1
|
Ferrer Obiol J, Bounas A, Brambilla M, Lombardo G, Secomandi S, Paris JR, Iannucci A, Whiting JR, Formenti G, Bonisoli-Alquati A, Ficetola GF, Galimberti A, Balacco J, Batbayar N, Bragin AE, Caprioli M, Catry I, Cecere JG, Davaasuren B, De Pascalis F, Efrat R, Erciyas-Yavuz K, Gameiro J, Gradev G, Haase B, Katzner TE, Mountcastle J, Mikulic K, Morganti M, Pârâu LG, Rodríguez A, Sarà M, Toli EA, Tsiopelas N, Ciofi C, Gianfranceschi L, Jarvis ED, Olivieri A, Sotiropoulos K, Wink M, Trucchi E, Torroni A, Rubolini D. Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change. Nat Commun 2025; 16:3503. [PMID: 40221430 PMCID: PMC11993763 DOI: 10.1038/s41467-025-58617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Accurately predicting species' responses to anthropogenic climate change is hampered by limited knowledge of their spatiotemporal ecological and evolutionary dynamics. We combine landscape genomics, demographic reconstructions, and species distribution models to assess the eco-evolutionary responses to past climate fluctuations and to future climate of an Afro-Palaearctic migratory raptor, the lesser kestrel (Falco naumanni). We uncover two evolutionarily and ecologically distinct lineages (European and Asian), whose demographic history, evolutionary divergence, and historical distribution range were profoundly shaped by past climatic fluctuations. Using future climate projections, we find that the Asian lineage is at higher risk of range contraction, increased migration distance, climate maladaptation, and consequently greater extinction risk than the European lineage. Our results emphasise the importance of providing historical context as a baseline for understanding species' responses to contemporary climate change, and illustrate how incorporating intraspecific genetic variation improves the ecological realism of climate change vulnerability assessments.
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| | - Anastasios Bounas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Mattia Brambilla
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gianluca Lombardo
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Simona Secomandi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Josephine R Paris
- Dipartimento di Medicina clinica, Sanità pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, Coppito, Italy
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessio Iannucci
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | | | - Andrea Galimberti
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Jennifer Balacco
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Nyambayar Batbayar
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar, Mongolia
| | | | - Manuela Caprioli
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Inês Catry
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano dell'Emilia, Italy
| | | | - Federico De Pascalis
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano dell'Emilia, Italy
| | - Ron Efrat
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | | | - João Gameiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratorio Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratorio Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gradimir Gradev
- Green Balkans - Stara Zagora NGO, Stara Zagora, Bulgaria
- Department of Agroecology, Agricultural University - Plovdiv, Plovdiv, Bulgaria
| | - Bettina Haase
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | | | - Michelangelo Morganti
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Ricerca Sulle Acque (CNR-IRSA), Brugherio, Italy
| | - Liviu G Pârâu
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Airam Rodríguez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain
| | - Maurizio Sarà
- Dipartimento STEBICEF, Università degli Studi di Palermo, Palermo, Italy
| | - Elisavet-Aspasia Toli
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | | | - Claudio Ciofi
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | | | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Emiliano Trucchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
2
|
Hong Kong Biodiversity Genomics Consortium. Chromosomal-level genome assembly and single-nucleotide polymorphism sites of black-faced spoonbill Platalea minor. GIGABYTE 2024; 2024:1-13. [PMID: 39071178 PMCID: PMC11273517 DOI: 10.46471/gigabyte.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Platalea minor, or black-faced spoonbill (Threskiornithidae), is a wading bird confined to coastal areas in East Asia. Due to habitat destruction, it was classified as globally endangered by the International Union for Conservation of Nature. However, the lack of genomic resources for this species hinders the understanding of its biology and diversity, and the development of conservation measures. Here, we report the first chromosomal-level genome assembly of P. minor using a combination of PacBio SMRT and Omni-C scaffolding technologies. The assembled genome (1.24 Gb) contains 95.33% of the sequences anchored to 31 pseudomolecules. The genome assembly has high sequence continuity with scaffold length N50 = 53 Mb. We predicted 18,780 protein-coding genes and measured high BUSCO score completeness (97.3%). Finally, we revealed 6,155,417 bi-allelic single nucleotide polymorphisms, accounting for ∼5% of the genome. This resource offers new opportunities for studying the black-faced spoonbill and developing conservation measures for this species.
