1
|
Jia Y, Jia R, Chen Y, Lin X, Aishan N, li H, Wang L, Zhang X, Ruan J. The role of RNA binding proteins in cancer biology: A focus on FMRP. Genes Dis 2025; 12:101493. [PMID: 40271197 PMCID: PMC12017997 DOI: 10.1016/j.gendis.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 04/25/2025] Open
Abstract
RNA-binding proteins (RBPs) act as crucial regulators of gene expression within cells, exerting precise control over processes such as RNA splicing, transport, localization, stability, and translation through their specific binding to RNA molecules. The diversity and complexity of RBPs are particularly significant in cancer biology, as they directly impact a multitude of RNA metabolic events closely associated with tumor initiation and progression. The fragile X mental retardation protein (FMRP), as a member of the RBP family, is central to the neurodevelopmental disorder fragile X syndrome and increasingly recognized in the modulation of cancer biology through its influence on RNA metabolism. The protein's versatility, stemming from its diverse RNA-binding domains, enables it to govern a wide array of transcript processing events. Modifications in FMRP's expression or localization have been associated with the regulation of mRNAs linked to various processes pertinent to cancer, including tumor proliferation, metastasis, epithelial-mesenchymal transition, cellular senescence, chemotherapy/radiotherapy resistance, and immunotherapy evasion. In this review, we emphasize recent findings and analyses that suggest contrasting functions of this protein family in tumorigenesis. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention of cancer, some of which have already moved into clinical trials or clinical practice.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xuanyi Lin
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Han li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Qu L, Wang F, Wang Y, Li Z. The regulation of LRPs by miRNAs in cancer: influencing cancer characteristics and responses to treatment. Cancer Cell Int 2025; 25:182. [PMID: 40382654 PMCID: PMC12085831 DOI: 10.1186/s12935-025-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) family is a group of cell surface receptors that participate in a variety of biological processes, including lipid metabolism, Wnt signaling, and bone metabolism. miRNAs are small non-coding RNA molecules that regulate gene expression and play a role in many biological processes, including the occurrence and development of tumors. Accumulating evidence demonstrates that LRP members are modulated by miRNAs across multiple cancer types, influencing key oncogenic processes-including tumor cell proliferation, apoptosis suppression, extracellular matrix remodeling, cell adhesion, and angiogenesis. The LRPs, miRNAs, their upstream lncRNAs, and downstream signaling molecules often form complex signaling pathways to regulate the activity of tumor cells. However, the tissue-specific roles and mechanistic underpinnings of these pathways remain incompletely understood. When examining the emerging concept of the interaction between miRNAs and LRPs, we emphasize the significance of these complex regulatory layers in the initiation and progression of cancer. Collectively, these findings are critical for advancing our understanding of the role of the LRPs family in the occurrence and development of tumors, as well as for the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Lianyue Qu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
- Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
| |
Collapse
|
3
|
Kamal E. In Silico Prioritization of STAT1 3' UTR SNPs Identifies rs190542524 as a miRNA-Linked Variant with Potential Oncogenic Impact. Noncoding RNA 2025; 11:32. [PMID: 40407590 PMCID: PMC12101234 DOI: 10.3390/ncrna11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) are associated with multiple disorders and various cancer types. In the context of cancer, alterations within non-coding regions, specifically 3' untranslated regions (3' UTR), have proven substantially important. METHODS In this study, we utilized various bioinformatics tools to examine the effect of SNPs in the 3' UTR. We retrieved the 3' UTR SNPs of the Signal Transducer and Activator of Transcription 1 (STAT1) gene from the National Centre for Biotechnology Information (NCBI) website. Next, we employed the Polymorphism in miRNAs and their corresponding target sites (PolymiRTS) database to predict the 3' UTR SNPs that create new microRNA (miRNA) binding sites and their respective miRNAs. The effect of the 3' UTR SNPs on the messenger RNA structure was studied using RNAfold server. We used Cscape tool to predict the oncogenic 3' UTR SNPs. Then, we submitted the miRNAs to the miRNet database to visualize the miRNA-miRNAs' target genes interaction, for which gene enrichment analysis was performed using ShinyGO. Protein-protein interactions were conducted using the STRING database. We conducted miRNA enrichment analysis utilizing miRPathDB, subsequently performing miRNA differential expression analysis through oncoMIR, and the StarBase database. The survival analysis of the upregulated miRNAs in cancer was investigated using the Kaplan-Meier Plotter. RESULT Twelve SNPs were predicted to create new miRNA binding sites. Two of them, rs188557905 and rs190542524, were predicted to destabilize the mRNA structures. We predicted rs190542524, rs11305, rs186033487, and rs188557905 to be oncogenic 3' UTR SNPs, with high-confidence predictions and scores > 0.5. Using miRNAs' target genes enrichment analysis, this study indicated that the miRNA target genes were more likely to be involved in cancer-related pathways. Our comprehensive analysis of miRNAs, their functional enrichment, their expression in various types of cancer, and the correlation between miRNA expression and survival outcome yielded these results. Our research shows that the oncogenic 3' UTR SNP rs190542524 creates a new binding site for the oncogenic miRNA hsa-miR-136-5p. This miRNA is significantly upregulated in BLCA, LUSC, and STAD and is linked to poor survival. Additionally, rs114360225 creates a new binding site for hsa-miR-362-3p, influencing LIHC. CONCLUSIONS These analyses suggest that these 3' UTR SNPs may have a functional impact on the STAT1 gene's regulation through their predicted effect on miRNA binding sites. Future experimental validation could establish their potential role in the diagnosis and treatment of various diseases, including cancer.
Collapse
Affiliation(s)
- Ebtihal Kamal
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 16278, Saudi Arabia
| |
Collapse
|
4
|
Li Z, Qian R, Li M, Li J, Guo Y, Zhou Y, Ma C. HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability. Neuromolecular Med 2025; 27:7. [PMID: 39776018 DOI: 10.1007/s12017-024-08826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated. The real-time quantitative polymerase chain reaction (qPCR), western blotting (WB), and immunohistochemistry (IHC) were used to determine the expression levels of HERC5, ISG15, and SERBP1. Cell stemness was analyzed using a cell sphere formation assay. Colony formation and cell counting kit-8 (CCK-8) assays were performed to assess cell proliferation, Transwell assays used to evaluate cell migration and invasion, and flow cytometry was used to assess cell apoptosis after treatment with temozolomide. SERBP1 stability was assessed by a CHX chase assay. A co-immunoprecipitation (Co-IP) assay verified the binding of ISG15 and HERC5 onto SERBP1. Our results showed that HERC5 and ISG15 were highly expressed in GBM. HERC5 and ISG15 promoted the cell stemness of GBM, and increased cell proliferation, sphere formation, migration, invasion, and chemoresistance. Moreover, HERC5 and ISG15 played a synergistic role in promoting the cell stemness of GBM. We also found that HERC5/ISG15 promoted the stability of SERBP1, which also promoted the cell stemness of GBM. The tumor-promoting role of HERC5 and ISG15 was also confirmed in a subcutaneous xenograft tumor model. Collectively, HERC5/ISG15 was found to regulate GBM stemness and tumor progression by mediating SERBP1 protein stability. Our present study suggests a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Zhixiao Li
- Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China
- Department of Neurosurgery, People's Hospital of Henan University, Zhengzhou, China
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengda Li
- Department of Neurosurgery, People's Hospital of Henan University, Zhengzhou, China
| | - Juntao Li
- Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Yongji Guo
- Department of Neurosurgery, People's Hospital of Henan University, Zhengzhou, China
| | - Yuanhang Zhou
- Department of Neurosurgery, People's Hospital of Henan University, Zhengzhou, China
| | - Chunxiao Ma
- Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.
