMCID: PMC10023799 DOI: 10.1038/s41598-023-31109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BRCA1 interacting helicase 1 (BRIP1) alteration was crucial in tumors and it was a potential therapeutic target in ovarian serous cystadenocarcinoma (OV). Although a small number of studies had focused on BRIP1, an extensive study of BRIP1 genetic mutation and its clinical application in different cancer types had not been analyzed. In the current study, we analyzed BRIP1 abnormal expression, methylation, mutation, and their clinical application via several extensive datasets, which covered over 10,000 tumor samples across more than 30 cancer types. The total mutation rate of BRIP1 was rare in pan cancer. Its alteration frequency, oncogenic effects, mutation, and therapeutic implications were different in each cancer. 242 BRIP1 mutations were found across 32 cancer types. UCEC had the highest alteration (mutation and CNV) frequency. In addition, BRIP1 was a crucial oncogenic factor in OV and BRCA. BRIP1 mutation in PRAD was targetable, and FDA had approved a new drug. Moreover, Kaplan-Meier curve analysis showed that BRIP1 expression and genetic aberrations were closely related to patient survival in several cancers, indicating their potential for application as new tumor markers and therapeutic targets. The current study profiled the total BRIP1 mutation spectrum and offered an extensive molecular outlook of BRIP1 in a pan cancer analysis. And it suggested a brand-new perspective for clinical cancer therapy.
Collapse
Affiliation(s)
- Guo Long
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaofang Zhang
- Departments of Burn and Plastic, Ningxiang People's Hospital, Hunan University of Chinese Medicine, Changsha, 410600, Hunan, China
| | - Ledu Zhou
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
28
|
Flerlage JE, Myers JR, Maciaszek JL, Oak N, Rashkin SR, Hui Y, Wang YD, Chen W, Wu G, Chang TC, Hamilton K, Tithi SS, Goldin LR, Rotunno M, Caporaso N, Vogt A, Flamish D, Wyatt K, Liu J, Tucker M, Hahn CN, Brown AL, Scott HS, Mullighan C, Nichols KE, Metzger ML, McMaster ML, Yang JJ, Rampersaud E. Discovery of novel predisposing coding and noncoding variants in familial Hodgkin lymphoma. Blood 2023; 141:1293-1307. [PMID: 35977101 PMCID: PMC10082357 DOI: 10.1182/blood.2022016056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.
Collapse
Affiliation(s)
- Jamie E. Flerlage
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Jason R. Myers
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jamie L. Maciaszek
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Sara R. Rashkin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yawei Hui
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kayla Hamilton
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Saima S. Tithi
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Melissa Rotunno
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | - Jia Liu
- Leidos Biomedical, Inc, Frederick, MD
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
| | - Monika L. Metzger
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary L. McMaster
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Oncology, St. Jude Children’s Research Hospital and the University of Tennessee Health Sciences Center, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
29
|
Bertozzi S, Londero AP, Xholli A, Azioni G, Di Vora R, Paudice M, Bucimazza I, Cedolini C, Cagnacci A. Risk-Reducing Breast and Gynecological Surgery for BRCA Mutation Carriers: A Narrative Review. J Clin Med 2023; 12:jcm12041422. [PMID: 36835955 PMCID: PMC9967164 DOI: 10.3390/jcm12041422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
This narrative review aims to clarify the role of breast and gynecological risk-reduction surgery in BRCA mutation carriers. We examine the indications, contraindications, complications, technical aspects, timing, economic impact, ethical issues, and prognostic benefits of the most common prophylactic surgical options from the perspectives of a breast surgeon and a gynecologist. A comprehensive literature review was conducted using the PubMed/Medline, Scopus, and EMBASE databases. The databases were explored from their inceptions to August 2022. Three independent reviewers screened the items and selected those most relevant to this review's scope. BRCA1/2 mutation carriers are significantly more likely to develop breast, ovarian, and serous endometrial cancer. Because of the Angelina effect, there has been a significant increase in bilateral risk-reducing mastectomy (BRRM) since 2013. BRRM and risk-reducing salpingo-oophorectomy (RRSO) significantly reduce the risk of developing breast and ovarian cancer. RRSO has significant side effects, including an impact on fertility and early menopause (i.e., vasomotor symptoms, cardiovascular disease, osteoporosis, cognitive impairment, and sexual dysfunction). Hormonal therapy can help with these symptoms. Because of the lower risk of developing breast cancer in the residual mammary gland tissue after BRRM, estrogen-only treatments have an advantage over an estrogen/progesterone combined treatment. Risk-reducing hysterectomy allows for estrogen-only treatments and lowers the risk of endometrial cancer. Although prophylactic surgery reduces the cancer risk, it has disadvantages associated with early menopause. A multidisciplinary team must carefully inform the woman who chooses this path of the broad spectrum of implications, from cancer risk reduction to hormonal therapies.
