1
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. Alternative Splicing: A Potential Therapeutic Target in Hematological Malignancies. Hematol Rep 2024; 16:682-697. [PMID: 39584923 PMCID: PMC11587037 DOI: 10.3390/hematolrep16040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Leukemia represents the most prevalent malignancy in children, constituting 30% of childhood cancer cases, with acute lymphoblastic leukemia (ALL) being particularly heterogeneous. This paper explores the role of alternative splicing in leukemia, highlighting its significance in cancer development and progression. Aberrant splicing is often driven by mutations in splicing-factor genes, which can lead to the production of variant proteins that contribute to oncogenesis. The spliceosome, a complex of small nuclear RNAs and proteins, facilitates RNA splicing, a process critical for generating diverse mRNA and protein products from single genes. Mutations in splicing factors, such as U2AF1, SF3B1, SRSF2, ZRSR2, and HNRNPH1, are frequently observed across various hematological malignancies and are associated with poor prognosis and treatment resistance. This research underscores the necessity of understanding the mechanisms of RNA splicing dysregulation in order to develop targeted therapies to correct these aberrant processes, thereby improving outcomes for patients with leukemia and related disorders.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, North Macedonia;
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
2
|
Ubilla R, Zeppelin M, Martin F. Multilocus inherited neoplasia allele syndrome: report of uncommon combinations between CHEK2/ATM and BRCA1/CDKN2A genes. Ecancermedicalscience 2024; 18:1701. [PMID: 39021548 PMCID: PMC11254408 DOI: 10.3332/ecancer.2024.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 07/20/2024] Open
Abstract
Background Multilocus inherited neoplasia allelic syndrome (MINAS) is a recently coined term that describes the coexistence of two or more pathogenic variants (PVs) in cancer susceptibility genes (CSGs) in a single individual. Case presentation This article presents two cases of MINAS due to rare CSG combinations. The first was a 37-year-old woman carrying PVs in the mutated ataxia telangiectasia (ATM) and CHEK2 genes, with HER-2 positive unilateral breast cancer at 29. The second was a 53-year-old woman carrying PVs in the BRCA1 and CDKN2A genes, who presented with triple-negative breast cancer at 51. We describe their family history and treatment, where the lack of evidence for personalised management becomes evident. Conclusion Predicting the phenotypic effect of harbouring two variants in CSG is challenging. It is essential to encourage the notification of other cases and carry out functional studies to establish specific risks for affected individuals to develop personalised follow-up guidelines to reduce the associated morbimortality.
Collapse
Affiliation(s)
- Ricardo Ubilla
- Departamento de Genética, Hospital Luis Calvo Mackenna, Santiago 7500539, Chile
| | - Michelle Zeppelin
- Unidad Genética, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Fernanda Martin
- Unidad Asesoramiento Genético Oncológico, Fundación Arturo López Pérez, Santiago 7500691, Chile
| |
Collapse
|
3
|
Fortuno C, Richardson M, Pesaran T, Yussuf A, Horton C, James PA, Spurdle AB. CHEK2 is not a Li-Fraumeni syndrome gene: time to update public resources. J Med Genet 2023; 60:1215-1217. [PMID: 37536919 DOI: 10.1136/jmg-2023-109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
The gene-disease relationship for CHEK2 remains listed as 'Li-Fraumeni syndrome 2' in public resources such as OMIM and MONDO, despite published evidence to the contrary, causing frustration among Li-Fraumeni syndrome (LFS) clinical experts. Here, we compared personal cancer characteristics of 2095 CHEK2 and 248 TP53 pathogenic variant carriers undergoing multigene panel testing at Ambry Genetics against 15 135 individuals with no known pathogenic variant. Our results from a within-cohort logistic regression approach highlight obvious differences between clinical presentation of TP53 and CHEK2 pathogenic variant carriers, with no evidence of CHEK2 being associated with any of the TP53-related core LFS cancers. These findings emphasise the need to replace 'Li-Fraumeni syndrome 2' as the CHEK2-associated disease name, thereby limiting potential confusion.
