1
|
Hurst ZA, Liyanarachchi S, Brock P, He H, Nabhan F, Veloski C, Toland AE, Ringel MD, Jhiang SM. Presumed Pathogenic Germ Line and Somatic Variants in African American Thyroid Cancer. Thyroid 2024; 34:378-387. [PMID: 38062767 PMCID: PMC10951570 DOI: 10.1089/thy.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background: African American (AA) thyroid cancer patients have worse prognoses than European Americans (EA), which has been attributed to both health care disparities and possible genetic differences. We investigated the impact of both germ line and somatic variants on clinical outcome in a cohort of AA nonmedullary thyroid cancer (NMTC) patients who had received therapeutic intervention from cancer centers. Methods: Whole-exome sequencing was performed on DNA from available blood/normal tissues (N = 37) and paired tumor samples (N = 32) collected from 37 and 29 AA NMTC patients, respectively. Variants with Combined Annotation Depletion Dependent (CADD) score of ≥20 and VarSome Clinical classification of likely pathogenic or pathogenic were classified as presumed pathogenic germ line or somatic variants (PPGVs/PPSVs). PPGVs/PPSVs in cancer-related genes and PPGVs in cardiovascular risk genes were further investigated, and PPGVs/PPSVs associated with African (AFR) ancestry were identified. Results: Among 17 PPGVs identified in 16 cancer predisposition or known cancer-related genes, only WRN was previously known to associate with NMTC predisposition. Among PPSVs, BRAFV600E was most the prevalent and detected in 12 of the 29 (41%) tumors. Examining PPGVs/PPSVs among three patients who died from NMTC, one patient who died from papillary thyroid carcinoma/anaplastic thyroid carcinoma (PTC/ATC) led us to speculate that the PPGV ERCC4R799W may have increased the risk of PPSV TP53R273H acquisition. Among PPGVs identified in 18 cardiovascular risk genes, PPGVs in SC5NA, GYG1, CBS, CFTR, and SI are known to have causal and pathogenic implications in cardiovascular disease. Conclusion: In this cohort, most AA-NMTC patients exhibit favorable outcomes after therapeutic intervention given at cancer centers, suggesting that health care disparity is the major contributor for worse prognoses among AA-NMTC patients. Nevertheless, the clinical impact of PPGVs that might facilitate the acquisition of TP53 tumor mutations, and/or PPGVs that predispose individuals to adverse cardiovascular events, which could be exacerbated by therapy-induced cardiotoxicity, needs to be further explored. Integrated analysis of PPGV/PPSV profiles among NMTC patients with different stages of disease may help to identify NMTC patients who require close monitoring or proactive intervention.
Collapse
Affiliation(s)
- Zachary A. Hurst
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Pamela Brock
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Huiling He
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Fadi Nabhan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Colleen Veloski
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Amanda E. Toland
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sissy M. Jhiang
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
2
|
Yildiz S, Musarurwa TN, Algar U, Chambuso R, Rebello G, Goldberg PA, Ramesar R. Genetic insights: High germline variant rate in an indigenous African cohort with early-onset colorectal cancer. Front Oncol 2023; 13:1253867. [PMID: 37965459 PMCID: PMC10642181 DOI: 10.3389/fonc.2023.1253867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The increase in incidence of colorectal cancer in young patients of African ancestry coupled with increased aggressiveness has warranted investigation of the heritable nature of these cancers. Only a limited number of published reports of hereditary colorectal cancer in indigenous African populations have been reported and no systematic screening of these groups has been performed previously. We aimed to investigate causative germline variants and to establish the incidence of pathogenic/likely pathogenic germline variants in the known colorectal cancer genes in indigenous African colorectal cancer patients using a next-generation sequencing (NGS) multigene panel. Materials and methods Patients were selected from two hospitals in Cape Town and Johannesburg, South Africa. Patients with unresolved molecular diagnosis with an age of onset below or at 60 years were selected. Germline DNA samples were analyzed using a 14-gene NGS panel on the Ion Torrent platform. Variant calling and annotation were performed, and variants were classified according to the American College of Medical Genetics and Genomics guidelines. Observed variants were verified by Sanger sequencing and/or long-range PCR. Results Out of 107 patients, 25 (23.4%) presented with a pathogenic/likely pathogenic germline variant (PGV). Fourteen PGVs in at least one mismatch repair (MMR) gene were identified and verified in 12 patients (11.2%). Of these MMR gene variants, five were novel. The remaining 10 PGVs were in the APC, BMPR1A, MUTYH, POLD1, and TP53 genes. Conclusion The high incidence of PGVs associated with early-onset colorectal cancer in indigenous African patients has important implications for hereditary colorectal cancer risk management. These findings pave the way for personalized genetic screening programs and cascade testing in South Africa. The next step would involve further screening of the unresolved cases using tools to detect copy number variation, methylation, and whole exome sequencing.