Collapse
Affiliation(s)
- Serena Bertozzi
- Breast Unit, University Hospital of Udine, 33100 Udine, UD, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, UD, Italy
| | - Ambrogio P. Londero
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, UD, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, GE, Italy
- Correspondence:
| | - Anjeza Xholli
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale San Martino, 16132 Genoa, GE, Italy
| | - Guglielmo Azioni
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale San Martino, 16132 Genoa, GE, Italy
| | - Roberta Di Vora
- Breast Unit, University Hospital of Udine, 33100 Udine, UD, Italy
| | - Michele Paudice
- Anatomic Pathology Unit, Department of Surgical Sciences, and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, GE, Italy
- Anatomic Pathology Unit, IRCCS Ospedale San Martino, 16132 Genoa, GE, Italy
| | - Ines Bucimazza
- Department of Surgery, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban 4001, South Africa
| | - Carla Cedolini
- Breast Unit, University Hospital of Udine, 33100 Udine, UD, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, UD, Italy
| | - Angelo Cagnacci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, GE, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale San Martino, 16132 Genoa, GE, Italy
| |
Collapse
|
30
|
Pujade-Lauraine E, Brown J, Barnicle A, Wessen J, Lao-Sirieix P, Criscione SW, du Bois A, Lorusso D, Romero I, Petru E, Yoshida H, Vergote I, Colombo N, Hietanen S, Provansal M, Schmalfeldt B, Pignata S, Martín Lorente C, Berton D, Runnebaum IB, Ray-Coquard I. Homologous Recombination Repair Gene Mutations to Predict Olaparib Plus Bevacizumab Efficacy in the First-Line Ovarian Cancer PAOLA-1/ENGOT-ov25 Trial. JCO Precis Oncol 2023; 7:e2200258. [PMID: 36716415 PMCID: PMC9928987 DOI: 10.1200/po.22.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The PAOLA-1/ENGOT-ov25 trial of maintenance olaparib plus bevacizumab for newly diagnosed advanced high-grade ovarian cancer demonstrated a significant progression-free survival (PFS) benefit over placebo plus bevacizumab, particularly in patients with homologous recombination deficiency (HRD)-positive tumors. We explored whether mutations in non-BRCA1 or BRCA2 homologous recombination repair (non-BRCA HRRm) genes predicted benefit from olaparib plus bevacizumab in PAOLA-1. METHODS Eight hundred and six patients were randomly assigned (2:1). Tumors were analyzed using the Myriad MyChoice HRD Plus assay to assess non-BRCA HRRm and HRD status; HRD was based on a genomic instability score (GIS) of ≥ 42. In this exploratory analysis, PFS was assessed in patients harboring deleterious mutations using six non-BRCA HRR gene panels, three devised for this analysis and three previously published. RESULTS The non-BRCA HRRm prevalence ranged from 30 of 806 (3.7%) to 79 of 806 (9.8%) depending on the gene panel used, whereas 152 of 806 (18.9%) had non-BRCA1 or BRCA2 mutation HRD-positive tumors. The majority of tumors harboring non-BRCA HRRm had a low median GIS; however, a GIS of > 42 was observed for tumors with mutations in five HRR genes (BLM, BRIP1, RAD51C, PALB2, and RAD51D). Rates of gene-specific biallelic loss were variable (0% to 100%) in non-BRCA HRRm tumors relative to BRCA1-mutated (99%) or BRCA2-mutated (86%) tumors. Across all gene panels tested, hazard ratios for PFS (95% CI) ranged from 0.92 (0.51 to 1.73) to 1.83 (0.76 to 5.43). CONCLUSION Acknowledging limitations of small subgroup sizes, non-BRCA HRRm gene panels were not predictive of PFS benefit with maintenance olaparib plus bevacizumab versus placebo plus bevacizumab in PAOLA-1, irrespective of the gene panel tested. Current gene panels exploring HRRm should not be considered a substitute for HRD determined by BRCA mutation status and genomic instability testing in first-line high-grade ovarian cancer.
Collapse
Affiliation(s)
- Eric Pujade-Lauraine
- ARCAGY-GINECO, Paris, France,Eric Pujade-Lauraine, MD, 8 rue Lamennais, 75008 Paris, France; e-mail:
| | | | | | | | | | | | | | - Domenica Lorusso
- Fondazione IRCCS Istituto Nazionale Tumori, Milan and MITO, Italy
| | - Ignacio Romero
- Instituto Valenciano de Oncología, Valencia and GEICO, Spain
| | - Edgar Petru
- Universitätsklinik für Frauenheilkunde und Geburtshilfe der Med, Universität Graz, Graz and AGO, Austria
| | - Hiroyuki Yoshida
- Saitama Medical University International Medical Center, Saitama and GOTIC, Japan
| | - Ignace Vergote
- University Hospital Leuven, Leuven Cancer Institute, Leuven and BGOG, Belgium
| | - Nicoletta Colombo
- University of Milan-Bicocca and Istituto Europeo di Oncologia IRCCS, Milan and MANGO, Italy
| | | | | | | | - Sandro Pignata
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Naples and MITO, Italy
| | | | - Dominique Berton
- L'Institut de Cancérologie de l'Ouest (ICO), Center René Gauducheau, Saint Herblain and GINECO, France
| | - Ingo B. Runnebaum
- Jena University Hospital, Universitaets-Frauenklinik Jena and AGO, Germany
| | - Isabelle Ray-Coquard
- Center Léon Bérard and University Claude Bernard Lyon 1, Lyon and GINECO, France
| |
Collapse
|
31
|
Liu Y, Wu X, Feng Y, Jiang Q, Zhang S, Wang Q, Yang A. Insights into the Oncogenic, Prognostic, and Immunological Role of BRIP1 in Pan-Cancer: A Comprehensive Data-Mining-Based Study. JOURNAL OF ONCOLOGY 2023; 2023:4104639. [PMID: 37153833 PMCID: PMC10162871 DOI: 10.1155/2023/4104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/14/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Background BRCA1 interacting helicase 1 (BRIP1), an ATP-dependent DNA helicase which belongs to an Iron-Sulfur (Fe-S) helicase cluster family with a DEAH domain, plays a key role in DNA damage and repair, Fanconi anemia, and development of several cancers including breast and ovarian cancer. However, its role in pan-cancer remains largely unknown. Methods BRIP1 expression data of tumor and normal tissues were downloaded from the Cancer Genome Atlas, Genotype-Tissue Expression, and Human Protein Atlas databases. Correlation between BRIP1 and prognosis, genomic alterations, and copy number variation (CNV) as well as methylation in pan-cancer were further analyzed. Protein-protein interaction (PPI) and gene set enrichment and variation analysis (GSEA and GSVA) were performed to identify the potential pathways and functions of BRIP1. Besides, BRIP1 correlations with tumor microenvironment (TME), immune infiltration, immune-related genes, tumor mutation burden (TMB), microsatellite instability (MSI), and immunotherapy as well as antitumor drugs were explored in pan-cancer. Results Differential analyses showed an increased expression of BRIP1 in 28 cancer types and its aberrant expression could be an indicator for prognosis in most cancers. Among the various mutation types of BRIP1 in pan-cancer, amplification was the most common type. BRIP1 expression had a significant correlation with CNV and DNA methylation in 23 tumor types and 16 tumor types, respectively. PPI, GSEA, and GSVA results validated the association between BRIP1 and DNA damage and repair, cell cycle, and metabolism. In addition, the expression of BRIP1 and its correlation with TME, immune-infiltrating cells, immune-related genes, TMB, and MSI as well as a variety of antitumor drugs and immunotherapy were confirmed. Conclusions Our study indicates that BRIP1 plays an imperative role in the tumorigenesis and immunity of various tumors. It may not only serve as a diagnostic and prognostic biomarker but also can be a predictor for drug sensitivity and immunoreaction during antitumor treatment in pan-cancer.
