1
|
Yang Q, Yu H, Du S, Li Q. Overexpression of CDC42 causes accumulation of DNA damage leading to failure of oogenesis in triploid Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 282:136769. [PMID: 39490852 DOI: 10.1016/j.ijbiomac.2024.136769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Triploid Pacific oyster Crassostrea gigas exhibits notable differences in fecundity, with the majority being sterile individuals, referred to as female β, which produce few oocytes, while a minority are fertile individuals, referred to as female α, which produce abundant oocytes. However, the molecular mechanisms underlying these differences in triploid fecundity remain poorly understood. CDC42 has been implicated in processes related to increased DNA damage and genomic instability. Here, we investigate the crucial role of CDC42 in DNA damage repair during oogenesis in triploid C. gigas. Immunofluorescence analysis of γH2AX, a marker for DNA double-stranded breaks, showed significantly higher levels of DNA damage in gonadal cells of triploids compared to diploids, particularly in female β. Histological and ultrastructural analyses revealed abnormal germ cells, termed β gonia, characterized by giant nuclei condensed into irregular chromosome-like chromatin, present in triploid gonadal follicles. RNAseq and proteomic analyses revealed significantly elevated CDC42 expression in triploid gonads compared to the diploids. Inhibition of CDC42 activity in triploids using ZCL278, a CDC42-specific inhibitor, resulted in a significant reduction in DNA damage, increased oocyte numbers, and a decrease in β gonia count. Transcriptome profiling revealed that CDC42 inhibition upregulated the PI3K-AKT signaling pathway along with DNA repair activation. Overall, our findings suggest that overexpression of CDC42 during oogenesis in triploid C. gigas impedes DNA repair, leading to the accumulation of DNA damage, and consequently, oogenesis blockade and abnormal germ cell differentiation. Conversely, inhibition of CDC42 activity activates the PI3K-AKT signaling pathway and promotes DNA repair, thereby mitigating DNA damage and facilitating oogenesis in triploids. This study provides new insights into the molecular mechanisms of sterility in female triploid C. gigas.
Collapse
Affiliation(s)
- Qiong Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Wei J, Cheng P, Kong M, Zhang L, Liu S, Ning B, Huang X. MicroRNA-23a-3p overexpression represses proliferation and accelerates apoptosis of granular cells in polycystic ovarian syndrome by targeting HMGA2. Gynecol Endocrinol 2023; 39:2172155. [PMID: 36809792 DOI: 10.1080/09513590.2023.2172155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE Granular cells (GCs) are involved in polycystic ovarian syndrome (PCOS) progression. MicroRNA (miR)-23a downregulation is linked to PCOS development. Therefore, this research explored the influences of miR-23a-3p on GC proliferation and apoptosis in PCOS. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to examine miR-23a-3p and HMGA2 expression in GCs of patients with PCOS. Then, miR-23a-3p and/or HMGA2 expression was altered in GCs (KGN and SVOG), after which miR-23a-3p, HMGA2, Wnt2, and β-catenin expression, GC viability, and GC apoptosis were measured by RT-qPCR and western blotting, MTT assay, and flow cytometry, respectively. A dual-luciferase reporter gene assay was utilized to assess the targeting relationship between miR-23a-3p and HMGA2. Finally, GC viability and apoptosis were tested after the combined treatment of miR-23a-3p mimic and pcDNA3.1-HMGA2. RESULTS miR-23a-3p was poorly expressed but HMGA2 was overexpressed in GCs of patients with PCOS. Mechanistically, HMGA2 was negatively targeted by miR-23a-3p in GCs. Furthermore, miR-23a-3p inhibition or HMGA2 upregulation elevated viability and reduced apoptosis of KGN and SVOG cells, along with increased Wnt2 and β-catenin expression. In KNG cells, HMGA2 overexpression abrogated the impacts of miR-23a-3p overexpression on GC viability and apoptosis. CONCLUSIONS Collectively, miR-23a-3p decreased HMGA2 expression to block the Wnt/β-catenin pathway, thereby depressing viability and facilitating apoptosis of GCs.
