1
|
Karihtala P, Leivonen SK, Puistola U, Urpilainen E, Jääskeläinen A, Leppä S, Jukkola A. Serum protein profiling reveals an inflammation signature as a predictor of early breast cancer survival. Breast Cancer Res 2024; 26:61. [PMID: 38594742 PMCID: PMC11005292 DOI: 10.1186/s13058-024-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Breast cancers exhibit considerable heterogeneity in their biology, immunology, and prognosis. Currently, no validated, serum protein-based tools are available to evaluate the prognosis of patients with early breast cancer. METHODS The study population consisted of 521 early-stage breast cancer patients with a median follow-up of 8.9 years. Additionally, 61 patients with breast fibroadenoma or atypical ductal hyperplasia were included as controls. We used a proximity extension assay to measure the preoperative serum levels of 92 proteins associated with inflammatory and immune response processes. The invasive cancers were randomly split into discovery (n = 413) and validation (n = 108) cohorts for the statistical analyses. RESULTS Using LASSO regression, we identified a nine-protein signature (CCL8, CCL23, CCL28, CSCL10, S100A12, IL10, IL10RB, STAMPB2, and TNFβ) that predicted various survival endpoints more accurately than traditional prognostic factors. In the time-dependent analyses, the prognostic power of the model remained rather stable over time. We also developed and validated a 17-protein model with the potential to differentiate benign breast lesions from malignant lesions (Wilcoxon p < 2.2*10- 16; AUC 0.94). CONCLUSIONS Inflammation and immunity-related serum proteins have the potential to rise above the classical prognostic factors of early-stage breast cancer. They may also help to distinguish benign from malignant breast lesions.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, P.O. Box 180, Helsinki, FI-00029, Finland.
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Suvi-Katri Leivonen
- Applied Tumor Genomics, Research Programs Unit, Medical Faculty, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Ulla Puistola
- Department of Obstetrics and Gynecology, Medical Research Center, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Elina Urpilainen
- Department of Obstetrics and Gynecology, Medical Research Center, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Anniina Jääskeläinen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, P.O. Box 180, Helsinki, FI-00029, Finland
- Applied Tumor Genomics, Research Programs Unit, Medical Faculty, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Arja Jukkola
- Department of Oncology, Tampere Cancer Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Starodubtseva NL, Tokareva AO, Rodionov VV, Brzhozovskiy AG, Bugrova AE, Chagovets VV, Kometova VV, Kukaev EN, Soares NC, Kovalev GI, Kononikhin AS, Frankevich VE, Nikolaev EN, Sukhikh GT. Integrating Proteomics and Lipidomics for Evaluating the Risk of Breast Cancer Progression: A Pilot Study. Biomedicines 2023; 11:1786. [PMID: 37509426 PMCID: PMC10376786 DOI: 10.3390/biomedicines11071786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.
Collapse
Affiliation(s)
- Natalia L Starodubtseva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Department of Chemical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O Tokareva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Valeriy V Rodionov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Alexander G Brzhozovskiy
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna E Bugrova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vitaliy V Chagovets
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Vlada V Kometova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Evgenii N Kukaev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nelson C Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Grigoriy I Kovalev
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey S Kononikhin
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir E Frankevich
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| |
Collapse
|