1
|
Delek FSP, Tunçer ŞB, Ödemiş DA, Erciyas SK, Erdoğan ÖŞ, Saip P, Yazıcı H. miR-3653-3p Expression in PBMCs: Unveiling the Diagnostic Potential for Ovarian Cancer. Biochem Genet 2024:10.1007/s10528-024-10819-0. [PMID: 38705961 DOI: 10.1007/s10528-024-10819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Ovarian cancer is typically diagnosed at an advanced stage, recurs early and often, and currently lacks effective treatment. Therefore, overall survival and progression-free survival are relatively short for this disease. Sensitive and specific biomarkers for early diagnosis and follow-up for effective treatment of the disease are currently lacking. MicroRNA (miRNA/miR) expression studies are widely used in cancer research. Disruption or malfunction of miRNAs, a class of noncoding small RNAs, has been implicated in cancer progression in several publications. Of note, the expression of a series of miRNAs is known to differ in ovarian cancer. In cancer research, it is crucial to analyze expression patterns in both cancer patients and healthy individuals to identify cancer-specific biological markers and to understand their role in cancer. In the present study, the expression levels of miR-3653-3p in the peripheral blood mononuclear cells (PBMCs) of 150 patients with high-risk ovarian cancer were determined, including those with a family history of cancer or an early-age diagnosis of ovarian cancer, as well as 100 healthy individuals. The results were then compared between the two groups. The expression level of miR-3653-3p in the PBMCs of patients with ovarian cancer was determined to be 9.49-fold higher than that in the healthy control group, and this result was statistically significant (P < 0.001). In addition, receiver-operating characteristic curve analysis of PBMC showed statistical significance of miR-3653-3p in discriminating ovarian cancer patients from healthy subjects (P < 0.001). These results suggest that miR-3653-3p detected in peripheral blood may be used as a non-invasive biomarker for ovarian cancer.
Collapse
Affiliation(s)
- Fatma Seher Pektopal Delek
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Division of Cancer Genetics, Department of Basic Oncology, Institute of Health Sciences, Istanbul University, Vezneciler-Fatih, 32416, Istanbul, Türkiye
| | - Şeref Buğra Tunçer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Demet Akdeniz Ödemiş
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Seda Kılıç Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Özge Şükrüoğlu Erdoğan
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Pınar Saip
- Department of Clinical Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Hülya Yazıcı
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Arel University, Cevizlibağ-Zeytinburnu, 34010, Istanbul, Türkiye.
| |
Collapse
|
2
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Tuncer SB, Celik B, Kılıc Erciyas S, Sukruoglu Erdogan O, Pasin O, Avsar M, Kurt Gultaslar B, Adamnejad Ghafour A, Uyaroglu G, Akdeniz Odemis D, Yazıcı H. Aberrant miR-3135b and miR-1273g-3p expression in the peripheral blood samples of BRCA1/2 (±) ovarian cancer patients. Heliyon 2024; 10:e23876. [PMID: 38234891 PMCID: PMC10792459 DOI: 10.1016/j.heliyon.2023.e23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Ovarian cancer (OC) ranks as the eighth most prevalent malignancy among women globally. The short non-coding RNA molecules, microRNAs (miRNAs) target multiple mRNAs and regulate the gene expression. Here in this study, we aimed to validate miR-3135b and miR-1273g-3p as novel biomarkers for prognostic and diagnostic factor OC. After RNA isolation, we analyzed the miR-3135b and miR-1273g-3p expression in peripheral blood samples derived from 150 OC patients. Subsequently, we compared their expression levels with 100 healthy controls. The differences of miR-3135b and miR-1273g-3p expression were detected using the Quantitative Real Time-PCR (qRT-PCR) technique following miRNA-specific cDNA synthesis pursing