1
|
Nikolić I, Milisavljević M, Timotijević G. Assessing Transcriptomic Responses to Oxidative Stress: Contrasting Wild-Type Arabidopsis Seedlings with dss1(I) and dss1(V) Gene Knockout Mutants. Int J Mol Sci 2024; 25:6291. [PMID: 38927997 PMCID: PMC11203560 DOI: 10.3390/ijms25126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress represents a critical facet of the array of abiotic stresses affecting crop growth and yield. In this paper, we investigated the potential differences in the functions of two highly homologous Arabidopsis DSS1 proteins in terms of maintaining genome integrity and response to oxidative stress. In the context of homologous recombination (HR), it was shown that overexpressing AtDSS1(I) using a functional complementation test increases the resistance of the Δdss1 mutant of Ustilago maydis to genotoxic agents. This indicates its conserved role in DNA repair via HR. To investigate the global transcriptome changes occurring in dss1 plant mutant lines, gene expression analysis was conducted using Illumina RNA sequencing technology. Individual RNA libraries were constructed from three total RNA samples isolated from dss1(I), dss1(V), and wild-type (WT) plants under hydrogen peroxide-induced stress. RNA-Seq data analysis and real-time PCR identification revealed major changes in gene expression between mutant lines and WT, while the dss1(I) and dss1(V) mutant lines exhibited analogous transcription profiles. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed significantly enriched metabolic pathways. Notably, genes associated with HR were upregulated in dss1 mutants compared to the WT. Otherwise, genes of the metabolic pathway responsible for the synthesis of secondary metabolites were downregulated in both dss1 mutant lines. These findings highlight the importance of understanding the molecular mechanisms of plant responses to oxidative stress.
Collapse
Affiliation(s)
| | | | - Gordana Timotijević
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (I.N.); (M.M.)
| |
Collapse
|
2
|
Bensaoud C, Aounallah H, Sciani JM, Faria F, Chudzinski-Tavassi AM, Bouattour A, M'ghirbi Y. Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii. BMC Genomics 2019; 20:675. [PMID: 31455241 PMCID: PMC6712667 DOI: 10.1186/s12864-019-6042-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully. Electronic supplementary material The online version of this article (10.1186/s12864-019-6042-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie. .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia.
| | - Hajer Aounallah
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Juliana Mozer Sciani
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil.,Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis, 218, CEP 12916-900, Bragança Paulista, São Paulo, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Youmna M'ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| |
Collapse
|
3
|
Co-translational control of protein complex formation: a fundamental pathway of cellular organization? Biochem Soc Trans 2018; 46:197-206. [PMID: 29432142 DOI: 10.1042/bst20170451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Analyses of proteomes from a large number of organisms throughout the domains of life highlight the key role played by multiprotein complexes for the implementation of cellular function. While the occurrence of multiprotein assemblies is ubiquitous, the understanding of pathways that dictate the formation of quaternary structure remains enigmatic. Interestingly, there are now well-established examples of protein complexes that are assembled co-translationally in both prokaryotes and eukaryotes, and indications are that the phenomenon is widespread in cells. Here, we review complex assembly with an emphasis on co-translational pathways, which involve interactions of nascent chains with other nascent or mature partner proteins, respectively. In prokaryotes, such interactions are promoted by the polycistronic arrangement of mRNA and the associated co-translation of functionally related cell constituents in order to enhance otherwise diffusion-dependent processes. Beyond merely stochastic events, however, co-translational complex formation may be sensitive to subunit availability and allow for overall regulation of the assembly process. We speculate how co-translational pathways may constitute integral components of quality control systems to ensure the correct and complete formation of hundreds of heterogeneous assemblies in a single cell. Coupling of folding of intrinsically disordered domains with co-translational interaction of binding partners may furthermore enhance the efficiency and fidelity with which correct conformation is attained. Co-translational complex formation may constitute a fundamental pathway of cellular organization, with profound importance for health and disease.
Collapse
|
4
|
Peguero-Sanchez E, Pardo-Lopez L, Merino E. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association. BMC Genomics 2015; 16:1059. [PMID: 26666532 PMCID: PMC4678720 DOI: 10.1186/s12864-015-2266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Background The initiation of translation via cellular internal ribosome entry sites plays an important role in the stress response and certain physiological conditions in which canonical cap-dependent translation initiation is compromised. Currently, only a limited number of these regulatory elements have been experimentally identified. Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary structure, rendering their identification difficult. Despite their biological importance, the currently available computational strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector machine for the prediction of internal ribosome entry sites in fungi using the 5’-UTR sequences of 20 non-redundant fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships among the gene products predicted to be translated by this cap-independent mechanism. Results Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms. Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family, which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example is the orthologous group of the eIF4G repression protein Sbp1p, which has two homologous genes known to be translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a protein-protein interaction network characterization of the gene products of our positive predictions using Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a functional association. A remarkable example of this functional association is our prediction of internal ribosome entry sites elements in three components of the RNA polymerase II mediator complex. Conclusions We developed a method for the prediction of cellular internal ribosome entry sites that may guide experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by this cap-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Liliana Pardo-Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|