Collapse
Affiliation(s)
- Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Zoller J, Trajanova D, Feurstein S. Germline and somatic drivers in inherited hematologic malignancies. Front Oncol 2023; 13:1205855. [PMID: 37904876 PMCID: PMC10613526 DOI: 10.3389/fonc.2023.1205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Inherited hematologic malignancies are linked to a heterogenous group of genes, knowledge of which is rapidly expanding using panel-based next-generation sequencing (NGS) or whole-exome/whole-genome sequencing. Importantly, the penetrance for these syndromes is incomplete, and disease development, progression or transformation has critical clinical implications. With the earlier detection of healthy carriers and sequential monitoring of these patients, clonal hematopoiesis and somatic driver variants become significant factors in determining disease transformation/progression and timing of (preemptive) hematopoietic stem cell transplant in these patients. In this review, we shed light on the detection of probable germline predisposition alleles based on diagnostic/prognostic 'somatic' NGS panels. A multi-tier approach including variant allele frequency, bi-allelic inactivation, persistence of a variant upon clinical remission and mutational burden can indicate variants with high pre-test probability. We also discuss the shared underlying biology and frequency of germline and somatic variants affecting the same gene, specifically focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in these genes are associated with a (specific) pattern or over-/underrepresentation of somatic molecular or cytogenetic alterations that may help identify the underlying germline syndrome and predict the course of disease in these individuals. This review is based on the current knowledge about somatic drivers in these four syndromes by integrating data from all published patients, thereby providing clinicians with valuable and concise information.
Collapse
Affiliation(s)
| | | | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Subasri V, Light N, Kanwar N, Brzezinski J, Luo P, Hansford JR, Cairney E, Portwine C, Elser C, Finlay JL, Nichols KE, Alon N, Brunga L, Anson J, Kohlmann W, de Andrade KC, Khincha PP, Savage SA, Schiffman JD, Weksberg R, Pugh TJ, Villani A, Shlien A, Goldenberg A, Malkin D. Multiple Germline Events Contribute to Cancer Development in Patients with Li-Fraumeni Syndrome. CANCER RESEARCH COMMUNICATIONS 2023; 3:738-754. [PMID: 37377903 PMCID: PMC10150777 DOI: 10.1158/2767-9764.crc-22-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.
Collapse
Affiliation(s)
- Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nisha Kanwar
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack Brzezinski
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jordan R. Hansford
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Michael Rice Cancer Centre, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Elizabeth Cairney
- Department of Paediatrics, London Health Sciences Centre and Western University, London, Ontario, Canada
| | - Carol Portwine
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Christine Elser
- Department of Medical Oncology, Princess Margaret Hospital and Mount Sinai Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan L. Finlay
- Neuro-Oncology Program, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Kim E. Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Noa Alon
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jo Anson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kelvin C. de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Joshua D. Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
- PEEL Therapeutics, Inc., Salt Lake City, Utah
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trevor J. Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anita Villani
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- CIFAR: Child and Brain Development, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Severino NP, Waisberg J, Fragoso MCBV, de Lima LGCA, Balsamo F, Henriques AC, Bianco B, de Sousa Gehrke F. Rectal leiomyosarcoma as the initial phenotypic manifestation of Li-Fraumeni-like syndrome: a case report and review of the literature. J Med Case Rep 2022; 16:468. [PMID: 36529791 PMCID: PMC9761972 DOI: 10.1186/s13256-022-03671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Leiomyosarcoma is a rare malignant tumor of smooth muscle origin and represents 10-20% of all soft tissue sarcomas. Primary colon and rectal sarcomas constitute < 0.1% of all large bowel malignancies. In Li-Fraumeni syndrome, sarcomas are the second most frequent cancer (25%). Li-Fraumeni syndrome is a genetic disease with a familial predisposition to multiple malignant neoplasms. This syndrome has an autosomal dominant pattern of inheritance and high penetrance characterized by germline TP53 mutations. Patients with a history of cancer who do not meet all the "classic" criteria for Li-Fraumeni syndrome are considered to have Li-Fraumeni-like syndrome. To the best of our knowledge, this article is the first report of a patient with rectal leiomyosarcoma as the initial phenotypic manifestation of Li-Fraumeni-like syndrome. The authors also present a literature review. CASE PRESENTATION A 67-year-old Brazilian woman underwent anterior rectosigmoidectomy and panhysterectomy secondary to rectal leiomyosarcoma. She subsequently developed carcinomatosis and died 2 years after the operation. Her family medical history consisted of a daughter who died at 32 years of age from breast cancer, a granddaughter diagnosed with adrenocortical carcinoma at 6 years of age and two siblings who died from prostate cancer. A genetic study was carried out to identify a pathogenic variant of Li-Fraumeni syndrome. In the DNA extracted from the peripheral blood leukocyte, restriction fragment length polymorphism was analyzed to search for mutations in the TP53 gene. The DNA sequencing identified the germline pathogenic variant p. R337H heterozygous in exon 10 of TP53. The patient was classified as having Li-Fraumeni-like syndrome. CONCLUSION In patients with rectal leiomyosarcoma, it is advisable to investigate the family history of cancer and perform genetic studies to screen for Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Natalia Parisi Severino
- Surgery Department, Hospital do Servidor Público Estadual de São Paulo, São Paulo, SP, Brazil.