Collapse
Affiliation(s)
- Safiye Yildiz
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| | - Takudzwa N. Musarurwa
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| | - Ursula Algar
- The Colorectal Unit of the Department of Surgery, Groote Schuur Hospital and the University of Cape Town, Cape Town, South Africa
| | - Ramadhani Chambuso
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| | - George Rebello
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| | - Paul A. Goldberg
- The Colorectal Unit of the Department of Surgery, Groote Schuur Hospital and the University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town and Affiliated Hospitals, Cape Town, South Africa
| |
Collapse
|
3
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Chambuso R, Robertson B, Ramesar R. A Scoring Model and Protocol to Adapt Universal Screening for Lynch Syndrome to Identify Germline Pathogenic Variants by Next Generation Sequencing from Colorectal Cancer Patients and Cascade Screening. Cancers (Basel) 2022; 14:cancers14122901. [PMID: 35740566 PMCID: PMC9220991 DOI: 10.3390/cancers14122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Lynch syndrome (LS) is an autosomal-dominantly inherited form of cancer predisposition dominated by colorectal cancer (CRC). LS is caused by germline pathogenic variants (PV) occurring in known mismatch repair genes. For effective cascade screening, it is critical to identify PV for LS predisposition. When limited resources are available, next generation sequencing (NGS) of an entire cohort of colorectal cancer (CRC) patients, even those under 50 or 60 years of age, places a huge burden on the system. Here, we present an innovative LS ascertainment and follow-up program that includes LS molecular analysis, PV screening with NGS technology, and cascade screening. The goal is to improve LS ascertainment in light of the growing burden of early-onset CRC, particularly in low- and middle-income countries. Abstract Identification of germline pathogenic variants (PV) predisposing to Lynch syndrome (LS) is an important step for effective use of cascade screening of extended at-risk lineages, leading to reduced morbidity and mortality due to colorectal cancer (CRC). As a general rule, however, next generation sequencing (NGS, either of gene panels or whole exomes) is relatively expensive and unaffordable for general clinical use. In resource-poor settings, performing NGS testing on an entire cohort of CRC patients, even if limited to those under 50 or 60 years of age, still places an enormous burden on limited resources. Although family history can be a good indicator for LS testing, identifying at-risk family members and offering cascade screening may not benefit many patients/probands without an obvious family history. This article presents a novel program called Modified Ascertainment and follow-up Program (MAP) with a scoring model for LS ascertainment and molecular screening by NGS with diagnosis confirmation of PV and cascade screening. The goal is to improve LS ascertainment in light of the growing burden of early-onset CRC, particularly in low- and middle-income countries. Through MAP, judiciously applied molecular genetics will improve identification of PV predisposing to LS and cascade screening.
Collapse
Affiliation(s)
- Ramadhani Chambuso
- Colorectal Cancer Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa;
- MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
- Correspondence:
| | - Barbara Robertson
- Division of Radiation Oncology, Department of Radiation Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town 7945, South Africa;
| | - Raj Ramesar
- Colorectal Cancer Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa;
- MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
5
|
Lee JK, Kwon WK, Hong SN, Chang DK, Kim HC, Jang JH, Kim JW. Necessity of Multiplex Ligation Probe Amplification in Genetic Tests: Germline variant analysis of the APC gene in familial adenomatous polyposis patients. Cancer Genet 2022; 262-263:95-101. [DOI: 10.1016/j.cancergen.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
|
6
|
Michaeli JC, Michaeli T, Boch T, Albers S, Michaeli DT. Socio-economic burden of disease: survivorship costs for bladder cancer. J Cancer Policy 2022; 32:100326. [DOI: 10.1016/j.jcpo.2022.100326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022]
|
7
|
Angerilli V, Galuppini F, Pagni F, Fusco N, Malapelle U, Fassan M. The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics (Basel) 2021; 11:339. [PMID: 33670699 PMCID: PMC7922586 DOI: 10.3390/diagnostics11020339] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Current pathology practice is being shaped by the increasing complexity of modern medicine, in particular of precision oncology, and major technological advances. In the "next-generation technologies era", the pathologist has become the person responsible for the integration and interpretation of morphologic and molecular information and for the delivery of critical answers to diagnostic, prognostic and predictive queries, acquiring a prominent position in the molecular tumor boards.