Collapse
Affiliation(s)
- Yongru Liu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yunlu Feng
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qingwei Jiang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiang Wang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
32
|
Alenezi WM, Fierheller CT, Serruya C, Revil T, Oros KK, Subramanian DN, Bruce J, Spiegelman D, Pugh T, Campbell IG, Mes-Masson AM, Provencher D, Foulkes WD, Haffaf ZE, Rouleau G, Bouchard L, Greenwood CMT, Ragoussis J, Tonin PN. Genetic analyses of DNA repair pathway associated genes implicate new candidate cancer predisposing genes in ancestrally defined ovarian cancer cases. Front Oncol 2023; 13:1111191. [PMID: 36969007 PMCID: PMC10030840 DOI: 10.3389/fonc.2023.1111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Not all familial ovarian cancer (OC) cases are explained by pathogenic germline variants in known risk genes. A candidate gene approach involving DNA repair pathway genes was applied to identify rare recurring pathogenic variants in familial OC cases not associated with known OC risk genes from a population exhibiting genetic drift. Whole exome sequencing (WES) data of 15 OC cases from 13 families tested negative for pathogenic variants in known OC risk genes were investigated for candidate variants in 468 DNA repair pathway genes. Filtering and prioritization criteria were applied to WES data to select top candidates for further analyses. Candidates were genotyped in ancestry defined study groups of 214 familial and 998 sporadic OC or breast cancer (BC) cases and 1025 population-matched controls and screened for additional carriers in 605 population-matched OC cases. The candidate genes were also analyzed in WES data from 937 familial or sporadic OC cases of diverse ancestries. Top candidate variants in ERCC5, EXO1, FANCC, NEIL1 and NTHL1 were identified in 5/13 (39%) OC families. Collectively, candidate variants were identified in 7/435 (1.6%) sporadic OC cases and 1/566 (0.2%) sporadic BC cases versus 1/1025 (0.1%) controls. Additional carriers were identified in 6/605 (0.9%) OC cases. Tumour DNA from ERCC5, NEIL1 and NTHL1 variant carriers exhibited loss of the wild-type allele. Carriers of various candidate variants in these genes were identified in 31/937 (3.3%) OC cases of diverse ancestries versus 0-0.004% in cancer-free controls. The strategy of applying a candidate gene approach in a population exhibiting genetic drift identified new candidate OC predisposition variants in DNA repair pathway genes.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Kathleen K. Oros
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dan Spiegelman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Trevor Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Departement of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Zaki El Haffaf
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, Centres intégrés universitaires de santé et de services sociaux du Saguenay-Lac-Saint-Jean hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
- Centre de Recherche du Centre hospitalier l’Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Patricia N. Tonin,
| |
Collapse
|
33
|
Yao H, Li N, Yuan H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer 2022; 22:1337. [PMID: 36544182 PMCID: PMC9768941 DOI: 10.1186/s12885-022-10456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES We aimed to describe the behavior among Chinese ovarian cancer patients with RAD51D germline mutations at our institution. METHODS Next-generation sequencing (NGS) was conducted for the entire coding regions and exon/intron boundaries of the RAD51D genes in 781 Chinese ovarian cancer patients treated at our institution from January 1, 2015 to August 1, 2021. Clinicopathological characteristics, treatment modalities, and outcomes were assessed for ovarian cancer patients with RAD51D germline mutations. RESULTS RAD51D germline pathogenic mutations were detected in 1.7% (13/781) of patients in this cohort. RAD51D c. 270_271dup (p. Lys91fs) mutation was the most common mutation which was found in 7 patients (7/13, 53.1%). Patients median age at diagnosis was 58 years (range: 45-69 years). 46.2% (6/13) of them were diagnosed after 60 years. Only 1 patient (1/13, 7.7%) had a family history of ovarian or breast cancer. And 1 patient (1/13, 7.7%) had a personal history of breast cancer. The FIGO 2014 distribution by stage was: stage II in 1 patient (7.7%), stage III in 9 patients (69.2%) and stage IV in 3 patient (23.1%). 92.3% (12/13) patients had high-grade serous carcinoma. 2 patients (2/13, 15.4%) had a primary peritoneal cancer. The majority of patients in the entire cohort were reported to be platinum sensitive (92.3%, 12/13) with a platinum-free interval (PFI) of > 6 months. For patients who received PARPis for 2nd line maintenance treatment (n = 5), 2 patients discontinued PARPis treatment after 33.5 and 8.1 months of duration. Other 3 patients are still on therapy with a duration of 2.4, 13.8 and 30.1 months at the date of data cutoff. 1 patient received PARPi as salvage treatment with a duration of only 1.2 months. Nine patients (9/13, 69.2%) relapsed during follow up and all of them relapsed within 2 years after diagnosis, among which 88.9% (8/9) were classified as platinum-sensitive recurrence (PSR), and only 1 patient was classified as platinum-resistant recurrence (PRR). Median PFS for the entire cohort was 17.3 months. Median PFS for the PSR subgroup was 15.9 months. 2 patients died during follow-up. The OS of these 2 patients was 17.2 and 39.6 months. The 5-year OS rate was 67.5%. CONCLUSIONS RAD51D germline mutations are more frequent in Chinese ovarian cancer patients than other population. Few patients have a family history of ovarian or breast cancer, and personal history of breast cancer. Most patients are diagnosed after 50 years. The sensitivity to PARP inhibitors of patients with RAD51D germline mutations need a further analysis.