Collapse
Affiliation(s)
- Junzi Wei
- Department of Gynecology, Urumqi Youai Hospital, Urumqi, Xinjiang, P.R. China
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Ping Cheng
- Department of Gynecology, Urumqi Youai Hospital, Urumqi, Xinjiang, P.R. China
| | - Mei Kong
- Department of Gynecology, Urumqi Youai Hospital, Urumqi, Xinjiang, P.R. China
| | - Ling Zhang
- Department of Assisted Reproduction, Urumqi Maternal and Child Health Hospital, Urumqi, Xinjiang, P.R. China
| | - Shuang Liu
- Department of Gynecology, Urumqi Maternal and Child Health Hospital, Urumqi, Xinjiang, P.R. China
| | - Bingxue Ning
- Center of Reproductive Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Xinlin Huang
- Department of Assisted Reproduction, Urumqi Maternal and Child Health Hospital, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
3
|
Babu A, Ramanathan G. Multi-omics insights and therapeutic implications in polycystic ovary syndrome: a review. Funct Integr Genomics 2023; 23:130. [PMID: 37079114 DOI: 10.1007/s10142-023-01053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease that causes adverse effects in women in their reproductive phase. Nonetheless, the molecular mechanisms remain unclear. Over the last decade, sequencing and omics approaches have advanced at an increased pace. Omics initiatives have come to the forefront of biomedical research by presenting the significance of biological functions and processes. Thus, multi-omics profiling has yielded important insights into understanding the biology of PCOS by identifying potential biomarkers and therapeutic targets. Multi-omics platforms provide high-throughput data to leverage the molecular mechanisms and pathways involving genetic alteration, epigenetic regulation, transcriptional regulation, protein interaction, and metabolic alterations in PCOS. The purpose of this review is to outline the prospects of multi-omics technologies in PCOS research by revealing novel biomarkers and therapeutic targets. Finally, we address the knowledge gaps and emerging treatment strategies for the management of PCOS. Future PCOS research in multi-omics at the single-cell level may enhance diagnostic and treatment options.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023; 24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
A small GTPase, Cdc42 is evolutionarily one of the most ancient members of the Rho family, which is ubiquitously expressed and involved in a wide range of fundamental cellular functions. The crucial role of Cdc42 includes regulation of the actin cytoskeleton, cell polarity, morphology and migration, endocytosis and exocytosis, cell cycle, and proliferation in many different cell types. Many studies have provided compelling yet contradicting evidence that Cdc42 dysregulation plays an important role in cellular and tissue aging. Furthermore, Cdc42 is a critical factor in the development and progression of aging-related pathologies, such as neurodegenerative and cardiovascular disorders, diabetes type 2, and aging-related disorders of the joints and bones, and the inhibition of the Cdc42 demonstrates potentially significant therapeutic and anti-aging effects in animal models of aging and disease. However, regulation of Cdc42 expression and activity is very complex and depends on many factors, such as the origin and complexity of the tissues, hormonal status, etc. Therefore, this review is focused on current advances in understanding the underlying cellular and molecular mechanisms associated with Cdc42 activity and regulation of senescence in different cell types since they may provide a foundation for novel therapeutic strategies and targeted drugs to reverse the aging process and treat aging-associated disorders.