Collapse
Affiliation(s)
- Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35121 Padua, Italy; (V.A.); (F.G.)
| | - Francesca Galuppini
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35121 Padua, Italy; (V.A.); (F.G.)
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20122 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy;
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35121 Padua, Italy; (V.A.); (F.G.)
| |
Collapse
|
8
|
Aitchison A, Hakkaart C, Day RC, Morrin HR, Frizelle FA, Keenan JI. APC Mutations Are Not Confined to Hotspot Regions in Early-Onset Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12123829. [PMID: 33352971 PMCID: PMC7766084 DOI: 10.3390/cancers12123829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Mutation of the APC gene is a common early event in colorectal cancer, however lower rates have been reported in younger cohorts of colorectal cancer patients. In sporadic cancer, mutations are typically clustered around a mutation cluster region, a narrowly defined hotspot within the APC gene. In this study we used a sequencing strategy aimed at identifying mutations more widely throughout the APC gene in patients aged 50 years or under. We found high rates of APC mutation in our young cohort that were similar to rates seen in older patients but the mutations we found were spread throughout the gene in a pattern more similar to that seen in inherited rather than sporadic mutations. Our study has implications both for the sequencing of the APC gene in early-onset colorectal cancer and for the etiology of this disease. Abstract While overall colorectal cancer (CRC) cases have been declining worldwide there has been an increase in the incidence of the disease among patients under 50 years of age. Mutation of the APC gene is a common early event in CRC but is reported at lower rates in early-onset colorectal cancer (EOCRC) than in older patients. Here we investigate the APC mutation status of a cohort of EOCRC patients in New Zealand using a novel sequencing approach targeting regions of the gene encompassing the vast majority of known APC mutations. Using this strategy we find a higher rate (72%) of APC mutation than previously reported in EOCRC with mutations being spread throughout the gene rather than clustered in hotspots as seen with sporadic mutations in older patients. The rate of mutations falling within hotspots was similar to those previously seen in EOCRC and as such our study has implications for sequencing strategies for EOCRC patients. Overall there were low rates of both loss of heterozygosity and microsatellite instability whereas a relatively high rate (40%) of APC promoter methylation was found, possibly reflecting increasing exposure of young people to pro-oncogenic lifestyle factors.
Collapse
Affiliation(s)
- Alan Aitchison
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand; (F.A.F.); (J.I.K.)
- Correspondence:
| | - Christopher Hakkaart
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand;
| | - Robert C. Day
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand;
| | - Helen R. Morrin
- Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch 8011, New Zealand;
| | - Frank A. Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand; (F.A.F.); (J.I.K.)
| | - Jacqueline I. Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand; (F.A.F.); (J.I.K.)
| |
Collapse
|
9
|
Hancock KJ, Hsu W, Klimberg VS. The Clinical Versatility of Next-Generation Sequencing in Colorectal Cancer. AMERICAN JOURNAL OF BIOMEDICAL SCIENCE & RESEARCH 2020; 7:548-550. [PMID: 32924015 DOI: 10.34297/ajbsr.2020.07.001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Next-Generation Sequencing is an evolving technology employed in the field of cancer biology. This mini review is intended as a brief overview of NGS for the clinical utility in colorectal cancer. The pathogenesis and treatment of colorectal cancer will continue to evolve as NGS is applied to more patient samples, correlating tumor biology and outcomes.
Collapse
Affiliation(s)
- Kevin J Hancock
- Department of Surgery, University of Texas Medical Branch, USA
| | - Willie Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, USA
| | - V Suzanne Klimberg
- Department of Surgery, University of Texas Medical Branch, USA.,Adjunct Professor, MD Anderson Cancer Center, USA
| |
Collapse
|
10
|
Gao G, Smith DI. Clinical Massively Parallel Sequencing. Clin Chem 2020; 66:77-88. [PMID: 31811004 DOI: 10.1373/clinchem.2019.303305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The newest advances in DNA sequencing are based on technologies that perform massively parallel sequencing (MPS). Since 2006, the output from MPS platforms has increased from 20 Mb to >7 Tb. First-generation MPS platforms amplify individual DNA molecules to multiple copies and then interrogate the sequence of those molecules. Second-generation MPS analyzes single unamplified molecules to generate much longer sequence reads but with less output than first-generation MPS and lower first-pass accuracy. With MPS technologies, it is now possible to analyze genomes, exomes, a defined subset of genes, transcriptomes, and even methylation across the genome. These technologies have and will continue to completely transform the clinical practice. CONTENT The major first- and second-generation MPS platforms and how they are used in clinical practice are discussed. SUMMARY The ability to sequence terabases of DNA per run on an MPS platform will dramatically change how DNA sequencing is used in clinical practice. Currently, MPS of targeted gene panels is the most common use of this technology clinically, but as the cost for genome sequencing inches downward to $100, this may soon become the method of choice (with the caveat that, at least in the near term, clinical-grade genome sequencing with interpretation may cost much more than $100). Other uses of this technology include sequencing of a mixture of bacterial and viral species (metagenomics), as well as the characterization of methylation across the genome.
