1
|
Gou Y, Lv BH, Zhang JF, Li SM, Hei XP, Liu JJ, Li L, Yang JZ, Feng K. Identifying early predictive and diagnostic biomarkers and exploring metabolic pathways for sepsis after trauma based on an untargeted metabolomics approach. Sci Rep 2025; 15:12068. [PMID: 40199964 PMCID: PMC11978901 DOI: 10.1038/s41598-025-92631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Systemic inflammatory response syndrome (SIRS) and organ dysfunction make it challenging to predict which major trauma patients are at risk of developing sepsis. Additionally, the unclear pathogenesis of sepsis after trauma contributes to its high morbidity and mortality. Identifying early predictive and diagnostic biomarkers, as well as exploring related metabolic pathways, is crucial for improving early prevention, diagnosis, and treatment. This study prospectively analyzed plasma samples from patients with severe trauma collected between March 2022 and November 2023. Trauma patients were divided into two groups based on whether they developed sepsis within two weeks: the TDDS group (trauma patients who did not develop sepsis) and the TDS group (trauma patients who did develop sepsis). Plasma samples from the TDS group were collected at the time of sepsis diagnosis (Sepsis group). Metabolite concentrations were measured using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) through untargeted metabolomics. From the differential metabolites between the TDS and TDDS groups, we identified five significant metabolites (all area under the curve (AUC) ≥ 0.94) as early predictive biomarkers for sepsis after trauma: (1) docosatrienoic acid, (2) 7-alpha-carboxy-17-alpha-carboxyethylandrostan lactone phenyl ester, (3) sphingomyelin (SM) 8:1;2O/26:1, (4) N1-[1-(3-isopropenylphenyl)-1-methylethyl]-3-oxobutanamide, and (5) SM 34:2;2O. Furthermore, five significant metabolites (all AUC ≥ 0.85) were identified as early diagnostic biomarkers from the comparison between the TDS and TDDS groups: (1) lysophosphatidylcholine (LPC) O-22:1, (2) LPC O-22:0, (3) uric acid, (4) LPC O-24:2, and (5) LPC 22:0-SN1. 26 metabolites shared between two comparisons (TDS vs. TDDS and sepsis vs. TDS) were identified. Of which, 19 metabolites belong to lipid metabolism. The top three metabolic pathways related to sepsis after trauma under the impact of severe trauma were: (1) glycerophospholipid metabolism, (2) porphyrin metabolism, and (3) sphingolipid metabolism. The top three metabolic pathways related to sepsis after trauma under the impact of infection were: (1) caffeine metabolism, (2) biosynthesis of unsaturated fatty acids, and (3) steroid hormone biosynthesis. Our study identified early predictive and diagnostic biomarkers and explored metabolic pathways related to sepsis after trauma. These findings provide a foundation for future research on the onset and development of sepsis, facilitating its early prevention, diagnosis, and treatment based on specific metabolites and metabolic pathways.
Collapse
Affiliation(s)
- Yi Gou
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Bo-Hui Lv
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Sheng-Ming Li
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Xiao-Ping Hei
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China
| | - Jing-Jing Liu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Lei Li
- School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Jian-Zhong Yang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Ke Feng
- Department of Emergency Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750003, Ningxia, China.