miRNA separation. The miR-3135b and miR-1273g-3p were higher in OC patients who tested positive for BRCA1/2 compared to BRCA-negative patients, and healthy cases. The level of miR-3135b demonstrated a roughly 4.82-fold increase in OC patients in comparison to the healthy cases, while miR-1273g-3p expression exhibited a roughly 6.77-fold increase. The receiver operating characteristic (ROC) analysis has demonstrated the potential of miR-3135b and miR-1273g-3p as markers for distinguishing between OC patients and healthy controls. The higher expressions of miR-3135b and miR-1273g-3p could be associated with OC development. Moreover, miR-3135b may have a diagnostic potential and miR-1273g-3p may have both diagnostic and prognostic potential in OC cell differentiation. The string analysis has revealed an association between miR-1273g-3p and the MDM2 gene, suggesting a potential link to tumor formation through the proteasomal degradation of the TP53 tumor suppressor gene. Additionally, the analysis indicates an association of miR-1273g-3p with CHEK1, a gene involved in checkpoint-mediated cell cycle arrest. String analysis also indicates that miR-3135b is associated with the MAPK1 gene, causing activation of the oncogenesis cascade. In conclusion, miR-1273g-3p, and miR-3135b exhibit significant potential as diagnostic markers. However, further research is needed to comprehensively investigate these miRNAs diagnostic and predictive characteristics in a larger cohort.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Betul Celik
- Molecular Biology Department, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Pasin
- Faculty of Medicine, Department of Biostatistics, Bezmialem Vakıf University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Department of Medical Services and Techniques, Istanbul Aydın University, Istanbul, Türkiye
| | - Busra Kurt Gultaslar
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | | | - Gamze Uyaroglu
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazıcı
- Department of Medical Biology, Istanbul Arel University, Istanbul, Türkiye
| |
Collapse
|
4
|
Hamidi F, Gilani N, Arabi Belaghi R, Yaghoobi H, Babaei E, Sarbakhsh P, Malakouti J. Identifying potential circulating miRNA biomarkers for the diagnosis and prediction of ovarian cancer using machine-learning approach: application of Boruta. Front Digit Health 2023; 5:1187578. [PMID: 37621964 PMCID: PMC10445490 DOI: 10.3389/fdgth.2023.1187578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction In gynecologic oncology, ovarian cancer is a great clinical challenge. Because of the lack of typical symptoms and effective biomarkers for noninvasive screening, most patients develop advanced-stage ovarian cancer by the time of diagnosis. MicroRNAs (miRNAs) are a type of non-coding RNA molecule that has been linked to human cancers. Specifying diagnostic biomarkers to determine non-cancer and cancer samples is difficult. Methods By using Boruta, a novel random forest-based feature selection in the machine-learning techniques, we aimed to identify biomarkers associated with ovarian cancer using cancerous and non-cancer samples from the Gene Expression Omnibus (GEO) database: GSE106817. In this study, we used two independent GEO data sets as external validation, including GSE113486 and GSE113740. We utilized five state-of-the-art machine-learning algorithms for classification: logistic regression, random forest, decision trees, artificial neural networks, and XGBoost. Results Four models discovered in GSE113486 had an AUC of 100%, three in GSE113740 with AUC of over 94%, and four in GSE113486 with AUC of over 94%. We identified 10 miRNAs to distinguish ovarian cancer cases from normal controls: hsa-miR-1290, hsa-miR-1233-5p, hsa-miR-1914-5p, hsa-miR-1469, hsa-miR-4675, hsa-miR-1228-5p, hsa-miR-3184-5p, hsa-miR-6784-5p, hsa-miR-6800-5p, and hsa-miR-5100. Our findings suggest that miRNAs could be used as possible biomarkers for ovarian cancer screening, for possible intervention.
