1
|
Bar S, Hilsabeck TA, Pattavina B, López-Domínguez JA, Basisty N, Bons J, Watson M, Schilling B, Campisi J, Kapahi P, Sharma A. Inhibition of the metalloprotease ADAM19 as a novel senomorphic strategy to ameliorate gut permeability and senescence markers by modulating senescence-associated secretory phenotype (SASP). Aging (Albany NY) 2025; 17:757-777. [PMID: 40117561 PMCID: PMC11984429 DOI: 10.18632/aging.206224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Accumulation of DNA damage can accelerate aging through cellular senescence. Previously, we established a Drosophila model to investigate the effects of radiation-induced DNA damage on the intestine. In this model, we examined irradiation-responsive senescence in the fly intestine. Through an unbiased genome-wide association study (GWAS) utilizing 156 strains from the Drosophila Genetic Reference Panel (DGRP), we identified meltrin (the drosophila orthologue of mammalian ADAM19) as a potential modulator of the senescence-associated secretory phenotype (SASP). Knockdown of meltrin resulted in reduced gut permeability, DNA damage, and expression of the senescence marker β-galactosidase (SA-β-gal) in the fly gut following irradiation. Additionally, inhibition of ADAM19 in mice using batimastat-94 reduced gut permeability and inflammation in the gut. Our findings extend to human primary fibroblasts, where ADAM19 knockdown or pharmacological inhibition decreased expression of specific SASP factors and SA-β-gal. Furthermore, proteomics analysis of the secretory factor of senescent cells revealed a significant decrease in SASP factors associated with the ADAM19 cleavage site. These data suggest that ADAM19 inhibition could represent a novel senomorphic strategy.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Blaine Pattavina
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Jackson Laboratory, Farmington, CT 06032, USA
| | - José Alberto López-Domínguez
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación del Cáncer of Salamanca, University of Salamanca-CSIC, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Mark Watson
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Amit Sharma
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| |
Collapse
|
2
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
4
|
Admasu TD, Rae MJ, Stolzing A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev 2021; 70:101412. [PMID: 34302996 DOI: 10.1016/j.arr.2021.101412] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest that is known to be elicited in response to different stresses or forms of damage. Senescence limits the replication of old, damaged, and precancerous cells in the short-term but is implicated in diseases and debilities of aging due to loss of regenerative reserve and secretion of a complex combination of factors called the senescence-associated secretory phenotype (SASP). More recently, investigators have discovered that senescent cells induced by these methods (what we term "primary senescent cells") are also capable of inducing other non-senescent cells to undergo senescence - a phenomenon we call "secondary senescence." Secondary senescence has been demonstrated to occur via two broad types of mechanisms. First, factors in the SASP have been shown to be involved in spreading senescence; we call this phenomenon "paracrine senescence." Second, primary senescent cells can induce senescence via an additional group of mechanisms involving cell-to-cell contacts of different types; we term this phenomenon "juxtacrine senescence." "Secondary senescence" in our definition is thus the overarching term for both paracrine and juxtacrine senescence together. By allowing cells that are inherently small in number and incapable of replication to increase in number and possibly spread to anatomically distant locations, secondary senescence allows an initially small number of senescent cells to contribute further to age-related pathologies. We propose that understanding how primary and secondary senescent cells differ from each other and the mechanisms of their spread will enable the development of new rejuvenation therapies to target different senescent cell populations and interrupt their spread, extending human health- and potentially lifespan.