Collapse
|
3
|
Zuccolo A, Mfarrej S, Celii M, Mussurova S, Rivera LF, Llaca V, Mohammed N, Pain A, Alrefaei AF, Alrefaei AF, Wing RA. The gyrfalcon (Falco rusticolus) genome. G3 (BETHESDA, MD.) 2023; 13:6972330. [PMID: 36611193 PMCID: PMC9997569 DOI: 10.1093/g3journal/jkad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
High-quality genome assemblies are characterized by high-sequence contiguity, completeness, and a low error rate, thus providing the basis for a wide array of studies focusing on natural species ecology, conservation, evolution, and population genomics. To provide this valuable resource for conservation projects and comparative genomics studies on gyrfalcon (Falco rusticolus), we sequenced and assembled the genome of this species using third-generation sequencing strategies and optical maps. Here, we describe a highly contiguous and complete genome assembly comprising 20 scaffolds and 13 contigs with a total size of 1.193 Gbp, including 8,064 complete Benchmarking Universal Single-Copy Orthologs (BUSCOs) of the total 8,338 BUSCO groups present in the library aves_odb10. Of these BUSCO genes, 96.7% were complete, 96.1% were present as a single copy, and 0.6% were duplicated. Furthermore, 0.8% of BUSCO genes were fragmented and 2.5% (210) were missing. A de novo search for transposable elements (TEs) identified 5,716 TEs that masked 7.61% of the F. rusticolus genome assembly when combined with publicly available TE collections. Long interspersed nuclear elements, in particular, the element Chicken-repeat 1 (CR1), were the most abundant TEs in the F. rusticolus genome. A de novo first-pass gene annotation was performed using 293,349 PacBio Iso-Seq transcripts and 496,195 transcripts derived from the assembly of 42,429,525 Illumina PE RNA-seq reads. In all, 19,602 putative genes, of which 59.31% were functionally characterized and associated with Gene Ontology terms, were annotated. A comparison of the gyrfalcon genome assembly with the publicly available assemblies of the domestic chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and hummingbird (Calypte anna) revealed several genome rearrangements. In particular, nine putative chromosome fusions were identified in the gyrfalcon genome assembly compared with those in the G. gallus genome assembly. This genome assembly, its annotation for TEs and genes, and the comparative analyses presented, complement and strength the base of high-quality genome assemblies and associated resources available for comparative studies focusing on the evolution, ecology, and conservation of Aves.
Collapse
Affiliation(s)
- Andrea Zuccolo
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | - Mirko Celii
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Saule Mussurova
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luis F Rivera
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA 50131, USA
| | - Nahed Mohammed
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | | | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,School of Plant Sciences, Arizona Genomics Institute, University of Arizona, 24 Tucson, Arizona 85721, USA
| |
Collapse
|
4
|
Luo H, Luo S, Fang W, Lin Q, Chen X, Zhou X. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). BMC Genomics 2022; 23:683. [PMID: 36192687 PMCID: PMC9531477 DOI: 10.1186/s12864-022-08904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The black-crowned night heron (Nycticorax nycticorax) is an ardeid bird successfully adapted to the nocturnal environment. Previous studies had indicated that the eyes of the night herons have evolved several specialized morphological traits favoring nocturnal vision. However, the molecular mechanisms of the nocturnal vision adaptation of night herons remained inattentions. In this study, the whole genome of N. nycticorax was sequenced and comparative analyses were performed on the vision-related and olfactory receptor (OR) genes to understand the molecular mechanisms of the visual and olfactory adaptation of night herons. RESULTS The results indicated that a number of vision genes were under positive or relaxed selection in N. nycticorax, whereas a number of other vision genes were under relaxed or intensified selection in the boat-billed heron (Cochlearius cochlearius), which suggested that the two species adapt to nocturnality with different genetic mechanisms. The different selections acting on vision genes are probably associated with the enlargement of eye size and the enhancement of visual sensitivity in night herons. The analyses on olfactory receptor (OR) genes indicated that the total number of OR genes in the genomes of N. nycticorax and C. cochlearius were about half those in the little egret (Egretta garzetta), whereas the diversity of their OR genes was not remarkably different. Additionally, the number of expressed OR genes in the transcriptomes of N. nycticorax was also fewer than that in E. garzetta. These results suggest a reduced olfactory capability in night herons compared with E. garzetta. CONCLUSIONS Our results provided evidence that several vision genes of the night herons were subjected to different natural selections, which can contribute to a better understanding of the genetic mechanisms of visual adaptions of the night heron. In addition, the finding of the reduced number of total and expressed OR genes in night herons may reflect a trade-off between olfaction and vision.