Collapse
Affiliation(s)
- Ge Gao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - David I Smith
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
11
|
Identification of germline pathogenic variants in DNA damage repair genes by a next-generation sequencing multigene panel in BRCAX patients. Clin Biochem 2019; 76:17-23. [PMID: 31786208 DOI: 10.1016/j.clinbiochem.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Approximately 5-10% of breast carcinomas have been related to hereditary conditions and are attributable to pathogenic variants in the BRCA1 and BRCA2 genes, which is referred to as hereditary breast and ovarian cancer (HBOC) syndrome. The inclusion of additional genes that can be related to HBOC syndrome is under intense evaluation due to the high proportion of patients with HBOC criteria who do not present pathogenic mutations in BRCA genes, named BRCAX, despite having high clinical suspicion of hereditary cancer. The main aim is to identify new potentially pathogenic gene variants that may contribute to HBOC to improve the efficiency of routine diagnostic tests in this hereditary condition. METHODS A retrospective cohort of 77 HBOC BRCAX patients was analyzed by next-generation sequencing using a targeted multigene panel composed of 25 genes related to hereditary cancer and deficiencies in DNA repair pathways. RESULTS We found 9 variants in 7 different genes, which were confirmed by automated sequencing. Six variants were classified as pathogenic or likely pathogenic. Three of them were located in the PALB2 gene, one in the BRIP1 gene, one in the BARD1 gene and 1 in the RAD50 gene. In addition, three variants of uncertain significance (VUS) were detected in the TP53, CHEK2, and CDH1 genes. CONCLUSIONS We identified that 8% of BRCAX patients were carriers of pathogenic variants in genes other than BRCA1 and BRCA2. Therefore, wide gene panels, including clinically actionable genes, should be routinely used in the screening of HBOC in our population. We observed differences from other studies in the prevalence of mutated genes, most likely due to differences in the selection criteria of the probands and in the population analyzed. The high incidence of deleterious variant detection in PALB2 supports its significant role in breast cancer susceptibility and reinforces its inclusion in the HBOC genetic diagnostic process.
Collapse
|
12
|
Ow SGW, Tan KT, Yang H, Yap HL, Sapari NSB, Ong PY, Soong R, Lee SC. Next Generation Sequencing Reveals Novel Mutations in Mismatch Repair Genes and Other Cancer Predisposition Genes in Asian Patients with Suspected Lynch Syndrome. Clin Colorectal Cancer 2019; 18:e324-e334. [PMID: 31350202 DOI: 10.1016/j.clcc.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although at least 5 genes are implicated in Lynch Syndrome (LS), up to 50% of suspected cases are owing to undefined genes. We utilized next generation sequencing (NGS) to characterize the mutation profile of patients with cancer (CA) suspected to have LS. PATIENTS AND METHODS We enrolled 174 Asian patients with CA from our CA Genetics Clinic from 2000 to 2014 suspected to have LS, and obtained germline DNA for NGS using TruSight Cancer. Frameshift, nonsense, and known deleterious mutations were considered pathogenic. Polymorphisms ≤ 1% frequency in 1000 Genomes (Asian) were classified using established databases. RESULTS Of the 174 probands, 80.5% were Chinese, the median age at CA diagnosis was 45 years (range, 18-82 years), and 84.5% and 8.6% had colon and LS-like CA, respectively. Forty-seven of 100 evaluable colon CA probands had LS-like histopathologic features. Nineteen of 174 had family history fulfilling Amsterdam I/II Criteria, whereas the rest fulfilled Bethesda Guidelines. Thirty-one of 174 harbored pathogenic mutations with 10 in LS genes only, 20 in non-LS genes only, and 1 in both. Of the 11 with LS gene mutations, MLH1 was most commonly involved (n = 7), followed by MSH2, MSH6, and PMS2. Nine of 174 had pathogenic mutations diagnostic of alternative hereditary syndromes including 2 each in CDH1, APC, and BRCA1, and 1 each in BRCA2, SMAD4, and MUTYH. Ten unique mutations were detected in low-to-moderate penetrance genes: 6 individuals had a recurring novel KIT:c.2836C>T nonsense mutation (n = 3) or ERCC4:c.2169C>A nonsense mutation (n = 3) without LS gene mutation, which is of clinical interest. CONCLUSIONS In this Asian study, NGS proved to be feasible in screening for causative mutations in patients with CA suspected to have LS.