Collapse
Affiliation(s)
- Farzaneh Hamidi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arabi Belaghi
- Department of Mathematics, Applied Mathematics and Statistics, Uppsala University, Uppsala, Sweden
- Department of Statistics, Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran
- Department of Energy and Technology, Swedish Agricultural University, Uppsala, Sweden
| | - Hanif Yaghoobi
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Malakouti
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
5
|
Moazzami B, Chaichian S, Nikfar B, Arbabi Bidgoli S. Modulation of microRNAs expression and cellular signaling pathways through curcumin as a potential therapeutical approach against ovarian cancer: A review. Pathol Res Pract 2023; 247:154527. [PMID: 37235907 DOI: 10.1016/j.prp.2023.154527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Short non-coding RNAs called microRNAs (miRNAs) control gene expression by either inhibiting translation or degrading messenger RNA. MiRNAs are crucial for many biological functions, and the deregulation of their expression is strongly linked to the emergence of cancer. A single miRNA controls several gene expressions, allowing it to simultaneously control a number of cellular signaling pathways. As a result, miRNAs may be used as therapeutic targets as well as biomarkers for the prognosis and diagnosis of different cancers. Recent research has shown that natural compounds like curcumin, resveratrol and quercetin exert their pro-apoptotic and/or anti-proliferative impacts by modulating one and/or more miRNAs, which inhibits the growth of cancer cells, induces apoptosis, or increases the effectiveness of conventional cancer therapies. Here, we summarize the most recent developments in curcumin's control over the expression of miRNAs and emphasize the significance of these herbal remedies as a viable strategy in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University, Tehran, Iran
| |
Collapse
|
6
|
Autin P, Deshayes S, Lea J, Boisgerault N, Dupré E, Labarrière N, Leguevel R, Fonteneau JF, Blanquart C, Fradin D. The DCMU Herbicide Shapes T-cell Functions By Modulating Micro-RNA Expression Profiles. Front Immunol 2022; 13:925241. [PMID: 35967413 PMCID: PMC9366666 DOI: 10.3389/fimmu.2022.925241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
DCMU [N-(3,4-dichlorophenyl)-N-dimethylurea] or diuron is a widely used herbicide, which can cause adverse effects on human, especially on immune cells, due to their intrinsic properties and wide distribution. These cells are important for fighting not only against virus or bacteria but also against neoplastic cell development. We developed an approach that combines functional studies and miRNA and RNA sequencing data to evaluate the effects of DCMU on the human immune response against cancer, particularly the one carried out by CD8+ T cells. We found that DCMU modulates the expression of miRNA in a dose-dependent manner, leading to a specific pattern of gene expression and consequently to a diminished cytokine and granzyme B secretions. Using mimics or anti-miRs, we identified several miRNA, such as hsa-miR-3135b and hsa-miR-21-5p, that regulate these secretions. All these changes reduce the CD8+ T cells’ cytotoxic activity directed against cancer cells, in vitro and in vivo in a zebrafish model. To conclude, our study suggests that DCMU reduces T-cell abilities, participating thus to the establishment of an environment conducive to cancer development.
Collapse
Affiliation(s)
- Pierre Autin
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Sophie Deshayes
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Juliette Lea
- Université de Rennes, ImPACcell Plateform, BIOSIT, Rennes, France
| | - Nicolas Boisgerault
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Emilie Dupré
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nathalie Labarrière
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Rémy Leguevel
- Université de Rennes, ImPACcell Plateform, BIOSIT, Rennes, France
| | - Jean-François Fonteneau
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Christophe Blanquart
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Delphine Fradin
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
- *Correspondence: Delphine Fradin,
| |
Collapse
|
7
|
Wang Y, Han Y, Jin Y, He Q, Wang Z. The Advances in Epigenetics for Cancer Radiotherapy. Int J Mol Sci 2022; 23:ijms23105654. [PMID: 35628460 PMCID: PMC9145982 DOI: 10.3390/ijms23105654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is an important factor threatening human life and health; in recent years, its morbidity and mortality remain high and demosntrate an upward trend. It is of great significance to study its pathogenesis and targeted therapy. As the complex mechanisms of epigenetic modification has been increasingly discovered, they are more closely related to the occurrence and development of cancer. As a reversible response, epigenetic modification is of great significance for the improvement of classical therapeutic measures and the discovery of new therapeutic targets. It has become a research focusto explore the multi-level mechanisms of RNA, DNA, chromatin and proteins. As an important means of cancer treatment, radiotherapy has made great progress in technology, methods, means and targeted sensitization after years of rapid development, and even research on radiotherapy based on epigenetic modification is rampant. A series of epigenetic effects of radiation on DNA methylation, histone modification, chromosome remodeling, RNA modification and non-coding RNA during radiotherapy affects the therapeutic effects and prognosis. Starting from the epigenetic mechanism of tumorigenesis, this paper reviews the latest progress in the mechanism of interaction between epigenetic modification and cancer radiotherapy and briefly introduces the main types, mechanisms and applications of epigenetic modifiers used for radiotherapy sensitization in order to explore a more individual and dynamic approach of cancer treatment based on epigenetic mechanism. This study strives to make a modest contribution to the progress of human disease research.