- Department of Neurosurgery, People's Hospital of Henan University, Zhengzhou, China.
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Aydinlou ZH, Rajabi A, Emami A, Tayefeh-Gholami S, Teimourian S, Nargesi MM, Banan-Khojasteh SM, Safaralizadeh R. Three possible diagnostic biomarkers for gastric cancer: miR-362-3p, miR-362-5p and miR-363-5p. Biomark Med 2024; 18:567-579. [PMID: 39072355 PMCID: PMC11364078 DOI: 10.1080/17520363.2024.2352419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: MicroRNAs can be regarded as biomarkers for gastric cancer (GC) diagnosis in the early stages. This study assesses the expression levels of miR-362-3p, miR-362-5p and miR-363-5p as potential biomarkers for GC.Materials & methods: The expression levels of the miRNAs in 90 pairs of GC and adjacent normal tissue samples were analyzed by quantitative real-time reverse transcription PCR (qRT-PCR) and some bioinformatics tools were utilized for analyzing the target genes and possible molecular pathways in which these miRNAs participate.Results & conclusion: There was a significant overexpression of the miRNAs in GC cells and an outstanding correlation between their overexpression with some clinicopathological features of the patients.
Collapse
Affiliation(s)
| | - Ali Rajabi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Ali Emami
- Medical School Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, Québec
| | | | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mirsaed Miri Nargesi
- Department of Pathology & Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health, New Zealand
| | | | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Chang WF, Huang PW, Li CL, Huang HS, Chou TY, Liao EC, Yu SJ. Radiocontrast medium induces histamine release in association with upregulation of miR‑19a‑3p and miR‑362‑3p expression. Biomed Rep 2024; 20:93. [PMID: 38765857 PMCID: PMC11099600 DOI: 10.3892/br.2024.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
In Taiwan, the use of radiocontrast medium for clinical image diagnosis recently surpassed one million times and the overall prevalence of radiocontrast hypersensitivity was ~7%. A microRNA (miRNA/miRs) is a small non-coding RNA molecule that mostly plays a suppressor role in cells. However, the roles of miRNA expression in radiocontrast-induced mast cells activation remains to be elucidated. The aim of the present study was to investigate the role of miRNA on radiocontrast-induced mast cell activation. Computed tomography radiocontrast, ultravist and mouse mast cell line, P815, were used in the present study. Cell viability was detected by CCK-8 experiment. Levels of histamine and β-hexosaminidase were measured by ELISA. miRNA expression was detected by miRNA sequencing and reverse transcription-quantitative PCR. The results showed that ultravist could increase histamine release and reduce intracellular β-hexosaminidase levels of mast cells. A total of 102 miRNAs could be significantly upregulated by ultravist stimulation. Selected candidate miRNAs for the validation included miR-19a-3p and miR-362-3p which were also increased expression following stimulation with ultravist. In conclusion, ultravist could induce mast cell activation through upregulation of miR-19a-3p and miR-362-3p. Thus, miR-19a-3p and miR-362-3p could be promising candidates for development as novel targets for preventing radiocontrast-induced allergy in the future.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Department of Radiology and Nuclear Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 813, Taiwan, R.O.C
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Po-Wei Huang
- Division of Urology, Department of Surgery, Zuoying Armed Forces General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - Hung-Sen Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Ting-Yu Chou
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - En-Chih Liao
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan, R.O.C
- Department of Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan, R.O.C
| | - Sheng-Jie Yu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung 407, Taiwan, R.O.C
| |
Collapse
|
7
|