Collapse
Affiliation(s)
- Haoran Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
5
|
Wilcox JJS, Arca-Ruibal B, Samour J, Mateuta V, Idaghdour Y, Boissinot S. Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biol Evol 2022; 14:evac090. [PMID: 35700227 PMCID: PMC9214253 DOI: 10.1093/gbe/evac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Falcons are diverse birds of cultural and economic importance. They have undergone major lineage-specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in substitutions towards higher AT content; this bias is predominantly but not exclusively driven by hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased-gene-conversion in determining genomic equilibrium.
Collapse
Affiliation(s)
- Justin J S Wilcox
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Jaime Samour
- Wildlife Management and Falcon Medicine and Breeding Consultancy, Abu Dhabi, United Arab Emirates
| | | | - Youssef Idaghdour
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Zhang G, Chu Y, Jiang T, Li J, Feng L, Wu H, Wang H, Feng J. Comparative analysis of the daily brain transcriptomes of Asian particolored bat. Sci Rep 2022; 12:3876. [PMID: 35264653 PMCID: PMC8907190 DOI: 10.1038/s41598-022-07787-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Daily rhythms are found in almost all organisms, and they comprise one of the most basic characteristics of living things. Daily rhythms are generated and mainly regulated by circadian clock. Bats have attracted interest from researchers because of their unique biological characteristics. However, little is known about the molecular underpinnings of daily rhythms in bats. In this study, we used RNA-Seq to uncover the daily rhythms of gene expression in the brains of Asian particolored bats over the 24-h day. Accordingly, four collected time points corresponding to four biological states, rest, sleep, wakefulness, and active, were selected. Several groups of genes with different expression levels in these four states were obtained suggested that different physiological processes were active at various biological states, including drug metabolism, signaling pathways, and the circadian rhythm. Furthermore, downstream analysis of all differentially expressed genes in these four states suggested that groups of genes showed daily rhythms in the bat brain. Especially for Per1, an important circadian clock gene was identified with rhythmic expression in the brain of Asian particolored bat. In summary, our study provides an overview of the brain transcriptomic differences in different physiological states over a 24-h cycle.
Collapse
Affiliation(s)
- Guoting Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Jingjing Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Hui Wu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
7
|
Flores-Santin J, Burggren WW. Beyond the Chicken: Alternative Avian Models for Developmental Physiological Research. Front Physiol 2021; 12:712633. [PMID: 34744759 PMCID: PMC8566884 DOI: 10.3389/fphys.2021.712633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research focusing on physiological, morphological, behavioral, and other aspects of development has long depended upon the chicken (Gallus gallus domesticus) as a key animal model that is presumed to be typical of birds and generally applicable to mammals. Yet, the modern chicken in its many forms is the result of artificial selection more intense than almost any other domesticated animal. A consequence of great variation in genotype and phenotype is that some breeds have inherent aberrant physiological and morphological traits that may show up relatively early in development (e.g., hypertension, hyperglycemia, and limb defects in the broiler chickens). While such traits can be useful as models of specific diseases, this high degree of specialization can color general experimental results and affect their translational value. Against this background, in this review we first consider the characteristics that make an animal model attractive for developmental research (e.g., accessibility, ease of rearing, size, fecundity, development rates, genetic variation, etc.). We then explore opportunities presented by the embryo to adult continuum of alternative bird models, including quail, ratites, songbirds, birds of prey, and corvids. We conclude by indicating that expanding developmental studies beyond the chicken model to include additional avian groups will both validate the chicken model as well as potentially identify even more suitable avian models for answering questions applicable to both basic biology and the human condition.