Collapse
Affiliation(s)
| | | | | | - Qiang He
- Correspondence: (Q.H.); (Z.W.); Tel.: +86-431-85619443 (Z.W.)
| | - Zhicheng Wang
- Correspondence: (Q.H.); (Z.W.); Tel.: +86-431-85619443 (Z.W.)
| |
Collapse
|
8
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
9
|
Tuncer SB, Celik B, Akdeniz Odemis D, Kılıc Erciyas S, Sukruoglu Erdogan O, Avsar M, Kuru Turkcan G, Yazici H. miRNA Sequence Analysis in Patients With Kaposi's Sarcoma-Associated Herpesvirus. Pathol Oncol Res 2022; 28:1610055. [PMID: 35140551 PMCID: PMC8820206 DOI: 10.3389/pore.2022.1610055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are the non-coding RNAs that can both attach to the untranslated and coding sections of target mRNAs, triggering destruction or post-transcriptional alteration. miRNAs regulate various cellular processes such as immune function, apoptosis, and tumorigenesis. About 35,000 miRNAs have been discovered in the human genome. The increasing evidence suggests that the dysregulation of human miRNAs may have a role in the etiology of some disorders including cancer. Only a small sub-set of human miRNAs has functionally been validated in the pathogenesis of oncogenic viruses such as Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV is the cause of various human malignancies including primary effusion lymphoma (PEL) and Kaposi’s sarcoma (KS), which are mainly seen in AIDS patients or other immunocompromised people. We aimed to identify the miRNAs in Kaposi’s sarcoma cases, with the comparison of KSHV seropositive and seronegative tumors with the controls and in each other in Turkish Kaposi’s sarcoma patients. We performed the miRNA-sequencing at genome level in the peripheral blood mononuclear cells of 16 Kaposi’s sarcoma patients, and in 8 healthy controls matched for age, gender, and ethnicity. A total of 642 miRNA molecules with different expression profiles were identified between the patients and the healthy controls. Currently, out of 642 miRNAs, 7 miRNAs (miR-92b-3p, miR-490-3p, miR-615-3p, miR-629-5p, miR-1908, miR-3180, miR-4433b-3p) which have not been described in the literature in the context of Kaposi’s sarcoma were addressed in the study for the first time and 9 novel miRNAs, not found previously in the database, have been detected in Kaposi’s sarcoma using the miRNA-sequencing technique. This study demonstrates the identification of differently expressed miRNAs which might be the new therapeutic targets for Kaposi’s sarcoma, that has limited treatment options and can be used in the etiology, diagnosis, and prognosis of this cancer.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Betul Celik
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Mukaddes Avsar
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Istanbul, Turkey
| | - Gozde Kuru Turkcan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Turkey
| | - Hulya Yazici
- Department of Medical Biology and Genetics, Arel Medical Faculty, Istanbul Arel University, Istanbul, Turkey
| |
Collapse
|
10
|
Hamidi F, Gilani N, Belaghi RA, Sarbakhsh P, Edgünlü T, Santaguida P. Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence. Front Genet 2021; 12:724785. [PMID: 34899827 PMCID: PMC8656459 DOI: 10.3389/fgene.2021.724785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the second most dangerous gynecologic cancer with a high mortality rate. The classification of gene expression data from high-dimensional and small-sample gene expression data is a challenging task. The discovery of miRNAs, a small non-coding RNA with 18–25 nucleotides in length that regulates gene expression, has revealed the existence of a new array for regulation of genes and has been reported as playing a serious role in cancer. By using LASSO and Elastic Net as embedded algorithms of feature selection techniques, the present study identified 10 miRNAs that were regulated in ovarian serum cancer samples compared to non-cancer samples in public available dataset GSE106817: hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-1233-5p, hsa-miR-4532, hsa-miR-4783-3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290, hsa-miR-3184-5p, and hsa-miR-320b. Further, we implemented state-of-the-art machine learning classifiers, such as logistic regression, random forest, artificial neural network, XGBoost, and decision trees to build clinical prediction models. Next, the diagnostic performance of these models with identified miRNAs was evaluated in the internal (GSE106817) and external validation dataset (GSE113486) by ROC analysis. The results showed that first four prediction models consistently yielded an AUC of 100%. Our findings provide significant evidence that the serum miRNA profile represents a promising diagnostic biomarker for ovarian cancer.