Collapse
Affiliation(s)
- Samuel G W Ow
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kar Tong Tan
- Cancer Science Institute, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Singapore
| | - Hui-Ling Yap
- Cancer Science Institute, National University of Singapore, Singapore
| | | | - Pei Yi Ong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute, National University of Singapore, Singapore; Department of Pathology, National University of Singapore, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore; Cancer Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
13
|
Ramírez-Calvo M, García-Casado Z, Fernández-Serra A, de Juan I, Palanca S, Oltra S, Soto JL, Castillejo A, Barbera VM, Juan-Fita MJ, Segura Á, Chirivella I, Sánchez AB, Tena I, Chaparro C, Salas D, López-Guerrero JA. Implementation of massive sequencing in the genetic diagnosis of hereditary cancer syndromes: diagnostic performance in the Hereditary Cancer Programme of the Valencia Community (FamCan-NGS). Hered Cancer Clin Pract 2019; 17:3. [PMID: 30675318 PMCID: PMC6339395 DOI: 10.1186/s13053-019-0104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 5 to 10% of all cancers are caused by inherited germline mutations, many of which are associated with different Hereditary Cancer Syndromes (HCS). In the context of the Program of Hereditary Cancer of the Valencia Community, individuals belonging to specific HCS and their families receive genetic counselling and genetic testing according to internationally established guidelines. The current diagnostic approach is based on sequencing a few high-risk genes related to each HCS; however, this method is time-consuming, expensive and does not achieve a confirmatory genetic diagnosis in many cases. This study aims to test the level of improvement offered by a Next Generation Sequencing (NGS) gene-panel compared to the standard approach in a diagnostic reference laboratory setting. Methods A multi-gene NGS panel was used to test a total of 91 probands, previously classified as non-informative by analysing the high-risk genes defined in our guidelines. Results Nineteen deleterious mutations were detected in 16% of patients, some mutations were found in already-tested high-risk genes (BRCA1, BRCA2, MSH2) and others in non-prevalent genes (RAD51D, PALB2, ATM, TP53, MUTYH, BRIP1). Conclusions Overall, our findings reclassify several index cases into different HCS, and change the mutational status of 14 cases from non-informative to gene mutation carriers. In conclusion, we highlight the necessity of incorporating validated multi-gene NGS panels into the HCSs diagnostic routine to increase the performance of genetic diagnosis. Electronic supplementary material The online version of this article (10.1186/s13053-019-0104-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Ramírez-Calvo
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| | - Zaida García-Casado
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| | - Antonio Fernández-Serra
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| | - Inmaculada de Juan
- 2Laboratory of Molecular Biology, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sarai Palanca
- 2Laboratory of Molecular Biology, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Silvestre Oltra
- 3Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José Luis Soto
- 4Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Adela Castillejo
- 4Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Víctor M Barbera
- 4Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Ma José Juan-Fita
- 5Unit of Genetic Counselling in Cancer, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Ángel Segura
- 6Unit of Genetic Counselling in Cancer, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Isabel Chirivella
- 7Unit of Genetic Counselling in Cancer, Hospital Clínico, Valencia, Spain
| | - Ana Beatriz Sánchez
- 8Unit of Genetic Counselling in Cancer, Hospital General de Elche, Elche, Spain
| | - Isabel Tena
- 9Unit of Genetic Counselling in Cancer, Hospital General de Castellón, Castellón, Spain
| | - Carolina Chaparro
- Cancer and Public Health Area, FISABIO-Public Health, Valencia, Spain
| | - Dolores Salas
- General Directorate Public Health, Valencia, Spain.,Epidemiology and Public Health Networking Biomedical Research Centre (CIBERESP), Madrid, Spain
| | - José Antonio López-Guerrero
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| |
Collapse
|
14
|
Abstract
CONTEXT - Comprehensive molecular investigations of mainstream carcinogenic processes have led to the use of effective molecular targeted agents in most cases of solid tumors in clinical settings. OBJECTIVE - To update readers regarding the evolving role of the pathologist in the therapeutic decision-making process and the introduction of next-generation technologies into pathology practice. DATA SOURCES - Current literature on the topic, primarily sourced from the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database, were reviewed. CONCLUSIONS - Adequate evaluation of cytologic-based and tissue-based predictive diagnostic biomarkers largely depends on both proper pathologic characterization and customized processing of biospecimens. Moreover, increased requests for molecular testing have paralleled the recent, sharp decrease in tumor material to be analyzed-material that currently comprises cytology specimens or, at minimum, small biopsies in most cases of metastatic/advanced disease. Traditional diagnostic pathology has been completely revolutionized by the introduction of next-generation technologies, which provide multigene, targeted mutational profiling, even in the most complex of clinical cases. Combining traditional and molecular knowledge, pathologists integrate the morphological, clinical, and molecular dimensions of a disease, leading to a proper diagnosis and, therefore, the most-appropriate tailored therapy.