Hu Y, Li J, Liu C, Zhang X, Wang Y, Lin J, Peng Z, Zhu L. MiR362-3p Alleviates Osteosarcoma by Regulating the IL6ST/JAK2/STAT3 Pathway in Vivo and in Vitro. Technol Cancer Res Treat 2024; 23:15330338241261616. [PMID: 39051528 PMCID: PMC11273602 DOI: 10.1177/15330338241261616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives: To investigate the effects and the related signaling pathway of miR-362-3p on OS. Methods: The bioinformatics analysis approaches were employed to investigate the target pathway of miR-362-3p. After the 143B and U2OS cells and nu/nu male mice were randomly divided into blank control (BC) group, normal control (NC) group, and overexpression group (OG), the CCK-8, EdU staining, wound healing assay, Transwell assay, and TUNEL staining were adopted to respectively determine the effects of overexpressed miR-362-3p on the cell viability, proliferation, migration, invasion, and apoptosis of 143B and U2OS cells in vitro, tumor area assay and hematoxylin and eosin staining were employed to respectively determine the effects of overexpressed miR-362-3p on the growth and pathological injury of OS tissue in vivo. The qRT-PCR, Western blot, and immunohistochemical staining were applied to respectively investigate the effects of overexpressed miR-362-3p on the IL6ST/JAK2/STAT3 pathway in OS in vivo and in vitro. Results: The bioinformatics analysis approaches combined qRT-PCR indicated that the IL6ST/JAK2/STAT3 is one of the target pathways of miR-362-3p. Compared with NC, the cell viability, proliferation, migration, and invasion of 143B and U2OS cells were dramatically (P < 0.01) inhibited but the apoptosis was prominently (P <0 .0001) promoted in OG. Compared with NC, the growth of OS tissue was significantly (P < 0.05) suppressed and the pathological injury of OS tissue was substantially aggravated in OG. The gene expression levels of IL6ST, JAK2, and STAT3 and the protein expression levels of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 in 143B and U2OS cells were memorably (P < 0.0001) lower in OG than those in NC. In addition, the positively stained areas of proteins of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 of OS tissue in OG were markedly (P < 0.01) reduced compared with those in NC. Conclusion: The overexpression of miR362-3p alleviates OS by inhibiting the IL6ST/JAK2/STAT3 pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yunteng Hu
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Chun Liu
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Xue Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Yihan Wang
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Jiezhao Lin
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Ziyue Peng
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Lixin Zhu
- Department of Spine Surgery, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Leroux C, Cuccato M, Pawłowski K, Cannizzo FT, Sacchi P, Pires JAA, Faulconnier Y. Milk fat miRNome changes in response to LPS challenge in Holstein cows. Vet Res 2023; 54:111. [PMID: 37993922 PMCID: PMC10666322 DOI: 10.1186/s13567-023-01231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/02/2023] [Indexed: 11/24/2023] Open
Abstract
Mastitis is an inflammatory disease in dairy cows, causing economic losses and reducing animal welfare. In order to contribute for the discovery of early and noninvasive indicators, our objective was to determine the effects of a lipopolysaccharide (LPS) challenge on the microRNA profile (miRNome) of milk fat, using microarray analyses in cows. Cows were fed a lactation diet at ad libitum intake (n = 6). At 27 ± 3 days in milk, cows were injected with 50 µg of LPS Escherichia coli in one healthy rear mammary quarter. Milk samples were collected just before LPS challenge (LPS-) and 6.5 h after LPS challenge (LPS +) from the same cows. Microarray analysis was performed using customized 8 × 60 K ruminant miRNA microarrays to compare LPS- to LPS + miRNome. In silico functional analyses were performed using OmicsNet and Mienturnet software. MiRNome comparison between LPS- and LPS + identified 37 differentially abundant miRNAs (q-value ≤ 0.05). The predicted target genes of the 37 differentially abundant miRNAs are mostly involved in cell life including apoptosis, cell cycle, proliferation and differentiation and in gene expression processes. MiRNome analyses suggest that miRNAs profile is related to the inflammation response of the mammary gland. In conclusion, we demonstrated that milk fat might be an easy and rapid source of miRNAs that are potential indicators of early mastitis in cows.