| | - Jaques Waisberg
- Surgery Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Teaching and Research Development Center, Hospital do Servidor Público Estadual de São Paulo, São Paulo, SP, Brazil
| | | | | | - Flavia Balsamo
- Surgery Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Bianca Bianco
- Human Reproduction and Genetics Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | |
Collapse
|
7
|
Adejumo PO, Aniagwu TIG, Awolude OA, Oni AO, Ajayi OO, Fagbenle O, Ogungbade D, Kochheiser M, Ogundiran T, Olopade OI. Feasibility of genetic testing for cancer risk assessment programme in Nigeria. Ecancermedicalscience 2021; 15:1283. [PMID: 34824606 PMCID: PMC8580592 DOI: 10.3332/ecancer.2021.1283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background A high frequency of BRCA mutations has been established in Nigerian breast cancer (BC) patients. Recently, patients’ and first-degree relatives’ interest have been raised on cancer genetic risk assessment through our awareness activities in Nigeria. This led to the emergence of nurse-led cancer genetic counselling (CGC) and testing aimed at providing standard-of-care for individuals at increased risk of hereditary breast and ovarian cancers. Methods In June 2018, CGC and testing of patients with BC and ovarian cancer (OC) commenced in collaboration with Color Genomics Inc. for a 30-panel gene testing. Previously trained nurses in CGC at the University College Hospital, Ibadan offered genetic counselling (GC) to willing patients with BC and gynaecological cancer in four out-patient oncology clinics and departments for the pilot study. Consultation consisted of CGC, patient’s history, pedigree and sample collection for genetic testing (GT). Results Forty-seven patients – 40 with BC, five with OC and two with endometrial cancer received GC, and all chose to undergo GT. The average age at testing was 48.2 ± 12.1 years. Eight women reported a known family cancer history and there were more perceived benefits than barriers to GT with the patients experiencing the desire for none of their relative to have cancer. Results revealed no mutations in 27 (57.4%), 16 (4.0%) variants of unknown significance and 4 (8.5%) pathogenic mutations. Conclusion Personalised cancer care utilises GC and testing for cancer risk assessment towards prevention and early detection in high risk women. The study indicates the necessity of expanded cancer genetic services for integration into patient care and cancer prevention.