Collapse
Affiliation(s)
- Matteo Fassan
- From the Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Li CG, Jin P, Yang L, Zang WC, Kang Q, Li N, He Y, Xu J, Zhang C, Wang X, Sheng JQ. Germline mutations in patients with multiple colorectal polyps in China. J Gastroenterol Hepatol 2017; 32:1723-1729. [PMID: 28251689 DOI: 10.1111/jgh.13776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/12/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Multiple colorectal polyps are relevant in hereditary colorectal cancer (CRC) syndromes, which are thought to be caused by multiple events including germline mutations. This study was aimed to characterize germline mutations in Chinese patients with multiple colorectal polyps. METHODS Patients with > 10 colorectal polyps at the Department of Gastroenterology of the PLA Army General Hospital were enrolled from January 2014 to December 2015. These patients were divided into the high-risk, moderate-risk, and mild-risk groups. White blood cell samples were collected, and DNA was extracted to sequence a panel of 19 genes previously associated with CRC by next-generation sequencing. RESULTS A total of 96 patients were enrolled in the study. Pathogenic germline mutations were found in 24 (24/33, 72.73%), nine (9/24, 37.5%), and three patients (3/39, 7.7%) in the high-risk, moderate-risk, and mild-risk groups, respectively. Based on the results given, we suggested a strategy about gene sequencing test for the patients with multiple polyps, and the sensitivity and specificity of the screening strategy were 97% and 57%, respectively. Four of eight patients with MUTYH pathogenic germline mutations had the c.A934-2G monoallelic germline mutation, whereas three of eight patients had the C55T MUTYH germline mutation. Concurrent pathogenic germline mutations in APC and MUTYH were also observed. CONCLUSIONS A genetic screening strategy comprising 19 genes was effective to screen for hereditary CRC syndromes in patients with multiple colorectal polyps. The MUTYH germline mutation hotspots in Chinese patients may be different from those in Caucasian patients.
Collapse
Affiliation(s)
- Chen-Guang Li
- The Third Military Medical University, Chongqing, China.,Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Peng Jin
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Lang Yang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Wan-Chun Zang
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Qian Kang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Na Li
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Yuqi He
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Junfeng Xu
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Chen Zhang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Xin Wang
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, PLA Army General Hospital, Beijing, China
| |
Collapse
|
16
|
Rohlin A, Rambech E, Kvist A, Törngren T, Eiengård F, Lundstam U, Zagoras T, Gebre-Medhin S, Borg Å, Björk J, Nilbert M, Nordling M. Expanding the genotype-phenotype spectrum in hereditary colorectal cancer by gene panel testing. Fam Cancer 2017; 16:195-203. [PMID: 27696107 PMCID: PMC5357488 DOI: 10.1007/s10689-016-9934-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hereditary syndromes causing colorectal cancer include both polyposis and non-polyposis syndromes. Overlapping phenotypes between the syndromes have been recognized and this make targeted molecular testing for single genes less favorable, instead there is a gaining interest for multi-gene panel-based approaches detecting both SNVs, indels and CNVs in the same assay. We applied a panel including 19 CRC susceptibility genes to 91 individuals of six phenotypic subgroups. Targeted NGS-based sequencing of the whole gene regions including introns of the 19 genes was used. The individuals had a family history of CRC or had a phenotype consistent with a known CRC syndrome. The purpose of the study was to demonstrate the diagnostic difficulties linked to genotype-phenotype diversity and the benefits of using a gene panel. Pathogenicity classification was carried out on 46 detected variants. In total we detected sixteen pathogenic or likely pathogenic variants and 30 variants of unknown clinical significance. Four of the pathogenic or likely pathogenic variants were found in BMPR1A in patients with unexplained familial adenomatous polyposis or atypical adenomatous polyposis, which extends the genotype-phenotype spectrum for this gene. Nine patients had more than one variant remaining after the filtration, including three with truncating mutations in BMPR1A, PMS2 and AXIN2. CNVs were found in three patients, in upstream regions of SMAD4, MSH3 and CTNNB1, and one additional individual harbored a 24.2 kb duplication in CDH1 intron1.