Collapse
Affiliation(s)
- Christine Leroux
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France.
| | - Matteo Cuccato
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Torino, Italy
| | - Karol Pawłowski
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw Univeristy of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Francesca Tiziana Cannizzo
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Torino, Italy
| | - Paola Sacchi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Torino, Italy
| | - José A A Pires
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - Yannick Faulconnier
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| |
Collapse
|
9
|
Yang J, Barkley JE, Bhattarai B, Firouzi K, Monk BJ, Coonrod DV, Zenhausern F. Identification of Endometrial Cancer-Specific microRNA Biomarkers in Endometrial Fluid. Int J Mol Sci 2023; 24:ijms24108683. [PMID: 37240034 DOI: 10.3390/ijms24108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Abnormal uterine bleeding is a common benign gynecological complaint and is also the most common symptom of endometrial cancer (EC). Although many microRNAs have been reported in endometrial carcinoma, most of them were identified from tumor tissues obtained at surgery or from cell lines cultured in laboratories. The objective of this study was to develop a method to detect EC-specific microRNA biomarkers from liquid biopsy samples to improve the early diagnosis of EC in women. Endometrial fluid samples were collected during patient-scheduled in-office visits or in the operating room prior to surgery using the same technique performed for saline infusion sonohysterography (SIS). The total RNA was extracted from the endometrial fluid specimens, followed by quantification, reverse transcription, and real-time PCR arrays. The study was conducted in two phases: exploratory phase I and validation phase II. In total, endometrial fluid samples from 82 patients were collected and processed, with 60 matched non-cancer versus endometrial carcinoma patients used in phase I and 22 in phase II. The 14 microRNA biomarkers, out of 84 miRNA candidates, with the greatest variation in expression from phase I, were selected to enter phase II validation and statistical analysis. Among them, three microRNAs had a consistent and substantial fold-change in upregulation (miR-429, miR-183-5p, and miR-146a-5p). Furthermore, four miRNAs (miR-378c, miR-4705, miR-1321, and miR-362-3p) were uniquely detected. This research elucidated the feasibility of the collection, quantification, and detection of miRNA from endometrial fluid with a minimally invasive procedure performed during a patient in-office visit. The screening of a larger set of clinical samples was necessary to validate these early detection biomarkers for endometrial cancer.
Collapse
Affiliation(s)
- Jianing Yang
- Center for Applied NanoBiosciences and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joel E Barkley
- Department of Obstetrics and Gynecology, District Medical Group, Valleywise Health, Phoenix, AZ 85008, USA
- Department of Obstetrics and Gynecology, Creighton University, Phoenix, AZ 85012, USA
| | - Bikash Bhattarai
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Department of Research, Valleywise Health, Phoenix, AZ 85008, USA
| | - Kameron Firouzi
- Department of Obstetrics and Gynecology, District Medical Group, Valleywise Health, Phoenix, AZ 85008, USA
- Department of Obstetrics and Gynecology, Creighton University, Phoenix, AZ 85012, USA
| | - Bradley J Monk
- Department of Obstetrics and Gynecology, Creighton University, Phoenix, AZ 85012, USA
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ 85258, USA
| | - Dean V Coonrod
- Department of Obstetrics and Gynecology, District Medical Group, Valleywise Health, Phoenix, AZ 85008, USA
- Department of Obstetrics and Gynecology, Creighton University, Phoenix, AZ 85012, USA
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBiosciences and Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Department of Biomedical Engineering, University of Arizona's College of Engineering, Tucson, AZ 85721, USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
10
|
Li Y, Wang F, Liu T, Lv N, Yuan X, Li P. WISP1 induces ovarian cancer via the IGF1/αvβ3/Wnt axis. J Ovarian Res 2022; 15:94. [PMID: 35964060 PMCID: PMC9375285 DOI: 10.1186/s13048-022-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study intended to clarify the mechanisms by which WISP1-mediated IGF1/αvβ3/Wnt axis might affect the progression of ovarian cancer. Methods Bioinformatics analysis was implemented for pinpointing expression of IGF1 and WISP1 which was verified through expression determination in clinical tissue samples and cells. Next, gain- or loss-of-function experimentations were implemented for testing CAOV4 and SKOV3 cell biological processes. The interaction between WISP1 and IGF1 was verified by co-immunoprecipitation and the molecular mechanism was analyzed. Finally, ovarian cancer nude mouse models were prepared to unveil the in vivo effects of WISP1/IGF1. Results IGF1 and WISP1 expression was elevated in ovarian cancer tissues and cells, which shared correlation with poor prognosis of ovarian cancer sufferers. Elevated IGF1 induced malignant properties of ovarian cancer cells through activation of PI3K-Akt and Wnt signaling pathway. WISP1 was positively correlated with IGF1. WISP1 could enhance the interaction between IGF1 and αvβ3 to induce epithelial-mesenchymal transition. In vivo experiments also confirmed that upregulated WISP1/IGF1 induced tumorigenesis and metastasis of ovarian cancer cells. Conclusion In conclusion, WISP1 can facilitate ovarian cancer by activating Wnt via the interaction between IGF1 and αvβ3. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01016-x.