| |
Collapse
|
2
|
Chen W, Li S, Wu J, Yao C, Su W, Xu L, Wang G. Metabolomics Analysis Reveals Potential Biomarkers for Diffuse Axonal Injury Article Category: Original Work. Neurocrit Care 2025:10.1007/s12028-025-02257-6. [PMID: 40195240 DOI: 10.1007/s12028-025-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Metabolism is essential for life maintenance, neurological function, and injury repair, yet its role in diffuse axonal injury (DAI) is not fully understood. METHODS Thirty patients with DAI and 34 patients without DAI were recruited based on the classification criteria using magnetic resonance imaging within 30 days of admission in this exploratory research. Serum samples and clinical parameters were collected on admission, with the Glasgow Outcome Scale Extended at 6 months after injury used as the neurological functional outcome. We did an untargeted metabolomic analysis using liquid chromatography-mass spectrometry. RESULTS The DAI group and non-DAI group showed significant differences in the expression levels of 27 metabolites in serum, as well as in pupillary light reflex, Glasgow Coma Scale score, and Marshall computed tomography score. Random forest analysis indicated that lysophosphatidylcholine 22:3 sn-2 and carnitine C8:1 greatly contributed to distinguishing patients with DAI from patients without DAI (MeanDecreaseGini: 3.81, 5.16). The combined prediction of DAI using these two metabolites yielded an area under the curve of 0.944, which was higher than the combination of clinical parameters. CONCLUSIONS The serum metabolomics revealed potential biomarkers for DAI and has significant value for exploring pathogenesis, determining early diagnosis, and improving long-term neurological function.
Collapse
Affiliation(s)
- Weiliang Chen
- Department of Neurosurgery, Haining People's Hospital, Haining, Zhejiang, China.
| | - Shengwen Li
- Department of Orthopaedics, Haining People's Hospital, Haining, Zhejiang, China
| | - Jiayi Wu
- Department of Clinical Laboratory, Haining People's Hospital, Haining, Zhejiang, China
| | - Chunyu Yao
- Department of Neurosurgery, Haining People's Hospital, Haining, Zhejiang, China
| | - Wen Su
- Department of Neurosurgery, Haining People's Hospital, Haining, Zhejiang, China
| | - Lisheng Xu
- Department of Neurosurgery, Haining People's Hospital, Haining, Zhejiang, China
| | - Guanjun Wang
- Department of Neurosurgery, Haining People's Hospital, Haining, Zhejiang, China
| |
Collapse
|
3
|
Malaisamy AK, Vaidyanathan R, Kumar A, Choudhary N, Priyadarshini P, Bagaria DK, Subramanian A, Soni KD, Kumar A, Bhavesh NS. A pilot study on hemodynamically stable isolated chest trauma patients reveals dysregulation of oxidative metabolism. Metabolomics 2025; 21:49. [PMID: 40167841 DOI: 10.1007/s11306-025-02241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Metabolomic dysregulation precedes clinical deterioration following injury. However, despite receiving comparable treatment, patients with similar injury severity often follow different clinical trajectories and outcomes. METHODS This prospective cohort study at a level 1 trauma centre screened 4541 acutely injured patients with chest trauma between September 2019 and February 2023. Fifty hemodynamically stable patients with isolated chest trauma were recruited for the final analysis. Urine samples were collected on the injury days 1, 3, and 7. For healthy subjects, the urine sample was collected once. NMR-based metabolomics was performed. RESULTS The study found that the majority of injured patients were young (median age of 40 years), with road traffic injuries being the most common. The median time to presentation of the patient to the ED was 3.08 h, and 92% of patients had multiple rib fractures, pulmonary contusion (60%), and pleural involvement (88%). No patient died. The study found that twenty metabolites were dysregulated (p-value < 0.001). Twelve metabolites were upregulated, while the other eight showed downregulation. However, only five metabolites showed temporal association. 4-HPA, phenylalanine, aconitate, and carnitine represent a high potential for use as a biomarker in patients with isolated blunt trauma chest patients who remain hemodynamically stable. These differentially regulated metabolites were involved in Glyoxylate and dicarboxylate metabolism pathways, glycine, serine, and threonine metabolism, and the Citrate cycle (TCA cycle). CONCLUSIONS AND RELEVANCE Metabolomics can accurately characterize metabolism in isolated blunt chest trauma patients, revealing perturbed pathways of traits such as oxidative stress and amino acid metabolisms. These metabolites could serve as biomarkers to detect systemic changes following chest injuries early. Metabolic profiling following an injury can aid in detecting systemic changes early and identifying novel biomarkers, enabling targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Arun Kumar Malaisamy
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Ramesh Vaidyanathan
- Division of Trauma Surgery and Critical Care, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Anand Kumar
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Narendra Choudhary
- Division of Trauma Surgery and Critical Care, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Pratyusha Priyadarshini
- Division of Trauma Surgery and Critical Care, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Dinesh Kumar Bagaria
- Division of Trauma Surgery and Critical Care, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Arulselvi Subramanian
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Kapil Dev Soni
- Critical & Intensive Care, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Abhinav Kumar
- Division of Trauma Surgery and Critical Care, Jai Prakash Narayan Apex Trauma Center (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.