Collapse
Affiliation(s)
- Hongwen Yao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Yuan
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
34
|
Nurmi AK, Suvanto M, Dennis J, Aittomäki K, Blomqvist C, Nevanlinna H. Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients. Cancers (Basel) 2022; 14:cancers14246158. [PMID: 36551643 PMCID: PMC9776204 DOI: 10.3390/cancers14246158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pathogenic variants have been detected in several breast and ovarian cancer (BC/OC) risk genes in the Finnish population. We conducted a gene-panel sequencing and copy number variant (CNV) analysis to define a more comprehensive spectrum of pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, BARD1, RAD51C, RAD51D, BRIP1, and FANCM genes in Finnish BC patients. The combined frequency of pathogenic variants in the BRCA1/2 genes was 1.8% in 1356 unselected patients, whereas variants in the other genes were detected altogether in 8.3% of 1356 unselected patients and in 12.9% of 699 familial patients. CNVs were detected in 0.3% of both 1137 unselected and 612 familial patients. A few variants covered most of the pathogenic burden in the studied genes. Of the BRCA1/2 carriers, 70.8% had 1 of 10 recurrent variants. In the other genes combined, 92.1% of the carrier patients had at least 1 of 11 recurrent variants. In particular, PALB2 c.1592delT and CHEK2 c.1100delC accounted for 88.9% and 82.9%, respectively, of the pathogenic variation in each gene. Our results highlight the importance of founder variants in the BC risk genes in the Finnish population and could be used in the designing of population screening for the risk variants.
Collapse
Affiliation(s)
- Anna K. Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence:
| |
Collapse
|
35
|
Hanson H, Kulkarni A, Loong L, Kavanaugh G, Torr B, Allen S, Ahmed M, Antoniou AC, Cleaver R, Dabir T, Evans DG, Golightly E, Jewell R, Kohut K, Manchanda R, Murray A, Murray J, Ong KR, Rosenthal AN, Woodward ER, Eccles DM, Turnbull C, Tischkowitz M, Lalloo F. UK consensus recommendations for clinical management of cancer risk for women with germline pathogenic variants in cancer predisposition genes: RAD51C, RAD51D, BRIP1 and PALB2. J Med Genet 2022; 60:417-429. [PMID: 36411032 PMCID: PMC10176381 DOI: 10.1136/jmg-2022-108898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
Germline pathogenic variants (GPVs) in the cancer predisposition genes BRCA1, BRCA2, MLH1, MSH2, MSH6, BRIP1, PALB2, RAD51D and RAD51C are identified in approximately 15% of patients with ovarian cancer (OC). While there are clear guidelines around clinical management of cancer risk in patients with GPV in BRCA1, BRCA2, MLH1, MSH2 and MSH6, there are few guidelines on how to manage the more moderate OC risk in patients with GPV in BRIP1, PALB2, RAD51D and RAD51C, with clinical questions about appropriateness and timing of risk-reducing gynaecological surgery. Furthermore, while recognition of RAD51C and RAD51D as OC predisposition genes has been established for several years, an association with breast cancer (BC) has only more recently been described and clinical management of this risk has been unclear. With expansion of genetic testing of these genes to all patients with non-mucinous OC, new data on BC risk and improved estimates of OC risk, the UK Cancer Genetics Group and CanGene-CanVar project convened a 2-day meeting to reach a national consensus on clinical management of BRIP1, PALB2, RAD51D and RAD51C carriers in clinical practice. In this paper, we present a summary of the processes used to reach and agree on a consensus, as well as the key recommendations from the meeting.