Collapse
Affiliation(s)
- Yan Li
- 3th Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Fangfang Wang
- Prenatal Diagnosis Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Tianyi Liu
- 3th Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Nan Lv
- 3th Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Xiaolei Yuan
- 3th Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Peiling Li
- 1st Ward of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150086, People's Republic of China.
| |
Collapse
|
11
|
Liu D, Wu J, Zhu H, Zhu X, Jin Y, Yu Y, Zhang X. Treatment of microvascular invasion in hepatocellular carcinoma with drug-loaded nanocomposite platform under synergistic effect of magnetic field/near-infrared light. J Biomed Mater Res B Appl Biomater 2022; 110:712-724. [PMID: 34664385 DOI: 10.1002/jbm.b.34950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
Despite progress in clinical treatment, microvascular invasion (MVI) remains a major factor for frequent recurrence and metastasis of hepatocellular carcinoma (HCC) after liver resection and surgery. Thus, this study constructed a target nanoplatform (αCD97-USPIO-Au-DDP) with magnetic field/near-infrared (NIR) light response using ultrasmall superparamagnetic iron oxide-gold nanoporous spheres (USPIO-Au) as multifunctional nanocarrier. Anticancer drug cisplatin (DDP) was loaded, and specifically expressed CD97 protein in MVI was taken as the therapeutic target. The αCD97-USPIO-Au-DDP showed favorable photothermal and stable properties under the NIR light at 808 nm wavelength. As suggested by in vitro and in vivo research, this composite nanopreparation could effectively reduce damage to normal organs and showed good biocompatibility. Excellent magnetic targeting function of nanocarrier and modification of αCD97 strengthened accumulation of composite nanodrug in tumor to inhibit tumor growth. This system may have important ramifications for treatment of MVI in HCC.