| |
Collapse
|
4
|
Banoei MM, Hutchison J, Panenka W, Wong A, Wishart DS, Winston BW. Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity. Crit Care 2025; 29:26. [PMID: 39815318 PMCID: PMC11737060 DOI: 10.1186/s13054-025-05258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI. METHODS Serum samples from 59 adult patients with sTBI and 35 age- and sex-matched orthopedic injury controls were subjected to quantitative metabolomics, including proton nuclear magnetic resonance (1H-NMR) and direct infusion/liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS), to identify and quantify metabolites on days 1 and 4 post-injury. In addition, we used advanced analytical methods to discover metabo-patterns associated with sTBI diagnosis and those related to probable primary and secondary brain injury. RESULTS Our results showed different serum metabolic profiles between sTBI and orthopedic injury (OI) controls, with significant changes in measured metabolites on day 1 and day 4 post-brain injury. The number of altered metabolites and the extent of their change were more pronounced on day 4 as compared to day 1 post-injury, suggesting an evolution of mechanisms from primary to secondary brain injury. Data showed high sensitivity and specificity in separating sTBI from OI controls for diagnosis. Energy-related metabolites such as glucose, pyruvate, lactate, mannose, and polyamine metabolism metabolites (spermine and putrescine), as well as increased acylcarnitines and sphingomyelins, occurred mainly on day 1 post-injury. Metabolites of neurotransmission, catecholamine, and excitotoxicity mechanisms such as glutamate, phenylalanine, tyrosine, and branched-chain amino acids (BCAAs) increased to a greater degree on day 4. Further, there was an association of multiple metabolites, including acylcarnitines (ACs), lysophosphatidylcholines (LysoPCs), glutamate, and phenylalanine, with injury severity at day 4, while lactate, glucose, and pyruvate correlated with injury severity on day 1. CONCLUSION The results demonstrate that serum metabolomics has diagnostic potential for sTBI and may reflect molecular mechanisms of primary and secondary brain injuries when comparing metabolite profiles between day 1 and day 4 post-injury. These early changes in serum metabolites may provide insight into molecular pathways or mechanisms of primary injury and ongoing secondary injuries, revealing potential therapeutic targets for sTBI. This work also highlights the need for further research and validation of sTBI metabolite biomarkers in a larger cohort.
Collapse
Affiliation(s)
- Mohammad M Banoei
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - James Hutchison
- Department of Critical Care and Neuroscience and Mental Health Research Program, The Hospital for Sick Children and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - William Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Andy Wong
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David S Wishart
- Departments of Biological Sciences, Computing Sciences and Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Brent W Winston
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
- Dr. Brent W. Winston, Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Sharma B, Jiang W, Dhole Y, Agriantonis G, Bhatia ND, Shafaee Z, Twelker K, Whittington J. Lactate Is a Strong Predictor of Poor Outcomes in Patients with Severe Traumatic Brain Injury. Biomedicines 2024; 12:2778. [PMID: 39767684 PMCID: PMC11673745 DOI: 10.3390/biomedicines12122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Lactate is a byproduct of glycolysis, often linked to oxygen deprivation. This study aimed to examine how lactate levels (LLs) affect clinical outcomes in patients with severe TBI, hypothesizing that higher LLs would correlate with worse outcomes. Methods: This is a level 1 single-center, retrospective study of patients with severe TBI between 1 January 2020 and 31 December 2023, inclusive. Results: Single-factor ANOVA indicated a significant decrease in