Collapse
Affiliation(s)
- Farzaneh Hamidi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arabi Belaghi
- Department of Statistics, Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran.,Department of Mathematics, Applied Mathematics and Statistics, Uppsala University, Uppsala, Sweden
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tuba Edgünlü
- Department of Medical Biology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Pasqualina Santaguida
- Department of Health Research and Methods, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Hsa-miR-3651 could serve as a novel predictor for in-breast recurrence via FRMD3. Breast Cancer 2021; 29:274-286. [PMID: 34865205 PMCID: PMC8885475 DOI: 10.1007/s12282-021-01308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Background MicroRNAs are small non-coding RNAs with pivotal regulatory functions in multiple cellular processes. Their significance as molecular predictors for breast cancer was demonstrated in the past 15 years. The aim of this study was to elucidate the role of hsa-miR-3651 for predicting of local control (LC) in early breast cancer. Results By means of high-throughput technology, hsa-miR-3651 was found to be differentially expressed between patients who experienced local relapse compared to those without (N = 23; p = 0.0035). This result could be validated in an independent cohort of 87 patients using RT-qPCR (p < 0.0005). In a second analysis step with a chip-based microarray containing 70,523 probes of potential target molecules, FERM domain protein 3 (FRMD3) was found to be the most down-regulated protein (N = 21; p = 0.0016). Computational analysis employing different prediction algorithms revealed FRMD3 as a likely downstream target of hsa-miR-3651 with an 8mer binding site between the two molecules. This could be validated in an independent patient set (N = 20, p = 0.134). Conclusion The current study revealed that hsa-miR-3651 is a predictor of LC in early breast cancer via its putative target protein FRMD3. Since microRNAs interfere in multiple pathways, the results of this hypothesis generating study may contribute to the development of tailored therapies for breast cancer in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01308-y.
Collapse
|
12
|
Huskey ALW, McNeely I, Merner ND. CEACAM Gene Family Mutations Associated With Inherited Breast Cancer Risk - A Comparative Oncology Approach to Discovery. Front Genet 2021; 12:702889. [PMID: 34447411 PMCID: PMC8383343 DOI: 10.3389/fgene.2021.702889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Recent studies comparing canine mammary tumors (CMTs) and human breast cancers have revealed remarkable tumor similarities, identifying shared expression profiles and acquired mutations. CMTs can also provide a model of inherited breast cancer susceptibility in humans; thus, we investigated breed-specific whole genome sequencing (WGS) data in search for novel CMT risk factors that could subsequently explain inherited breast cancer risk in humans. Methods WGS was carried out on five CMT-affected Gold Retrievers from a large pedigree of 18 CMT-affected dogs. Protein truncating variants (PTVs) detected in all five samples (within human orthlogs) were validated and then genotyped in the 13 remaining CMT-affected Golden Retrievers. Allele frequencies were compared to canine controls. Subsequently, human blood-derived exomes from The Cancer Genome Atlas breast cancer cases were analyzed and allele frequencies were compared to Exome Variant Server ethnic-matched controls. Results Carcinoembryonic Antigen-related Cell Adhesion Molecule 24 (CEACAM24) c.247dupG;p.(Val83Glyfs∗48) was the only validated variant and had a frequency of 66.7% amongst the 18 Golden Retrievers with CMT. This was significant compared to the European Variation Archive (p-value 1.52 × 10–8) and non-Golden Retriever American Kennel Club breeds (p-value 2.48 × 10–5). With no direct ortholog of CEACAM24 in humans but high homology to all CEACAM gene family proteins, all human CEACAM genes were investigated for PTVs. A total of six and sixteen rare PTVs were identified in African and European American breast cancer cases, respectively. Single variant assessment revealed five PTVs associated with breast cancer risk. Gene-based aggregation analyses revealed that rare PTVs in CEACAM6, CEACAM7, and CEACAM8 are associated with European American breast cancer risk, and rare PTVs in CEACAM7 are associated with breast cancer risk in African Americans. Ultimately, rare PTVs in the entire CEACAM gene family are associated with breast cancer risk in both European and African Americans with respective p-values of 1.75 × 10–13 and 1.87 × 10–04. Conclusion This study reports the first association of inherited CEACAM mutations and breast cancer risk, and potentially implicates the whole gene family in genetic risk. Precisely how these mutations contribute to breast cancer needs to be determined; especially considering our current knowledge on the role that the CEACAM gene family plays in tumor development, progression, and metastasis.