Collapse
Affiliation(s)
- Daren Liu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinhong Wu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huanbing Zhu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiuliang Zhu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuanquan Yu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Zhang
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Wang X, Chen P. Aberrant miR-362-3p is Associated with EBV-Infection and Prognosis in Nasopharyngeal Carcinoma and Involved in Tumor Progression by Targeting JMJD2A. Onco Targets Ther 2022; 15:121-131. [PMID: 35115787 PMCID: PMC8806052 DOI: 10.2147/ott.s325100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Many microRNAs (miRNAs) are involved in the progression of nasopharyngeal carcinoma (NPC). This study aimed to examine the expression and clinical significance of microRNA (miR)-362-3p in NPC, especially in Epstein–Barr virus (EBV)-positive patients, and explore its potential mechanism in NPC progression. Methods miR-362-3p levels and Jumonji C domain 2A (JMJD2A) mRNA levels were detected by quantitative real-time PCR. The diagnostic value of miR-362-3p to distinguish NPC patients and EBV-positive cases was evaluated using receiver operating characteristic analysis. The association of miR-362-3p with NPC survival was assessed by Kaplan–Meier curves and Cox regression analysis. NPC cell proliferation, migration and invasion were determined using Cell Counting Kit-8 and Transwell assays, respectively. A luciferase reporter assay was used to confirm the interaction between miR-362-3p and JMJD2A. Results miR-362-3p expression was decreased in the serum and tissues of NPC patients and had diagnostic value for screening NPC. According to the survival follow-up, NPC survivors had significantly higher miR-362-3p, and miR-326-3p was demonstrated as an independent prognostic indicator of NPC. Interestingly, it is found that EBV-positive NPC patients and cells had significantly lower miR-362-3p compared with EBV-negative NPC patients and cells and had certain ability to distinguish EBV-positive patients. Moreover, miR-362-3p inhibited the proliferation, migration and invasion of both EBV-positive and -negative NPC cells, and these effects might be mediated by targeting JMJD2A. Conclusion Abnormal miR-362-3p expression is related to EBV-infection and prognosis in NPC patients and may be involved in NPC progression by targeting JMJD2A.
Collapse
Affiliation(s)
- Xiangyun Wang
- Department of Otorhinolaryngology, Dongying People’s Hospital, Dongying, Shandong, 257091, People’s Republic of China
- Correspondence: Xiangyun Wang, Department of Otorhinolaryngology, Dongying People’s Hospital, No. 317 Nanyi Road, Dongying, Shandong, 257091, People’s Republic of China, Tel/Fax + 86-0546-8901191, Email
| | - Ping Chen
- Department of Otorhinolaryngology, Dongying People’s Hospital, Dongying, Shandong, 257091, People’s Republic of China
| |
Collapse
|
13
|
miR-362-3p suppresses ovarian cancer by inhibiting LRP8. Transl Oncol 2021; 15:101284. [PMID: 34839107 PMCID: PMC8636862 DOI: 10.1016/j.tranon.2021.101284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
MiR-362-3p inhibited cell viability and proliferation of ovarian cancer cells. MiR-362-3p inhibited cell migration and invasion of ovarian cancer cells. MiR-362-3p inhibited OV growth in vivo. LRP8 was a target of miR-362-3p. MiR-362-3p targeting LRP8 repressed cell viability and proliferation of ovarian cancer cells.
Background Ovarian cancer is one of the most common female cancers, with a high incidence worldwide. Aberrant expression of low‐density lipoprotein (LDL) receptor‐related protein 8 (LRP8) and microRNA (miR)-362-3p is involved in the pathogenesis of different cancers. Methods We aimed to elucidate the underlying mechanism of the miR-362-3p-LRP8 axis in ovarian cancer. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to examine miR-362-3p and LRP8 expression in ovarian cancer tissues and cells. The luciferase assay was used to determine the relationship between miR-362-3p and LRP8. The function of overexpression of miR-362-3p and LRP8 was determined by assessing the cell viability using the cell counting kit 8 (CCK-8) assay, proliferation using 5′‑bromo-2′-deoxyuridine (BrdU) assay, migration using wound healing assay, invasion using transwell assay, and the protein expression levels of matrix metalloproteinase (MMP)-2, MMP9, and integrin α5 or β1 using western blotting assays in ovarian cancer cells. Results miR-362-3p expression levels were decreased in ovarian cancer tissues and cells and negatively correlated with LRP8 levels. Overexpression of miR-362-3p dramatically repressed cell growth. Furthermore, overexpression of LRP8 significantly facilitated the proliferation, migration, and invasion of ovarian cancer cells, which counteracted the inhibitory effect of miR-362-3p on ovarian cancer cell growth. Conclusions We reported that miR-362-3p hampered cell growth by repressing LRP8 expression in ovarian cancer cells. Our results provide new insights into ovarian cancer, involving both miR-362-3p and LRP8, which can be used as potential biomarkers for the treatment of ovarian cancer.
Collapse
|