LLs with increasing age. Linear regression models showed the same for hospital admission, Intensive Care Unit (ICU) admission LLs, and death LLs. Prognostic scores such as Injury Severity Scores (ISS) and Glasgow Coma Score (GCS) showed a strong correlation with both Hospital admission and ICU admission LLs. ANOVA indicated higher LLs with increasing ISS and increasing LLs with decreasing GCS. Linear regressions revealed a strong positive correlation between ISS and LLs. On linear regression, the LL measured at hospital admission and ICU admission was positively associated with the length of stay (LOS) in the hospital, LOS in the ICU, ventilator days, and mortality. Linear regression models showed that a decreased delta LL during ICU admission led to an increased LOS at the hospital and the ICU, as well as a higher number of days on a ventilator. Discussion: We discovered that high LLs were linked to higher AIS and GCS scores, longer stays in the hospital and ICU, more days requiring a ventilator, and higher mortality rates in patients with severe TBI. Conclusions: LLs can be considered a strong predictor of poor clinical outcomes in patients with severe TBI.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - Winston Jiang
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - Yashoda Dhole
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - Zahra Shafaee
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA; (W.J.); (G.A.); (N.D.B.); (Z.S.); (K.T.); (J.W.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA;
| |
Collapse
|
6
|
Cáceres E, Divani AA, Rubinos CA, Olivella-Gómez J, Viñan Garcés AE, González A, Alvarado Arias A, Bhatia K, Samadani U, Reyes LF. PaCO 2 Association with Outcomes of Patients with Traumatic Brain Injury at High Altitude: A Prospective Single-Center Cohort Study. Neurocrit Care 2024; 41:767-778. [PMID: 38740704 PMCID: PMC11599390 DOI: 10.1007/s12028-024-01982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. METHODS This is a prospective single-center cohort of consecutive patients with TBI admitted to a trauma center located at 2600 m above sea level. An unfavorable outcome was defined as a Glasgow Outcome Scale-Extended (GOSE) score < 4 at the 6-month follow-up. RESULTS We had a total of 81 patients with complete data, 80% (65/81) were men, and the median (interquartile range) age was 36 (25-50) years. Median Glasgow Coma Scale (GCS) score on admission was 9 (6-14); 49% (40/81) of patients had severe TBI (GCS 3-8), 32% (26/81) had moderate TBI (GCS 12-9), and 18% (15/81) had mild TBI (GCS 13-15). The median (interquartile range) Abbreviated Injury Score of the head (AISh) was 3 (2-4). The frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), the median GOSE was 4 (2-5), and the median 6-month mortality rate was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, (median age 49 [30-72] vs. 29 [22-41] years, P < 0.01), had lower admission GCS scores (6 [4-8] vs. 13 [8-15], P < 0.01), had higher AISh scores (4 [4-4] vs. 3 [2-4], P < 0.01), had higher Acute Physiology and Chronic Health disease Classification System II scores (17 [15-23] vs. 10 [6-14], P < 0.01), had higher Charlson scores (0 [0-2] vs. 0 [0-0], P < 0.01), and had higher PaCO2 levels (mean 35 ± 8 vs. 32 ± 6 mm Hg, P < 0.01). In a multivariate analysis, age (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.1-1.30, P < 0.01), AISh (OR 4.7, 95% CI 1.55-21.0, P < 0.05), and PaCO2 levels (OR 1.23, 95% CI 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4, 95% CI 1.61-28.5, P = 0.017) and PaCO2 levels (OR 1.36, 95% CI 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. CONCLUSIONS Higher PaCO2 levels are associated with an unfavorable outcome in ventilated patients with TBI. These results underscore the importance of PaCO2 levels in patients with TBI and whether it should be adjusted for populations living at higher altitudes.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Department of Bioscience, School of Engineering, Universidad de La Sabana, Chía, Colombia.
