1
|
Zheng S, Raz L, Zhou L, Cohen-Sharir Y, Tian R, Ippolito MR, Gianotti S, Saad R, Wardenaar R, Broekhuis M, Suarez Peredo Rodriguez M, Wobben S, van den Brink A, Bakker P, Santaguida S, Foijer F, Ben-David U. High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors. EMBO Rep 2025; 26:1036-1061. [PMID: 39838194 PMCID: PMC11850905 DOI: 10.1038/s44319-024-00363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition. Here we report that sensitivity to SAC inhibition by MPS1 inhibitors is largely driven by the expression of CDC20, a main mitotic activator of the anaphase-promoting complex (APC/C), and that the effect of CDC20 is larger than that of the APC/C itself. Mechanistically, we discovered that CDC20 depletion prolongs metaphase duration, diminishes mitotic errors, and reduces sensitivity to SAC inhibition. We found that aneuploid cells express higher basal levels of CDC20, which shortens the duration of metaphase and leads to multiple mitotic errors, resulting in increased long-term sensitivity to the additional CIN induced by SAC inhibition. Our findings propose high CDC20 expression as a molecular feature associated with the sensitivity to SAC inhibition therapy and as a potential aneuploidy-induced cellular vulnerability.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lin Zhou
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruifang Tian
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | | | - Sara Gianotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Mathilde Broekhuis
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Maria Suarez Peredo Rodriguez
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Soraya Wobben
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Petra Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
4
|
Larsen TV, Maansson CT, Daugaard TF, Andresen BS, Sorensen BS, Nielsen AL. Trans-Regulation of Alternative PD-L1 mRNA Processing by CDK12 in Non-Small-Cell Lung Cancer Cells. Cells 2023; 12:2844. [PMID: 38132164 PMCID: PMC10741404 DOI: 10.3390/cells12242844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Immunotherapy using checkpoint inhibitors targeting the interaction between PD-1 on T cells and PD-L1 on cancer cells has shown significant results in non-small-cell lung cancer (NSCLC). Not all patients respond to the therapy, and PD-L1 expression heterogeneity is proposed to be one determinant for this. The alternative processing of PD-L1 RNA, which depends on an alternative poly-A site in intron 4, generates a shorter mRNA variant (PD-L1v4) encoding soluble PD-L1 (sPD-L1), relative to the canonical PD-L1v1 mRNA encoding membrane-associated PD-L1 (mPD-L1). This study aimed to identify factors influencing the ratio between these two PD-L1 mRNAs in NSCLC cells. First, we verified the existence of the alternative PD-L1 RNA processing in NSCLC cells, and from in silico analyses, we identified a candidate list of regulatory factors. Examining selected candidates showed that CRISPR/Cas9-generated loss-of-function mutations in CDK12 increased the PD-L1v4/PD-L1v1 mRNA ratio and, accordingly, the sPD-L1/mPD-L1 balance. The CDK12/13 inhibitor THZ531 could also increase the PD-L1v4/PD-L1v1 mRNA ratio and impact the PD-L1 transcriptional response to IFN-γ stimulation. The fact that CDK12 regulates PD-L1 transcript variant formation in NSCLC cells is consistent with CDK12's role in promoting transcriptional elongation over intron-located poly-A sites. This study lays the groundwork for clinical investigations to delineate the implications of the CDK12-mediated balancing of sPD-L1 relative to mPD-L1 for immunotherapeutic responses in NSCLC.
Collapse
Affiliation(s)
- Trine V. Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Christoffer T. Maansson
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Tina F. Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Brage S. Andresen
- Department of Biology and Molecular Biology, Southern University of Denmark, 5230 Odense, Denmark;
| | - Boe S. Sorensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anders L. Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| |
Collapse
|
5
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|