Collapse
|
5
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
6
|
Guo P, Liu Y, Feng J, Tang S, Wei F, Feng J. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 2022; 96:3143-3162. [DOI: 10.1007/s00204-022-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
7
|
A Mutation in Endogenous saRNA miR-23a Influences Granulosa Cells Response to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061174. [PMID: 35740072 PMCID: PMC9219974 DOI: 10.3390/antiox11061174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Phenotypes are the result of the interaction between the gene and the environment, so the response of individuals with different genotypes to an environment is variable. Here, we reported that a mutation in miR-23a influences granulosa cells (GCs) response to oxidative stress, a common mechanism of environmental factors affecting female reproduction. We showed that nuclear miR-23a is a pro-apoptotic miRNA in porcine GCs through the activation of the transcription and function of NORHA, a long non-coding RNA (lncRNA) induces GC apoptosis and responses to oxidative stress. Mechanistically, miR-23a acts as an endogenous small activating RNA (saRNA) to alter histone modifications of the NORHA promoter through the direct binding to its core promoter. A C > T mutation was identified at −398 nt of the miR-23a core promoter, which created a novel binding site for the transcription factor SMAD4 and recruited the transcription repressor SMAD4 to inhibit miR-23a transcription and function in GCs. Notably, g.−398C > T mutation in the miR-23a promoter reduced GCs response to oxidative stress. In addition, g.−398C > T mutation was significantly associated with sow fertility traits. In short, our findings preliminarily revealed the genetic basis of individual differences in the response to oxidative stress from the perspective of a single mutation and identified miR-23a as a candidate gene for the environmental adaptation to oxidative stress.
Collapse
|
8
|
Mei Q, Li H, Liu Y, Wang X, Xiang W. Advances in the study of CDC42 in the female reproductive system. J Cell Mol Med 2021; 26:16-24. [PMID: 34859585 PMCID: PMC8742232 DOI: 10.1111/jcmm.17088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
CDC42 is a member of the Rho‐GTPase family and is involved in a variety of cellular functions including regulation of cell cycle progression, constitution of the actin backbone and membrane transport. In particular, CDC42 plays a key role in the establishment of polarity in female vertebrate oocytes, and essential to this major regulatory role is its local occupation of specific regions of the cell to ensure that the contractile ring is assembled at the right time and place to ensure proper gametogenesis. The multifactor controlled ‘inactivation‐activation’ process of CDC42 also allows it to play an important role in the multilevel signalling network, and the synergistic regulation of multiple genes ensures maximum precision during gametogenesis. The purpose of this paper is to review the role of CDC42 in the control of gametogenesis and to explore its related mechanisms, with the aim of further understanding the great research potential of CDC42 in female vertebrate germ cells and its future clinical translation.
Collapse
Affiliation(s)
- Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Pei CZ, Jin L, Baek KH. Pathogenetic analysis of polycystic ovary syndrome from the perspective of omics. Biomed Pharmacother 2021; 142:112031. [PMID: 34411918 DOI: 10.1016/j.biopha.2021.112031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynecological endocrine disease, involving multiple genes, multiple pathways, and complex hormone secretion processes. Hence, the pathogenesis of PCOS cannot be explained by a single factor. Omics analysis includes genomics, transcriptomics, and proteomics, which are fast and effective methods for studying the pathogenesis of diseases. PCOS is primarily characterized by androgen excess, and reproductive and metabolic dysfunctions. The application of omics analysis in the body fluids, blood, cells or tissues of women with PCOS offers the potential for unexpected molecular advantages in explaining new mechanisms of PCOS etiology and pathophysiology, and provides new perspectives for identifying potential biomarkers and developing new therapeutic targets. At present, several omics analyses have been applied to produce complex datasets. In this manuscript, the recent advances in omics research on PCOS are summarized, aiming at an important and parallel review of the newly published research.
Collapse
Affiliation(s)
- Chang-Zhu Pei
- Department of Biomedical Science, Cell and Gene Therapy Research Institute, CHA University, Bundang CHA Hospital, Gyeonggi-Do 13488, Republic of Korea
| | - Lan Jin
- Department of Clinical Laboratory, Yanbian Maternity and Child Health Care Hospital, Jilin Provincial Yanji-Shi, 133000, China
| | - Kwang-Hyun Baek
- Department of Biomedical Science, Cell and Gene Therapy Research Institute, CHA University, Bundang CHA Hospital, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|