Collapse
Affiliation(s)
- Prisca O Adejumo
- Department of Nursing, College of Medicine, University of Ibadan, Ibadan, 200284, Nigeria
| | - Toyin I G Aniagwu
- School of Occupational Health Nursing, University College Hospital, Ibadan, 200212, Nigeria
| | - Olutosin A Awolude
- Department of Obstetrics and Gynaecology, College of Medicine, University of Ibadan/University College Hospital, Ibadan, 200284, Nigeria
| | - Abiodun O Oni
- Department of Surgery, University College Hospital, Ibadan, 200212, Nigeria
| | - Olubunmi O Ajayi
- Department of Obstetrics and Gynaecology, College of Medicine, University of Ibadan/University College Hospital, Ibadan, 200284, Nigeria
| | - Omolara Fagbenle
- Department of Radiation Oncology, University College Hospital, Ibadan, 200212, Nigeria
| | - Dasola Ogungbade
- Department of Radiology, University College Hospital, Ibadan, 200212, Nigeria
| | - Makayla Kochheiser
- Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL, 60637, USA.,Center for Global Health, University of Chicago, Chicago IL, 60637, USA
| | - Temidayo Ogundiran
- Department of Surgery, University College Hospital, Ibadan, 200212, Nigeria
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL, 60637, USA.,Center for Global Health, University of Chicago, Chicago IL, 60637, USA
| |
Collapse
|
8
|
Hereditary breast cancer: translation into clinical practice of recent American Society of Clinical Oncology, American Society of Radiation Oncology, and Society of Surgical Oncology recommendations. Eur J Cancer Prev 2020; 30:311-314. [PMID: 32898012 DOI: 10.1097/cej.0000000000000624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scientific acquisitions concerning the risk of breast cancer in the context of hereditary breast cancer syndrome are constantly evolving: alongside the BRCA1 and BRCA2 mutations, further ones have been identified, also associated with malignancies in different sites. Therefore, management of these clinical conditions requires a multidisciplinary and shared approach, based on constantly updated guidelines. The recent Expert Panel Consensus about management of hereditary breast cancer, chaired by the Society of Surgical Oncology with the American Society of Clinical Oncology and the American Society of Radiation Oncology, based on the evidences obtained by a systematic review of the literature, delineate accurate and novel directions towards an appropriate surgical, radiation, and systemic therapy management of breast cancer patients with specific germline mutations. These recent recommendations will provide to physicians an updated and useful tool in treatment decision making of these patients in daily practice.
Collapse
|
9
|
Maciaszek JL, Oak N, Chen W, Hamilton KV, McGee RB, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, Gerhardt EL, Ouma A, Edmonson MN, Patel A, Nakitandwe J, Pappo AS, Azzato EM, Shurtleff SA, Ellison DW, Downing JR, Hudson MM, Robison LL, Santana V, Newman S, Zhang J, Wang Z, Wu G, Nichols KE, Kesserwan CA. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004218. [PMID: 31604778 PMCID: PMC6824257 DOI: 10.1101/mcs.a004218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Patients harboring germline pathogenic biallelic variants in genes involved in the recognition and repair of DNA damage are known to have a substantially increased cancer risk. Emerging evidence suggests that individuals harboring heterozygous variants in these same genes may also be at heightened, albeit lesser, risk for cancer. Herein, we sought to determine whether heterozygous variants in RECQL4, the gene encoding an essential DNA helicase that is defective in children with the autosomal recessive cancer-predisposing condition Rothmund-Thomson syndrome (RTS), are associated with increased risk for childhood cancer. To address this question, we interrogated germline sequence data from 4435 pediatric cancer patients at St. Jude Children's Research Hospital and 1127 from the National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and identified 24 (0.43%) who harbored loss-of-function (LOF) RECQL4 variants, including five of 249 (2.0%) with osteosarcoma (OS). These RECQL4 variants were significantly overrepresented in children with OS, the cancer most frequently observed in patients with RTS, as compared to 134,187 noncancer controls in the Genome Aggregation Database (gnomAD v2.1; P = 0.00087, odds ratio [OR] = 7.1, 95% CI, 2.9-17). Nine of the 24 (38%) individuals possessed the same c.1573delT (p.Cys525Alafs) variant located in the highly conserved DNA helicase domain, suggesting that disruption of this domain is central to oncogenesis. Altogether these data expand our understanding of the genetic factors predisposing to childhood cancer and reveal a novel association between heterozygous RECQL4 LOF variants and development of pediatric OS.
Collapse
Affiliation(s)
- Jamie L Maciaszek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Ninad Oak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Wenan Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Kayla V Hamilton
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Rose B McGee
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Regina Nuccio
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Roya Mostafavi
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stacy Hines-Dowell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Lynn Harrison
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Leslie Taylor
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Elsie L Gerhardt
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Annastasia Ouma
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Aman Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Elizabeth M Azzato
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Sheila A Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Victor Santana
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Chimene A Kesserwan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|