Collapse
Affiliation(s)
- Helen Hanson
- South West Thames Regional Genetic Services, St George's University Hospitals NHS Foundation Trust, London, UK
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Anjana Kulkarni
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucy Loong
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Grace Kavanaugh
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Bethany Torr
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Sophie Allen
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ruth Cleaver
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Ellen Golightly
- Lothian Menopause Service, Chalmers Sexual Health Centre, Edinburgh, UK
| | - Rosalyn Jewell
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kelly Kohut
- South West Thames Regional Genetic Services, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, London, UK
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London, UK
| | - Alex Murray
- All Wales Medical Genomics Services, University Hospital of Wales, Cardiff, UK
| | - Jennie Murray
- South East Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, UK
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, UK
| | - Adam N Rosenthal
- Department of Gynaecological Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma Roisin Woodward
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Diana M Eccles
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | | | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Central Manchester NHS Foundation Trust, Manchester, UK
| |
Collapse
|
36
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Centre for Cardiovascular Pharmacology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal Campus, Manipal, Karnataka 576104, India
| | - Padmanaban S. Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
37
|
Dong C, Cheng W, Zhang M, Li S, Zhao L, Chen D, Qin Y, Xiao M, Fang S. Genomic profiling of non-small cell lung cancer with the rare pulmonary lymphangitic carcinomatosis and clinical outcome of the exploratory anlotinib treatment. Front Oncol 2022; 12:992596. [PMID: 36324591 PMCID: PMC9620420 DOI: 10.3389/fonc.2022.992596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background To evaluate the potential treatment for patients with non-small cell lung cancer (NSCLC) and rare malignant pulmonary lymphangitis carcinomatosis (PLC), our study provided a genomic profile and clinical outcome of this group of patients. Methods We retrospectively reviewed patients with NSCLC who developed PLC. The genomic alterations, tumor mutation burden (TMB), and microsatellite instability (MSI) based on DNA-based next-generation sequencing were reviewed and compared in a Chinese population with lung adenocarcinomas (Chinese-LUAD cohort). Clinical outcomes after exploratory anlotinib treatment and factors influencing survival are summarized. Results A total of 564 patients with stage IV NSCLC were reviewed, and 39 patients with PLC were included. Genomic profiling of 17 adenocarcinoma patients with PLC (PLC-LUAD cohort) revealed TP53, EGFR, and LRP1B as the three most frequently altered genes. EGFR was less mutated in PLC-LUAD than Chinese-LUAD cohort of 778 patients (35.3% vs. 60.9%, P = 0.043). BRIP1 was mutated more often in the PLC-LUAD cohort (11.8% vs. 1.8%, P= 0.043). Two patients presented with high tumor mutational burden (TMB-H, 10 mutations/MB). Combing alterations in the patient with squamous cell carcinoma, the most altered pathways of PLC included cell cycle/DNA damage, chromatin modification, the RTK/Ras/MAPK pathway and VEGF signaling changes. Fourteen of the participants received anlotinib treatment. The ORR and DCR were 57.1% and 92.9%, respectively. Patients achieved a median progression-free survival of 4.9 months and a median overall survival of 7 months. The adverse effects were manageable. In patients with adenocarcinoma, the mPFS (5.3 months vs. 2.6 months) and mOS (9.9 months vs. 4.5 months) were prolonged in patients receiving anlotinib treatment compared to those receiving other treatment strategies (P < 0.05). Conclusion Patients with PLC in NSCLC demonstrated distinct genetic alterations. The results improve our understanding of the plausible genetic underpinnings of tumorigenesis in PLC and potential treatment strategies. Exploratory anlotinib treatment achieved considerable benefits and demonstrated manageable safety.
Collapse
Affiliation(s)
- Changqing Dong
- Department of Thoracic Surgery, Nanjing Chest hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wanwan Cheng
- Department of Respiratory Medicine, Nanjing Chest hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si Li
- Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Lele Zhao
- Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Dongsheng Chen
- Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Yong Qin
- Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Mingzhe Xiao
- Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Shencun Fang
- Department of Respiratory Medicine, Nanjing Chest hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Shencun Fang,
| |
Collapse
|
38
|
Abe A, Imoto I, Ueki A, Nomura H, Kanao H. Moderate-Risk Genes for Hereditary Ovarian Cancers Involved in the Homologous Recombination Repair Pathway. Int J Mol Sci 2022; 23:11790. [PMID: 36233090 PMCID: PMC9570179 DOI: 10.3390/ijms231911790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 20% of cases of epithelial ovarian cancer (EOC) are hereditary, sharing many causative genes with breast cancer. The lower frequency of EOC compared to breast cancer makes it challenging to estimate absolute or relative risk and verify the efficacy of risk-reducing surgery in individuals harboring germline pathogenic variants (GPV) in EOC predisposition genes, particularly those with relatively low penetrance. Here, we review the molecular features and hereditary tumor risk associated with several moderate-penetrance genes in EOC that are involved in the homologous recombination repair pathway, i.e., ATM, BRIP1, NBN, PALB2, and RAD51C/D. Understanding the molecular mechanisms underlying the expression and function of these genes may elucidate trends in the development and progression of hereditary tumors, including EOC. A fundamental understanding of the genes driving EOC can help us accurately estimate the genetic risk of developing EOC and select appropriate prevention and treatment strategies for hereditary EOC. Therefore, we summarize the functions of the candidate predisposition genes for EOC and discuss the clinical management of individuals carrying GPV in these genes.
Collapse
Affiliation(s)
- Akiko Abe
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Arisa Ueki
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hidetaka Nomura
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Hiroyuki Kanao
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| |
Collapse
|
39
|
Shah S, Cheung A, Kutka M, Sheriff M, Boussios S. Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138113. [PMID: 35805770 PMCID: PMC9265838 DOI: 10.3390/ijerph19138113] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the cancers most influenced by hereditary factors. A fourth to a fifth of unselected EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA mismatch repair (MMR) pathways. PVs in BRCA1 and BRCA2 genes are responsible for a substantial fraction of hereditary EOC. In addition, PV genes involved in the MMR pathway account for 10–15% of hereditary EOC. The identification of women with homologous recombination (HR)-deficient EOCs has significant clinical implications, concerning chemotherapy regimen planning and development as well as the use of targeted therapies such as poly(ADP-ribose) polymerase (PARP) inhibitors. With several genes involved, the complexity of genetic testing increases. In this context, next-generation sequencing (NGS) allows testing for multiple genes simultaneously with a rapid turnaround time. In this review, we discuss the EOC risk assessment in the era of NGS.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK;
| | - Alison Cheung
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK; (A.C.); (M.K.)
| | - Mikolaj Kutka
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK; (A.C.); (M.K.)