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia.
| | - Afshin A Divani
- Department of Neurology, The University of New Mexico, Albuquerque, NM, USA
| | - Clio A Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Olivella-Gómez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Angélica González
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Uzma Samadani
- Department of Neurosurgery, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Luis F Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Lampros M, Alexiou GA, Vlachodimitropoulou L, Voulgaris S. Letter to the editor for: "A systematic review and meta-analysis of major blood protein biomarkers that predict unfavorable outcomes in severe traumatic brain injury". Clin Neurol Neurosurg 2024; 243:108366. [PMID: 38901379 DOI: 10.1016/j.clineuro.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Marios Lampros
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| | - George A Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece.
| | | | - Spyridon Voulgaris
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Yin X, Xia Y, Shen L, Zhu X, Lu L, Meng X. Postoperative hyperglycemia in patients with traumatic brain injury: development of a prediction model. Arch Med Sci 2024; 21:131-137. [PMID: 40190316 PMCID: PMC11969510 DOI: 10.5114/aoms/188007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 04/09/2025] Open
Abstract
Introduction Blood glucose monitoring and management are very important for the prognosis of patients with traumatic brain injury (TBI). It is necessary to evaluate the status and influencing factors of hyperglycemia within 48 h after the operation in patients with TBI. Material and methods Patients with TBI who received craniocerebral surgery between March 1, 2022, and October 31, 2023, were enrolled. We assessed the clinical characteristics of TBI patients with and without the development of postoperative hyperglycemia. To identify potential risk factors associated with postoperative hyperglycemia, we performed both univariate and multivariate logistic regression analyses. Utilizing the regression coefficients derived from each significant risk factor, we subsequently constructed a predictive model aimed at forecasting postoperative hyperglycemia. Results A total of 216 TBI patients were included. The incidence of postoperative hyperglycemia was 31.48%. Correlation analysis indicated that age (r = 0.415), body mass index (BMI) (r = 0.441), diabetes (r = 0.513), Glasgow Coma Scale (GCS) score (r = 0.545) and length of hospital stay (r = 0.456) were all correlated with the postoperative hyperglycemia in TBI patients (all p < 0.05). Age ≥ 60 years (OR = 2.556, 95% CI: 1.831-3.641), BMI ≥ 24 kg/m2 (OR = 2.793, 95% CI: 2.305-3.679), diabetes (OR = 3.081, 95% CI: 2.326-3.811) and GCS score ≤ 8 (OR = 3.603, 95% CI: 1.956-4.086) were the independent factors influencing postoperative hyperglycemia in TBI patients (all p < 0.05). The area under the receiver operating characteristic curve and 95% CI were 0.795 (0.712, 0.849). The model had good discriminative ability to distinguish the occurrence of postoperative hyperglycemia in TBI patients (all p < 0.05). Conclusions Postoperative hyperglycemia in patients with TBI is common. For TBI patients with a total score ≥ 6 in the prediction model, early interventions and care are needed to reduce the postoperative hyperglycemia.
Collapse
Affiliation(s)
- Xiangyi Yin
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yi Xia
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Liuyan Shen
- Department of Neurosurgery, The 904 Hospital of the Joint Logistics Support Force of Chinese People’s Liberation Army, Wuxi, China
| | - Xiaowen Zhu
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lichun Lu
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xianlan Meng
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
10
|
Chen SH, Hu FL, Wang G, Liang XS, He CJ. Importance of AIM2 as a serum marker for reflecting severity and predicting a poor outcome of human severe traumatic brain injury: A prospective longitudinal cohort study. Clin Chim Acta 2024; 559:119691. [PMID: 38685373 DOI: 10.1016/j.cca.2024.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Absent in melanoma 2 (AIM2) participates in neuroinflammation. Here, the prognostic significance of serum AIM2 was explored in severe traumatic brain injury (sTBI). METHODS A total of 135 sTBI patients and 80 healthy controls were recruited in this prospective cohort study. Serum C-reactive protein (CRP) and AIM2 levels were measured. Glasgow Coma Scale (GCS) and Rotterdam computed tomography (CT) classification were recorded as the severity indicators. Prognostic parameters were posttraumatic six-month extended Glasgow outcome scale (GOSE) scores and poor outcome (GOSE scores of 1-4). RESULTS As opposed to controls, there were significantly elevated serum AIM2 levels after sTBI. Serum AIM2 levels were independently correlated with serum CRP levels, GCS scores, Rotterdam CT scores, GOSE scores and poor outcome. Also, serum AIM2 levels were efficiently predictive of poor outcome under the receiver operating characteristic (ROC) curve. Under the restricted cubic spline, serum AIM2 levels were linearly correlated with risk of poor outcome. Using subgroup analysis, serum AIM2 levels did not significantly interact with other indices, such as age, gender, alcohol drinking, cigarette smoking, etc. Also, combination model, in which serum AIM2, GCS scores and Rotterdam CT scores were merged, was outlined using nomogram and performed well under calibration curve, ROC curve and decision curve. CONCLUSIONS Raised serum AIM2 levels after sTBI, in intimate correlation with systemic inflammation and trauma severity, are independently discriminative of posttraumatic six-month neurological outcome, substantializing serum AIM2 as an inflammatory prognostic biomarker of sTBI.