Collapse
Affiliation(s)
- Anna L W Huskey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Isaac McNeely
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
13
|
Saral MA, Tuncer SB, Odemis DA, Erdogan OS, Erciyas SK, Saip P, Ozel S, Yazici H. New biomarkers in peripheral blood of patients with ovarian cancer: high expression levels of miR-16-5p, miR-17-5p, and miR-638. Arch Gynecol Obstet 2021; 305:193-201. [PMID: 34370073 DOI: 10.1007/s00404-021-06138-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Ovarian cancer is one of the most fatal gynecologic malignities. miR-16-5p, miR-17-5p, and miR-638 genes were found to have been associated with ovarian cancer in accordance with the data obtained from the previous microarray research performed by Tuncer et al. (J Ovarian Res 13(1):99, 2020). The expression levels of these miRNAs in the peripheral blood samples of 142 ovarian cancer patients, and 97 healthy controls were investigated for performing the validation, and to identify whether these genes were the possible biomarkers to be used in the early diagnosis of high-risk ovarian cancer patients, and in the prognosis of patients. METHODS The miRNA expression analysis was performed using the miRNA-specific cDNA synthesis, and real-time PCR methods following the RNA isolation from the peripheral blood lymphocytes. RESULTS miR-16-5p, miR-17-5p, and miR-638 miRNA gene expression levels were found to have twofold higher expression levels in patient groups compared with the gene expression levels in healthy controls, and were statistically significant (p < 0.05). In addition, the comparison of the miRNA expression levels with the clinical data of patients showed that there was a significant difference with smoking history and the increased expression level of miR-17-5 (p: 0.007). There was a significant difference between the increased expression level of miR-638 with the locally advanced stage, and abdominal/pelvic metastatic patients (p: 0.03). CONCLUSIONS The obtained data suggest that miR-16-5p, miR-17-5p, and miR-638 molecules might be the noninvasive biomarkers in identifying the ovarian cancer. However, the investigation and monitoring of the changeability of these biomarkers in benign ovarian diseases, and during the treatment must be performed in future studies for identifying the accurate diagnostic, and prognostic features of miRNAs.
Collapse
Affiliation(s)
- Mukaddes Avsar Saral
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey.,Health Sciences Institute, Istanbul University, Beyazıt/Fatih, 34452, Istanbul, Turkey.,Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Seda Kilic Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Pınar Saip
- Department of Medical Oncology in Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Sevda Ozel
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Hulya Yazici
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey.
| |
Collapse
|
14
|
Cirillo PDR, Margiotti K, Fabiani M, Barros-Filho MC, Sparacino D, Cima A, Longo SA, Cupellaro M, Mesoraca A, Giorlandino C. Multi-analytical test based on serum miRNAs and proteins quantification for ovarian cancer early detection. PLoS One 2021; 16:e0255804. [PMID: 34352040 PMCID: PMC8341627 DOI: 10.1371/journal.pone.0255804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
Advanced ovarian cancer is one of the most lethal gynecological tumor, mainly due to late diagnoses and acquired drug resistance. MicroRNAs (miRNAs) are small-non coding RNA acting as tumor suppressor/oncogenes differentially expressed in normal and epithelial ovarian cancer and has been recognized as a new class of tumor early detection biomarkers as they are released in blood fluids since tumor initiation process. Here, we evaluated by droplet digital PCR (ddPCR) circulating miRNAs in serum samples from healthy (N = 105) and untreated ovarian cancer patients (stages I to IV) (N = 72), grouped into a discovery/training and clinical validation set with the goal to identify the best classifier allowing the discrimination between earlier ovarian tumors from health controls women. The selection of 45 candidate miRNAs to be evaluated in the discovery set was based on miRNAs represented in ovarian cancer explorative commercial panels. We found six miRNAs showing increased levels in the blood of early or late-stage ovarian cancer groups compared to healthy controls. The serum levels of miR-320b and miR-141-3p were considered independent markers of malignancy in a multivariate logistic regression analysis. These markers were used to train diagnostic classifiers comprising miRNAs (miR-320b and miR-141-3p) and miRNAs combined with well-established ovarian cancer protein markers (miR-320b, miR-141-3p, CA-125 and HE4). The miRNA-based classifier was able to accurately discriminate early-stage ovarian cancer patients from health-controls in an independent sample set (Sensitivity = 80.0%, Specificity = 70.3%, AUC = 0.789). In addition, the integration of the serum proteins in the model markedly improved the performance (Sensitivity = 88.9%, Specificity = 100%, AUC = 1.000). A cross-study validation was carried out using four data series obtained from Gene Expression Omnibus (GEO), corroborating the performance of the miRNA-based classifier (AUCs ranging from 0.637 to 0.979). The clinical utility of the miRNA model should be validated in a prospective cohort in order to investigate their feasibility as an ovarian cancer early detection tool.