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK;
| | - Stergios Boussios
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK;
- King’s College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
40
|
Li X, Wang Y, Xu C, Reheman X, Wang Y, Xu R, Fan J, Huang X, Long L, Yu S, Huang H. Analysis of Competitive Endogenous Mechanism and Survival Prognosis of Serum Exosomes in Ovarian Cancer Patients Based on Sequencing Technology and Bioinformatics. Front Genet 2022; 13:850089. [PMID: 35910206 PMCID: PMC9337233 DOI: 10.3389/fgene.2022.850089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: We determined the competitive endogenous in serum exosomes of ovarian cancer patients via sequencing technology and raw signal analysis. We performed an in-depth study of the potential mechanisms of ovarian cancer, predicted potential therapeutic targets and performed survival analysis of the potential targets. Methods: Serum exosomes from three ovarian cancer patients were used as the experimental group, serum exosomes from three patients with uterine fibroids were used as the control group, and whole transcriptome analysis of serum exosomes was performed to identify differentially expressed long noncoding RNAs (lncRNAs) and mRNAs in ovarian cancer. The miRcode database and miRNA target gene prediction website were used to predict the target genes. Cytoscape software was used to generate a competing endogenous RNA (ceRNA) network of competitive endogenous mechanism of serum exosomes in ovarian cancer, and the R language was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the target genes. Finally, the TCGA website was used to download clinical and expression data related to ovarian cancer, and the common potential target genes obtained previously were analyzed for survival. Results: A total of 117 differentially expressed lncRNAs as well as 513 differentially expressed mRNAs (p < 0.05, |log2 fold change (FC)|≥ 1.0) were obtained by combining sequencing data and raw signal analysis, and 841 predicted target genes were reciprocally mapped by combining the data from the miRcode database and miRNA target gene prediction website, resulting in 11 potential target genes related to ovarian cancer (FGFR3, BMPR1B, TRIM29, FBN2, PAPPA, CCDC58, IGSF3, FBXO10, GPAM, HOXA10, and LHFPL4). Survival analysis of the above 11 target genes revealed that the survival curve was statistically significant (p < 0.05) for HOXA10 but not for the other genes. Through enrichment analysis, we found that the above target genes were mainly involved in biological processes such as regulation of transmembrane receptor protein kinase activity, structural molecule activity with elasticity, transforming growth factor-activated receptor activity, and GABA receptor binding and were mainly enriched in signaling pathways regulating stem cell pluripotency, bladder cancer, glycerolipid metabolism, central carbon metabolism of cancer, and tyrosine stimulation to EGFR in signaling pathways such as resistance to enzyme inhibitors. Conclusions: The serum exosomal DIO3OS-hsa-miR-27a-3p-HOXA10 competitive endogenous signaling axis affects ovarian cancer development and disease survival by targeting dysregulated transcriptional pathways in cancer.
Collapse
Affiliation(s)
- Xia Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yurong Wang
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Chunju Xu
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Xirenguli Reheman
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuxi Wang
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Rong Xu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan China
| | - Jiahui Fan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan China
| | - Xueying Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan China
| | - Linna Long
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan China
| | - Siying Yu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan China
| | - He Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan China
- *Correspondence: He Huang,
| |
Collapse
|
41
|
Minigene Splicing Assays Identify 20 Spliceogenic Variants of the Breast/Ovarian Cancer Susceptibility Gene RAD51C. Cancers (Basel) 2022; 14:cancers14122960. [PMID: 35740625 PMCID: PMC9221245 DOI: 10.3390/cancers14122960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
RAD51C loss-of-function variants are associated with an increased risk of breast and ovarian cancers. Likewise, splicing disruptions are a frequent mechanism of gene inactivation. Taking advantage of a previous splicing-reporter minigene with exons 2-8 (mgR51C_ex2-8), we proceeded to check its impact on the splicing of candidate ClinVar variants. A total of 141 RAD51C variants at the intron/exon boundaries were analyzed with MaxEntScan. Twenty variants were selected and genetically engineered into the wild-type minigene. All the variants disrupted splicing, and 18 induced major splicing anomalies without any trace or minimal amounts (<2.4%) of the minigene full-length (FL) transcript. Twenty-seven transcripts (including the wild-type and r.904A FL transcripts) were identified by fluorescent fragment electrophoresis; of these, 14 were predicted to truncate the RAD51C protein, 3 kept the reading frame, and 8 minor isoforms (1.1−4.7% of the overall expression) could not be characterized. Finally, we performed a tentative interpretation of the variants according to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, classifying 16 variants as likely pathogenic. Minigene assays have been proven as valuable tools for the initial characterization of potential spliceogenic variants. Hence, minigene mgR51C_ex2-8 provided useful splicing data for 40 RAD51C variants.