Collapse
|
5
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
6
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 852] [Impact Index Per Article: 213.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
7
|
Li KY, Xiang XJ, Song L, Chen J, Luo B, Wen QX, Zhong BR, Zhou GF, Deng XJ, Ma YL, Hu LT, Chen GJ. Mitochondrial TXN2 attenuates amyloidogenesis via selective inhibition of BACE1 expression. J Neurochem 2020; 157:1351-1365. [PMID: 32920833 DOI: 10.1111/jnc.15184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Thioredoxin-2 (TXN2) is a mitochondrial protein and represents one of the intrinsic antioxidant enzymes. It has long been recognized that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Alzheimer's disease (AD). We hypothesized that mitochondrial TXN2 might play a role in AD-like pathology. In this study, we found that in SH-SY5Y and HEK cells stably express full-length human amyloid-β precursor protein (HEK-APP), TXN2 silencing or over-expression selectively increased or decreased the transcription of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), respectively, without altering the protein levels of others enzymes involved in the catalytic processing of APP. As a result, β-amyloid protein (Aβ) levels were significantly decreased by TXN2. In addition, in cells treated with 3-nitropropionic acid (3-NP) that is known to increase reactive oxygen species (ROS) and promote mitochondrial dysfunction, TXN2 silencing resulted in further enhancement of BACE1 protein levels, suggesting a role of TXN2 in ROS removal. The downstream signaling might involve NFκB, as TXN2 reduced the phosphorylation of p65 and IκBα; and p65 knockdown significantly attenuated TXN2-mediated regulation of BACE1. Concomitantly, the levels of cellular ROS, apoptosis-related proteins and cell viability were altered by TXN2 silencing or over-expression. In APPswe/PS1E9 mice, an animal model of AD, the cortical and hippocampal TXN2 protein levels were decreased at 12 months but not at 6 months, suggesting an age-dependent decline. Collectively, TXN2 regulated BACE1 expression and amyloidogenesis via cellular ROS and NFκB signaling. TXN2 might serve as a potential target especially for early intervention of AD.
Collapse
Affiliation(s)
- Kun-Yi Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, the Second People's Hospital of Chengdu, Chengdu, China
| | - Xiao-Jiao Xiang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Bi-Rou Zhong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li-Tian Hu
- Department of Neurology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
8
|
Sfera A, Osorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication With Endogenous Angiotensin II: A COVID-19 Hypothesis. Front Immunol 2020; 11:1472. [PMID: 32655579 PMCID: PMC7325923 DOI: 10.3389/fimmu.2020.01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the globe. However, despite its high pathogenicity and transmissibility, the severity of the associated disease, COVID-19, varies widely. While the prognosis is favorable in most patients, critical illness, manifested by respiratory distress, thromboembolism, shock, and multi-organ failure, has been reported in about 5% of cases. Several studies have associated poor COVID-19 outcomes with the exhaustion of natural killer cells and cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article, we propose a common pathophysiological denominator for these negative prognostic markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza, the outlook of COVID-19 is negatively correlated with the intracellular accumulation of angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In this model, upregulated angiotensin II causes premature vascular senescence, leading to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with critical illness by reversing both the clotting and immune defects (Graphical Abstract).
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Lee Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose E Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
9
|
|
10
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1634] [Impact Index Per Article: 233.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Weber RJ, Desai TA, Gartner ZJ. Non-autonomous cell proliferation in the mammary gland and cancer. Curr Opin Cell Biol 2017; 45:55-61. [PMID: 28314237 PMCID: PMC8811621 DOI: 10.1016/j.ceb.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
Abstract
Cells decide whether to grow and divide by integrating internal and external signals. Non-autonomous cell growth and proliferation occurs when microenvironmental signals from neighboring cells, both physical and secreted, license this decision. Understanding these processes is vital to developing an accurate framework for cell-cell interactions and cellular decision-making, and is useful for advancing new therapeutic strategies to prevent dysregulated growth. Here, we review some recent examples of non-autonomous cell growth in the mammary gland and tumor cell proliferation.
Collapse
Affiliation(s)
- Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, 600 16th Street, Room 522, San Francisco, California 94158, United States; Medical Scientist Training Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Group in Bioengineering, 1700 Fourth Street, Room 216, San Francisco, California 94158, United States; UCSF Bioengineering and Therapeutic Sciences, 1700 Fourth Street, Room 216B, San Francisco, California 94158, United States
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States; UC Berkeley-UCSF Group in Bioengineering, 1700 Fourth Street, Room 216, San Francisco, California 94158, United States; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, 600 16th Street, Room 522, San Francisco, California 94158, United States.
| |
Collapse
|