Collapse
Affiliation(s)
- Anna Rohlin
- Department of Molecular and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Eva Rambech
- Division of Oncology and Pathology Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Anders Kvist
- Division of Oncology and Pathology Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Therese Törngren
- Division of Oncology and Pathology Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Frida Eiengård
- Department of Molecular and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulf Lundstam
- Department of Surgery, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85, Gothenburg, Sweden
| | - Theofanis Zagoras
- Department of Molecular and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Samuel Gebre-Medhin
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Åke Borg
- Division of Oncology and Pathology Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Jan Björk
- The Swedish Polyposis Registry, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Mef Nilbert
- Division of Oncology and Pathology Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
- The HNPCC-register, Hvidovre University Hospital, Copenhagen University, Hvidovre, Denmark
| | - Margareta Nordling
- Department of Molecular and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Gonzalez RS, Washington K, Shi C. Current applications of molecular pathology in colorectal carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41241-017-0020-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Gadducci A, Guerrieri ME. PARP inhibitors alone and in combination with other biological agents in homologous recombination deficient epithelial ovarian cancer: From the basic research to the clinic. Crit Rev Oncol Hematol 2017; 114:153-165. [PMID: 28477743 DOI: 10.1016/j.critrevonc.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Hereditary epithelial ovarian cancer [EOC] in germline BRCA mutation (gBRCAm) carriers has a distinct clinical behavior characterized by younger age, high- grade serous histology, advanced stage, visceral distribution of disease, high response to platinum and other non-platinum agents and better clinical outcome. Sporadic EOC with homologous recombination deficiency [HDR] but no gBRCAm has the same biological and clinical behavior as EOC in gBRCAm carriers ("BRCAness"phenotype). Biomarkers are in development to enable an accurate definition of molecular features of BRCAness phenotype, and trials are warranted to determine whether such HDR signature will predict sensitivity to PARP inhibitors in sporadic EOC. Moreover, the link between PARP inhibition and angiogenesis suppression, the immunologic properties of EOC in gBRCAm carriers, the HRD induced by PI3K inhibition in EOC cells in vitro strongly support novel clinical trials testing the combination of PARP inhibitors with other biological agents.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy.
| | - Maria Elena Guerrieri
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| |
Collapse
|
19
|
Zanella I, Merola F, Biasiotto G, Archetti S, Spinelli E, Di Lorenzo D. Evaluation of the Ion Torrent PGM sequencing workflow for the routine rapid detection of BRCA1 and BRCA2 germline mutations. Exp Mol Pathol 2017; 102:314-320. [DOI: 10.1016/j.yexmp.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
20
|
Eshghifar N, Farrokhi N, Naji T, Zali M. Tumor suppressor genes in familial adenomatous polyposis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:3-13. [PMID: 28331559 PMCID: PMC5346818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is mostly due to a series of genetic alterations that are being greatly under the influence of the environmental factors. These changes, mutational or epigenetic modifications at transcriptional forefront and/or post-transcriptional effects via miRNAs, include inactivation and the conversion of proto-oncogene to oncogenes, and/or inactivation of tumor suppressor genes (TSG). Here, a thorough review was carried out on the role of TSGs with the focus on the APC as the master regulator, mutated genes and mal-/dysfunctional pathways that lead to one type of hereditary form of the CRC; namely familial adenomatous polyposis (FAP). This review provides a venue towards defining candidate genes that can be used as new PCR-based markers for early diagnosis of FAP. In addition to diagnosis, defining the modes of genetic alterations will open door towards genome editing to either suppress the disease or reduce its progression during the course of action.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Naser Farrokhi
- Department of Plant Biology & Biotechnology, Faculty of Biosciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Tahereh Naji
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J Meta-Anal 2017; 5:80. [DOI: 10.13105/wjma.v5.i4.80] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/22/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
|
22
|
Pyrtel K. Genetic Testing for Polyposis Syndromes. Clin Colon Rectal Surg 2016; 29:345-352. [PMID: 31777466 PMCID: PMC6878825 DOI: 10.1055/s-0036-1584087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Colorectal cancer is the third most common cancer diagnosed in the United States with up to 3% of cases being attributable to a hereditary polyposis syndrome. Established diagnostic and/or testing criteria exist for many of the recognized polyposis syndromes and are an important tool in guiding physicians in the identification of individuals who may benefit from referral to a cancer genetics service for hereditary cancer risk assessment. A formal hereditary cancer risk assessment supports fulfillment of obligations for standard of care, as well as minimizes the negative outcomes that may occur in the absence of informed consent for genetic testing. The implications of a diagnosis may extend beyond the individual patient to include at-risk relatives, and as such, much emphasis should be placed on identifying the most informative individual in a family in which to initiate testing. Advances in our understanding of genes associated with hereditary polyposis and the increasing use of testing that relies on next-generation sequencing technologies may lead to the increased likelihood of a genetic diagnosis; however, in those individuals without a genetic diagnosis whose histories remain concerning for hereditary polyposis, knowledge of family history may inform strategies for early detection and prevention.