Collapse
Affiliation(s)
- Si-Hua Chen
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| | - Fang-Lin Hu
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China.
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| | - Xiao-Song Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| | - Chen-Jun He
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University(Shaoxing Municipal Hospital), No. 999 Zhongxing South Road, Yuecheng District, Shaoxing City 312000, Zhejiang Province, China
| |
Collapse
|
11
|
Plante V, Basu M, Gettings JV, Luchette M, LaRovere KL. Update in Pediatric Neurocritical Care: What a Neurologist Caring for Critically Ill Children Needs to Know. Semin Neurol 2024; 44:362-388. [PMID: 38788765 DOI: 10.1055/s-0044-1787047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Currently nearly one-quarter of admissions to pediatric intensive care units (PICUs) worldwide are for neurocritical care diagnoses that are associated with significant morbidity and mortality. Pediatric neurocritical care is a rapidly evolving field with unique challenges due to not only age-related responses to primary neurologic insults and their treatments but also the rarity of pediatric neurocritical care conditions at any given institution. The structure of pediatric neurocritical care services therefore is most commonly a collaborative model where critical care medicine physicians coordinate care and are supported by a multidisciplinary team of pediatric subspecialists, including neurologists. While pediatric neurocritical care lies at the intersection between critical care and the neurosciences, this narrative review focuses on the most common clinical scenarios encountered by pediatric neurologists as consultants in the PICU and synthesizes the recent evidence, best practices, and ongoing research in these cases. We provide an in-depth review of (1) the evaluation and management of abnormal movements (seizures/status epilepticus and status dystonicus); (2) acute weakness and paralysis (focusing on pediatric stroke and select pediatric neuroimmune conditions); (3) neuromonitoring modalities using a pathophysiology-driven approach; (4) neuroprotective strategies for which there is evidence (e.g., pediatric severe traumatic brain injury, post-cardiac arrest care, and ischemic stroke and hemorrhagic stroke); and (5) best practices for neuroprognostication in pediatric traumatic brain injury, cardiac arrest, and disorders of consciousness, with highlights of the 2023 updates on Brain Death/Death by Neurological Criteria. Our review of the current state of pediatric neurocritical care from the viewpoint of what a pediatric neurologist in the PICU needs to know is intended to improve knowledge for providers at the bedside with the goal of better patient care and outcomes.