Collapse
Affiliation(s)
- Josele Flores-Santin
- Facultad de Ciencias, Biologia, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Warren W. Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas Denton, Denton, TX, United States
| |
Collapse
|
8
|
Wu Y, Yan Y, Zhao Y, Gu L, Wang S, Johnson DH. Genomic bases underlying the adaptive radiation of core landbirds. BMC Ecol Evol 2021; 21:162. [PMID: 34454438 PMCID: PMC8403425 DOI: 10.1186/s12862-021-01888-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Core landbirds undergo adaptive radiation with different ecological niches, but the genomic bases that underlie their ecological diversification remain unclear. RESULTS Here we used the genome-wide target enrichment sequencing of the genes related to vision, hearing, language, temperature sensation, beak shape, taste transduction, and carbohydrate, protein and fat digestion and absorption to examine the genomic bases underlying their ecological diversification. Our comparative molecular phyloecological analyses show that different core landbirds present adaptive enhancement in different aspects, and two general patterns emerge. First, all three raptorial birds (Accipitriformes, Strigiformes, and Falconiformes) show a convergent adaptive enhancement for fat digestion and absorption, while non-raptorial birds tend to exhibit a promoted capability for protein and carbohydrate digestion and absorption. Using this as a molecular marker, our results show relatively strong support for the raptorial lifestyle of the common ancestor of core landbirds, consequently suggesting a single origin of raptors, followed by two secondary losses of raptorial lifestyle within core landbirds. In addition to the dietary niche, we find at temporal niche that diurnal birds tend to exhibit an adaptive enhancement in bright-light vision, while nocturnal birds show an increased adaption in dim-light vision, in line with previous findings. CONCLUSIONS Our molecular phyloecological study reveals the genome-wide adaptive differentiations underlying the ecological diversification of core landbirds.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yi Yan
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yuanqin Zhao
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Li Gu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Songbo Wang
- Bio-Intelligence Co. Ltd, Shenzhen, 518000, China
| | - David H Johnson
- Global Owl Project, 6504 Carriage Drive, Alexandria, VA, 22310, USA.
| |
Collapse
|
9
|
Espíndola-Hernández P, Mueller JC, Carrete M, Boerno S, Kempenaers B. Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls. Genome Biol Evol 2020; 12:1895-1908. [PMID: 32770228 PMCID: PMC7566403 DOI: 10.1093/gbe/evaa166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Owls (Strigiformes) evolved specific adaptations to their nocturnal predatory lifestyle, such as asymmetrical ears, a facial disk, and a feather structure allowing silent flight. Owls also share some traits with diurnal raptors and other nocturnal birds, such as cryptic plumage patterns, reversed sexual size dimorphism, and acute vision and hearing. The genetic basis of some of these adaptations to a nocturnal predatory lifestyle has been studied by candidate gene approaches but rarely with genome-wide scans. Here, we used a genome-wide comparative analysis to test for selection in the early history of the owls. We estimated the substitution rates in the coding regions of 20 bird genomes, including 11 owls of which five were newly sequenced. Then, we tested for functional overrepresentation across the genes that showed signals of selection. In the ancestral branch of the owls, we found traces of positive selection in the evolution of genes functionally related to visual perception, especially to phototransduction, and to chromosome packaging. Several genes that have been previously linked to acoustic perception, circadian rhythm, and feather structure also showed signals of an accelerated evolution in the origin of the owls. We discuss the functions of the genes under positive selection and their putative association with the adaptation to the nocturnal predatory lifestyle of the owls.
Collapse
Affiliation(s)
- Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
10
|
Wilcox JJS, Boissinot S, Idaghdour Y. Falcon genomics in the context of conservation, speciation, and human culture. Ecol Evol 2019; 9:14523-14537. [PMID: 31938538 PMCID: PMC6953694 DOI: 10.1002/ece3.5864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Here, we review the diversity, evolutionary history, and genomics of falcons in the context of their conservation and interactions with humans, and provide a perspective on how new genomic approaches may be applied to expand our knowledge of these topics. For millennia, humans and falcons (genus Falco) have developed unique relationships through falconry, religious rituals, conservation efforts, and human lifestyle transitions. From an evolutionary perspective, falcons remain an enigma. Having experienced several recent radiations, they have reached an unparalleled and almost global distribution, with an intrageneric species richness that is roughly an order of magnitude higher than typical within their family (Falconidae) and across other birds (Phylum: Aves). This diversity has evolved in the context of unusual genomic architecture that includes unique chromosomal rearrangements, relatively low chromosome counts, extremely low microdeletion rates, and high levels of nuclear mitochondrial DNA segments (NUMTs). These genomic peculiarities combine with high levels of ecological and organismal diversity and a legacy of human interactions to make falcons obvious candidates for evolutionary studies, providing unique research opportunities in common topics, including chromosomal evolution, the mechanics of speciation, local adaptation, domestication, and urban adaptation.
Collapse
Affiliation(s)
- Justin J. S. Wilcox
- Center for Genomics & Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Stéphane Boissinot
- Center for Genomics & Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
- Program in BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Youssef Idaghdour
- Center for Genomics & Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
- Program in BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|