Collapse
Affiliation(s)
- Khateriaa Pyrtel
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois
| |
Collapse
|
23
|
Application of next-generation sequencing in gastrointestinal and liver tumors. Cancer Lett 2016; 374:187-91. [PMID: 26916979 DOI: 10.1016/j.canlet.2016.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
Malignant transformation of normal cells is associated with the evolution of genomic alterations. This concept has led to the development of molecular testing platforms to identify genomic alterations that can be targeted with novel therapies. Next generation sequencing (NGS) has heralded a new era in precision medicine in which tumor genes can be studied efficiently. Recent developments in NGS have allowed investigators to identify genomic predictive makers and hereditary mutations to guide treatment decision. The application of NGS in gastrointestinal cancers is being extensively studied but continues to face substantial challenges. In our review, we discuss various NGS platforms and highlight their role in identifying familial mutations and markers of response or resistance to cancer therapy. We also provide a balanced discussion of the challenges that limit the routine use of NGS in clinical practice.
Collapse
|
24
|
Stanislaw C, Xue Y, Wilcox WR. Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biol Med 2016; 13:55-67. [PMID: 27144062 PMCID: PMC4850128 DOI: 10.28092/j.issn.2095-3941.2016.0002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
The introduction of next-generation sequencing (NGS) technology in testing for hereditary cancer susceptibility allows testing of multiple cancer susceptibility genes simultaneously. While there are many potential benefits to utilizing this technology in the hereditary cancer clinic, including efficiency of time and cost, there are also important limitations that must be considered. The best panel for the given clinical situation should be selected to minimize the number of variants of unknown significance. The inclusion in panels of low penetrance or newly identified genes without specific actionability can be problematic for interpretation. Genetic counselors are an essential part of the hereditary cancer risk assessment team, helping the medical team select the most appropriate test and interpret the often complex results. Genetic counselors obtain an extended family history, counsel patients on the available tests and the potential implications of results for themselves and their family members (pre-test counseling), explain to patients the implications of the test results (post-test counseling), and assist in testing family members at risk.
Collapse
Affiliation(s)
| | - Yuan Xue
- Fulgent Diagnostics, Temple City, CA 91780, USA
| | - William R. Wilcox
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Mafficini A, Simbolo M, Parisi A, Rusev B, Luchini C, Cataldo I, Piazzola E, Sperandio N, Turri G, Franchi M, Tortora G, Bovo C, Lawlor RT, Scarpa A. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing. Oncotarget 2016; 7:1076-1083. [PMID: 26745875 PMCID: PMC4811444 DOI: 10.18632/oncotarget.6834] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue.
Collapse
Affiliation(s)
- Andrea Mafficini
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Simbolo
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Alice Parisi
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Ivana Cataldo
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Elena Piazzola
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Nicola Sperandio
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giona Turri
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Franchi
- Department of Gynecology, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Chiara Bovo
- Board of Directors, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T. Lawlor
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
26
|
Mafficini A, Simbolo M, Parisi A, Rusev B, Luchini C, Cataldo I, Piazzola E, Sperandio N, Turri G, Franchi M, Tortora G, Bovo C, Lawlor RT, Scarpa A. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing. Oncotarget 2016. [PMID: 26745875 DOI: 10.18632/oncotarget.6834] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue.
Collapse
Affiliation(s)
- Andrea Mafficini
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Simbolo
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Alice Parisi
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy.,Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy.,Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Ivana Cataldo
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Elena Piazzola
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Nicola Sperandio
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giona Turri
- Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Franchi
- Department of Gynecology, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Chiara Bovo
- Board of Directors, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy.,Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy.,Department of Pathology & Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|