Collapse
Affiliation(s)
- Virginie Plante
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Meera Basu
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Matthew Luchette
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
12
|
Duan A, Qiu Y, Song B, Tao Y, Wang M, Yin Z, Xie M, Chen Z, Wang Z, Sun X. Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury. Biomedicines 2024; 12:1178. [PMID: 38927385 PMCID: PMC11201266 DOI: 10.3390/biomedicines12061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies have identified metabolites as biomarkers or potential therapeutic targets for traumatic brain injury (TBI). However, the causal association between them remains unknown. Therefore, we investigated the causal effect of serum metabolites and cerebrospinal fluid (CSF) metabolites on TBI susceptibility through Mendelian randomization (MR). Genetic variants related to metabolites and TBI were extracted from a corresponding genome-wide association study (GWAS). Causal effects were estimated through the inverse variance weighted approach, supplemented by a weighted median, weight mode, and the MR-Egger test. In addition, sensitivity analyses were further performed to evaluate the stability of the MR results, including the MR-Egger intercept, leave-one-out analysis, Cochrane's Q-test, and the MR-PRESSO global test. Metabolic pathway analysis was applied to uncover the underlying pathways of the significant metabolites in TBI. In blood metabolites, substances such as 4-acetaminophen sulfate and kynurenine showed positive links, whereas beta-hydroxyisovalerate and creatinine exhibited negative correlations. CSF metabolites such as N-formylanthranilic acid were positively related, while kynurenate showed negative associations. The metabolic pathway analysis highlighted the potential biological pathways involved in TBI. Of these 16 serum metabolites, 11 CSF metabolites and metabolic pathways may serve as useful circulating biomarkers in clinical screening and prevention, and may be candidate molecules for the exploration of mechanisms and drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (A.D.); (Y.Q.)
| | - Xiaoou Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (A.D.); (Y.Q.)
| |
Collapse
|
13
|
Qiao H, Chen Y, Qian C, Guo Y. Clinical data mining: challenges, opportunities, and recommendations for translational applications. J Transl Med 2024; 22:185. [PMID: 38378565 PMCID: PMC10880222 DOI: 10.1186/s12967-024-05005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
Clinical data mining of predictive models offers significant advantages for re-evaluating and leveraging large amounts of complex clinical real-world data and experimental comparison data for tasks such as risk stratification, diagnosis, classification, and survival prediction. However, its translational application is still limited. One challenge is that the proposed clinical requirements and data mining are not synchronized. Additionally, the exotic predictions of data mining are difficult to apply directly in local medical institutions. Hence, it is necessary to incisively review the translational application of clinical data mining, providing an analytical workflow for developing and validating prediction models to ensure the scientific validity of analytic workflows in response to clinical questions. This review systematically revisits the purpose, process, and principles of clinical data mining and discusses the key causes contributing to the detachment from practice and the misuse of model verification in developing predictive models for research. Based on this, we propose a niche-targeting framework of four principles: Clinical Contextual, Subgroup-Oriented, Confounder- and False Positive-Controlled (CSCF), to provide guidance for clinical data mining prior to the model's development in clinical settings. Eventually, it is hoped that this review can help guide future research and develop personalized predictive models to achieve the goal of discovering subgroups with varied remedial benefits or risks and ensuring that precision medicine can deliver its full potential.
Collapse
Affiliation(s)
- Huimin Qiao
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yijing Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Changshun Qian
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China.
- Ganzhou Key Laboratory of Medical Big Data, Ganzhou, China.