Collapse
|
42
|
Assidi M. High N-Cadherin Protein Expression in Ovarian Cancer Predicts Poor Survival and Triggers Cell Invasion. Front Oncol 2022; 12:870820. [PMID: 35574323 PMCID: PMC9096138 DOI: 10.3389/fonc.2022.870820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer (OC) is among the most lethal cancer among all gynaecological malignancies. Since most OC patients are diagnosed only at advanced stages mainly because of their imperceptible/nonspecific symptoms, survival rates are low. Therefore, more molecular biomarkers are needed to achieve more effective molecular stratification for better prognostic and theranostic outcomes. The cadherin family, particularly N-cadherin (N-CAD; also known as CDH2), is critical for cell-cell adhesion and epithelial- mesenchymal transition (EMT) of cancer. N-CAD protein has also been shown to be overexpressed in many advanced carcinomas. The aim of this study was to investigate the expression patterns of N-CAD protein, determine their correlations with the clinicopathological features of OC patients, and evaluate its prognostic value and involvement in EMT and metastasis. Protein expression of N-CAD was studied in 117 formalin-fixed and paraffin-embedded (FFPE) blocks from patients diagnosed with OC using Tissue Microarray and immunohistochemistry techniques. The N-CAD protein was overexpressed in 58% of our OC cohort. Furthermore, its cytoplasmic overexpression was significantly correlated with tumor grade (p= 0.05), tumor subtype (p= 0.05), tumor necrosis (p= 0.01), and age at menarche (p= 0.002). Interestingly, Kaplan-Meier analysis showed a significant correlation of disease-free survival (DFS) with OC patients with cytoplasmic N-CAD overexpression (p< 0.03, log rank). Patients with high N-CAD expression have approximately twice the recurrence rate at 5-year follow-up. The results of this study demonstrate a poor prognostic role of N-CAD overexpression in OC, which is reflected in higher recurrence and death rates of OC and its molecular contribution to EMT and distant metastasis. Therefore, OC patients with overexpressed N-CAD need to be monitored more frequently and closely. Further studies with larger patient cohorts are needed to validate these findings, demystify the role of N-CAD in OC pathophysiology, and further investigate its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
The Genetic and Molecular Analyses of RAD51C and RAD51D Identifies Rare Variants Implicated in Hereditary Ovarian Cancer from a Genetically Unique Population. Cancers (Basel) 2022; 14:cancers14092251. [PMID: 35565380 PMCID: PMC9104874 DOI: 10.3390/cancers14092251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
To identify candidate variants in RAD51C and RAD51D ovarian cancer (OC) predisposing genes by investigating French Canadians (FC) exhibiting unique genetic architecture. Candidates were identified by whole exome sequencing analysis of 17 OC families and 53 early-onset OC cases. Carrier frequencies were determined by the genetic analysis of 100 OC or HBOC families, 438 sporadic OC cases and 1025 controls. Variants of unknown function were assayed for their biological impact and/or cellular sensitivity to olaparib. RAD51C c.414G>C;p.Leu138Phe and c.705G>T;p.Lys235Asn and RAD51D c.137C>G;p.Ser46Cys, c.620C>T;p.Ser207Leu and c.694C>T;p.Arg232Ter were identified in 17.6% of families and 11.3% of early-onset cases. The highest carrier frequency was observed in OC families (1/44, 2.3%) and sporadic cases (15/438, 3.4%) harbouring RAD51D c.620C>T versus controls (1/1025, 0.1%). Carriers of c.620C>T (n = 7), c.705G>T (n = 2) and c.137C>G (n = 1) were identified in another 538 FC OC cases. RAD51C c.705G>T affected splicing by skipping exon four, while RAD51D p.Ser46Cys affected protein stability and conferred olaparib sensitivity. Genetic and functional assays implicate RAD51C c.705G>T and RAD51D c.137C>G as likely pathogenic variants in OC. The high carrier frequency of RAD51D c.620C>T in FC OC cases validates previous findings. Our findings further support the role of RAD51C and RAD51D in hereditary OC.
Collapse
|
44
|
Sherill-Rofe D, Raban O, Findlay S, Rahat D, Unterman I, Samiei A, Yasmeen A, Kaiser Z, Kuasne H, Park M, Foulkes WD, Bloch I, Zick A, Gotlieb WH, Tabach Y, Orthwein A. Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair. NAR Cancer 2022; 4:zcac013. [PMID: 35399185 PMCID: PMC8991968 DOI: 10.1093/narcan/zcac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).
Collapse
Affiliation(s)
- Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Oded Raban
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Amber Yasmeen
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Zafir Kaiser
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Hellen Kuasne
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - William D Foulkes
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem, Jerusalem 91120, Israel
| | - Walter H Gotlieb
- Division of Gynecology Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
45
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
46
|
Ogawa C, Hirasawa A, Ida N, Nakamura K, Masuyama H. Hereditary gynecologic tumors and precision cancer medicine. J Obstet Gynaecol Res 2022; 48:1076-1090. [PMID: 35229413 DOI: 10.1111/jog.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Gynecologic cancers are more often caused by genetic factors than other cancers. Genetic testing has become a promising avenue for the prevention, prognosis, and treatment of cancers. This review describes molecular features of gynecologic tumors linked to hereditary syndromes, gives an overview of the current state of clinical management, and clarifies the role of gynecology in the treatment of hereditary tumors. Typical hereditary gynecologic tumors include hereditary breast and ovarian cancer, Lynch syndrome, Peutz-Jeghers syndrome, and Cowden syndrome. Multigene panel testing, which analyzes a preselected subset of genes for genetic variants, has recently become the first-choice test because it can provide more accurate risk assessment than a single test. Furthermore, comprehensive genomic cancer profiling enables personalized cancer treatment and aids in germline findings.