Collapse
Affiliation(s)
| | - Katia Margiotti
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Marco Fabiani
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Mateus C. Barros-Filho
- Department of Head and Neck Surgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - David Sparacino
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Antonella Cima
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Salvatore A. Longo
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Marina Cupellaro
- Altamedica, Department of Biochemistry, Altamedica Main Centre, Rome, Italy
| | - Alvaro Mesoraca
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
| | - Claudio Giorlandino
- Altamedica Center, Human Genetics Laboratories, Altamedica Main Center, Rome, Italy
- Altamedica, Department of Biochemistry, Altamedica Main Centre, Rome, Italy
- Altamedica, Department of Prenatal Diagnosis, Fetal-Maternal Medical Center, Rome, Italy
| |
Collapse
|
15
|
Luo J, Zhu L, Zhou N, Zhang Y, Zhang L, Zhang R. Construction of Circular RNA-MicroRNA-Messenger RNA Regulatory Network of Recurrent Implantation Failure to Explore Its Potential Pathogenesis. Front Genet 2021; 11:627459. [PMID: 33664765 PMCID: PMC7924221 DOI: 10.3389/fgene.2020.627459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Many studies on circular RNAs (circRNAs) have recently been published. However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and remains to be explored. This study aims to determine the regulatory mechanisms of circRNAs in RIF. Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA; GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network was constructed by STRING database, and the hub genes were identified by cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the hub genes were performed by clusterProfiler package of Rstudio software, and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to comprehensively analyze the mechanism of hub genes in RIF. Results: A total of eight upregulated differentially expressed circRNAs (DECs), five downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs), 104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs), and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs. The circRNA–miRNA–mRNA network and PPI network were constructed through six circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9, and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome analysis showed that these four hub genes were closely related to the biological functions and pathways of RIF. Conclusion: The results of this study provide further understanding of the potential pathogenesis from the perspective of circRNA-related competitive endogenous RNA network in RIF.
Collapse
Affiliation(s)
- Jiahuan Luo
- Clinical Medical College, Dali University, Dali, China
| | - Li Zhu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ning Zhou
- Clinical Medical College, Dali University, Dali, China
| | | | - Lirong Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ruopeng Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| |
Collapse
|
16
|
Liu LJ, Sun XY, Yang CX, Zou XY. MiR-10a-5p restrains the aggressive phenotypes of ovarian cancer cells by inhibiting HOXA1. Kaohsiung J Med Sci 2020; 37:276-285. [PMID: 33332731 DOI: 10.1002/kjm2.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in human ovarian carcinoma (OC). But the mechanism underlying miR-10a-5p in regulating the progression of OC need deeply explored. In the current study, we observed that miR-10a-5p was down-expressed in OC samples and OC cell lines. In addition, miR-10a-5p restrained the viability, colony formation, migration ability and invasiveness of OC cells. We further ascertained Homeobox A1 (HOXA1) was a downstream gene of miR-10a-5p. Furthermore, HOXA1 was distinctly upregulated in OC samples. Finally, upregulation of HOXA1 abolished the suppressive effects of miR-10a-5p on OC cells. These observations suggested that miR-10a-5p suppressed the aggressive phenotypes of OC cells via regulating HOXA1.
Collapse
Affiliation(s)
- Li-Jun Liu
- Department of Gynaecology, Rongcheng People's Hospital, Weihai, Shandong, China
| | - Xiao-Yan Sun
- Department of Gynaecology, Rongcheng People's Hospital, Weihai, Shandong, China
| | - Chen-Xi Yang
- Reproductive Medicine Department, Women and Children's Hospital, Qingdao, Shandong, China
| | - Xiao-Yan Zou
- Department of Gynaecology, Jinan Fifth People's Hospital, Jinan, Shandong, China
| |
Collapse
|