| |
Collapse
|
14
|
Caceres E, Divani AA, Rubinos CA, Olivella-Gómez J, Viñán-Garcés AE, González A, Alvarado-Arias A, Bathia K, Samadani U, Reyes LF. PaCO2 Association with Traumatic Brain Injury Patients Outcomes at High Altitude: A Prospective Single-Center Cohort Study. RESEARCH SQUARE 2024:rs.3.rs-3876988. [PMID: 38343855 PMCID: PMC10854293 DOI: 10.21203/rs.3.rs-3876988/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. Methods This is a prospective single-center cohort of consecutive TBI patients admitted to a trauma center located at 2600 meter above sea level. An unfavorable outcome was defined as the Glasgow Outcome Scale-Extended (GOSE) < 4 at 6-month follow-up. Results 81 patients with complete data, 80% (65/81) were men, and median (IQR) age was 36 (25-50) years). Median Glasgow Coma Scale (GCS) on admission was 9 (6-14), 49% (40/81) were severe (GCS: 3-8), 32% (26/81) moderate (GCS 12 - 9), and 18% (15/81) mild (GCS 13-15) TBI. The median (IQR) Abbreviated Injury Score of the Head (AISh) was 3 (2-4). Frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), median GOSE was 4 (2-5), and 6-month mortality was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, median [49 (30-72) vs. 29 (22-41), P < 0.01], had lower admission GCS [6 (4-8) vs. 13 (8-15), P < 0.01], higher AIS head [4 (4-4) vs. 3(2-4), p < 0.01], higher APACHE II score [17(15-23) vs 10 (6-14), < 0.01), higher Charlson score [0(0-2) vs. 0 (0-0), P < 0.01] and higher PaCO2 (mmHg), mean ± SD, 39 ± 9 vs. 32 ± 6, P < 0.01. In a multivariate analysis, age (OR 1.14 95% CI 1.1-1.30, P < 0.01), AISh (OR 4.7 95% CI 1.55-21.0, P < 0.05), and PaCO2 (OR 1.23 95% CI: 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4 95% CI: 1.61-28.5, P = 0.017) and PaCO2 (OR 1.36 95% CI: 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. Conclusion Higher PaCO2 levels are associated with an unfavorable outcome in ventilated TBI patients. These results underscore the importance of PaCO2 level in TBI patients and whether it should be adjusted for populations living at higher altitudes.
Collapse
Affiliation(s)
| | - Afshin A Divani
- University of New Mexico - Albuquerque: The University of New Mexico
| | - Clio A Rubinos
- University of North Carolina at Chapel Hill Health Sciences Library: The University of North Carolina at Chapel Hill
| | | | | | | | - Alexis Alvarado-Arias
- University of Mississippi University Hospital: The University of Mississippi Medical Center
| | - Kunal Bathia
- University of Mississippi University Hospital: The University of Mississippi Medical Center
| | | | | |
Collapse
|
15
|
Yang K, Yang L, Chen X, Li J, Zheng B, Hu J, Wang H, Yu Q, Song G. Importance of serum IRAK3 as a biochemical marker in relation to severity and neurological outcome of human severe traumatic brain injury: A prospective longitudinal cohort study. Clin Chim Acta 2024; 553:117754. [PMID: 38169195 DOI: 10.1016/j.cca.2023.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Interleukin-1 receptor-associated kinase 3 (IRAK3) may modulate inflammation in brain immunity. We determined the prognostic role of serum IRAK3 in severe traumatic brain injury (sTBI). METHODS In this prospective longitudinal cohort study, serum IRAK3 concentrations of 131 sTBI patients and 131 controls were quantified. Extended Glasgow outcome scale (GOSE) scores of 1-4 at 180 days after trauma signified a poor prognosis. Univariate and multivariate analyses were sequentially adopted to appraise severity correlations and prognosis associations. RESULTS There were significantly higher serum IRAK3 concentrations in patients than in controls. Serum IRAK3 concentrations of patients were independently correlated with Glasgow coma scale (GCS) scores, Rotterdam computed tomography (CT) scores and posttraumatic180-day GOSE scores. Also, IRAK3 concentrations were independently associated with 180-day poor prognosis, but not with death. Prognosis prediction model, in which GCS scores, Rotterdam scores and serum IRAK3 concentrations were merged, was portrayed using the nomogram. The model was rather stable, clinically usable and efficiently discriminative of poor prognosis under calibration curve, decision curve and receiver operating characteristic curve. CONCLUSIONS A substantial enhancement of serum IRAK3 concentrations after head trauma is independently related to severity and neurological outcome, substantializing serum IRAK3 as a promising prognostic biomarker of sTBI.
Collapse
Affiliation(s)
- Kai Yang
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China.
| | - Lijun Yang
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Jian Li
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Bokun Zheng
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Juheng Hu
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Hailong Wang
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Quanwang Yu
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| | - Guangtai Song
- Department of Neurosurgery, Jiangshan People's Hospital, Jiangshan 324100, Zhejiang Province, China
| |
Collapse
|