Collapse
Affiliation(s)
- Chikako Ogawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoyuki Ida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
47
|
Beyond BRCA1/2: Homologous Recombination Repair Genetic Profile in a Large Cohort of Apulian Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14020365. [PMID: 35053526 PMCID: PMC8773795 DOI: 10.3390/cancers14020365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Ovarian cancer (OC) is the second most common gynecologic malignancy and the most common cause of death among women with gynecologic cancer. Despite significant improvements having been made over the past decades, OC remains one of the most challenging malignancies to treat. Targeted therapies, such as PARPi, have emerged as one of the most interesting treatments for OC, particularly in women with BRCA1 or BRCA2 mutations. or those with a dysfunctional homologous recombination repair pathway. The purpose of our study is to address the role of NGS-targeted resequencing in the clinical routine of OC, focusing not only on BRCA1/2 but also on the homologous recombination repair genetic profile. Abstract Background: Pathogenic variants in homologous recombination repair (HRR) genes other than BRCA1/2 have been associated with a high risk of ovarian cancer (OC). In current clinical practice, genetic testing is generally limited to BRCA1/2. Herein, we investigated the mutational status of both BRCA1/2 and 5 HRR genes in 69 unselected OC, evaluating the advantage of multigene panel testing in everyday clinical practice. Methods: We analyzed 69 epithelial OC samples using an NGS custom multigene panel of the 5 HRR pathways genes, beyond the genetic screening routine of BRCA1/2 testing. Results: Overall, 19 pathogenic variants (27.5%) were detected. The majority (21.7%) of patients displayed a deleterious mutation in BRCA1/2, whereas 5.8% harbored a pathogenic variant in one of the HRR genes. Additionally, there were 14 (20.3%) uncertain significant variants (VUS). The assessment of germline mutational status showed that a small number of variants (five) were not detected in the corresponding blood sample. Notably, we detected one BRIP1 and four BRCA1/2 deleterious variants in the low-grade serous and endometrioid histology OC, respectively. Conclusion: We demonstrate that using a multigene panel beyond BRCA1/2 improves the diagnostic yield in OC testing, and it could produce clinically relevant results.
Collapse
|
48
|
Hospital-based ovarian cancer patient traceback program results in minimal genetic testing uptake. Gynecol Oncol 2022; 164:615-621. [PMID: 34998598 DOI: 10.1016/j.ygyno.2021.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine the feasibility of hospital-based genetic counseling and testing (GC/T) Traceback for Ovarian Cancer (OC) patients, as proposed by the Division of Cancer Prevention and the Division of Cancer Control and Population Sciences, National Cancer Institute. METHODS Living patients with OC were sent a letter explaining the availability of guideline-supported GC/T for at least BRCA1/2 and surrogates of deceased patients were called on the telephone. Outcomes of contact attempts were systematically recorded and statistically described. RESULTS 598 Traceback-eligible OC patients diagnosed from 2006 to 2016 were identified (163 presumed-living and 435 deceased). Two living patients called our office and scheduled an appointment for GC/T after receiving a letter. For surrogates of prior patients, successful contact occurred in 25% of call attempts. Fourteen individuals (2 living patients and 12 surrogates) underwent genetic counseling. Of those 14, 10 individuals consented to genetic testing and 5 followed through with sample collection. None of these individuals had pathogenic variants (PVs). When surrogate call notes were reviewed, 58% reflected positive responses to contact, however 42% were noted to have negative or indifferent responses, which were most common among spouses. Total time spent for hospital-based Traceback was 109 h. CONCLUSIONS Overall, hospital-based Traceback via letter and telephone contact of surrogates is time-intensive and results in minimal uptake of GC/T. To practically execute this type of outreach program, health systems should consider collection of alternative contact information to allow for electronic communication of patient surrogates. Our study also underscores the importance of timely GC/T while patients are in active cancer care.
Collapse
|
49
|
Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci 2021; 23:348. [PMID: 35008774 PMCID: PMC8745585 DOI: 10.3390/ijms23010348] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | | |
Collapse
|
50
|
A Review of Breast Cancer Risk Factors in Adolescents and Young Adults. Cancers (Basel) 2021; 13:cancers13215552. [PMID: 34771713 PMCID: PMC8583289 DOI: 10.3390/cancers13215552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Cancer diagnosed in patients between the ages of 15 and 39 deserves special consideration. Diagnoses within this cohort of adolescents and young adults include childhood cancers which present at an older age than expected, or an early presentation of cancers that are typically observed in older adults, such as breast cancer. Cancers within this age group are associated with worse disease-free and overall survival rates, and the incidence of these cases are rising. Knowing an individual’s susceptibility to disease can change their clinical management and allow for the risk-testing of relatives. This review discusses the risk factors that contribute to breast cancer in this unique cohort of patients, including inherited genetic risk factors, as well as environmental and lifestyle factors. We also describe risk models that allow clinicians to quantify a patient’s lifetime risk of developing disease. Abstract Cancer in adolescents and young adults (AYAs) deserves special consideration for several reasons. AYA cancers encompass paediatric malignancies that present at an older age than expected, or early-onset of cancers that are typically observed in adults. However, disease diagnosed in the AYA population is distinct to those same cancers which are diagnosed in a paediatric or older adult setting. Worse disease-free and overall survival outcomes are observed in the AYA setting, and the incidence of AYA cancers is increasing. Knowledge of an individual’s underlying cancer predisposition can influence their clinical care and may facilitate early tumour surveillance strategies and cascade testing of at-risk relatives. This information can further influence reproductive decision making. In this review we discuss the risk factors contributing to AYA breast cancer, such as heritable predisposition, environmental, and lifestyle factors. We also describe a number of risk models which incorporate genetic factors that aid clinicians in quantifying an individual’s lifetime risk of disease.
Collapse
|