1
|
Haro R, Lee R, Slamovits CH. Unveiling the functional nature of retrogenes in dinoflagellates. Open Biol 2025; 15:240221. [PMID: 40262635 PMCID: PMC12014239 DOI: 10.1098/rsob.240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Retroposition is a gene duplication mechanism that uses RNA molecules as intermediaries to generate new gene copies. Dinoflagellates are proposed as an ideal model for exploring this process due to the tagging of retrogenes with DNA-encoded remnants of the dinoflagellate-specific splice-leader motif at their 5' end. We conducted a comprehensive search for retrogenes in dinoflagellate transcriptomes to uncover their functional nature and the processes underlying their redundancy. We obtained a high-confidence set of hypothetical functional retrogenes widespread through the dinoflagellate lineage. Through annotations and gene ontology enrichment analysis, we found that the functional diversity of retrogenes reflects the most prevalent and active processes during stress periods, particularly those involving post-translational modifications and cell signalling pathways. Additionally, the significant presence of retrogenes linked to specific biological processes involved in symbiosis and toxin production underscores the role of retrogenes in adaptation. The expression profile and codon composition similar to protein-coding genes confirm the operational status of retrogenes and strengthen the idea that retrogenes recapitulate parental gene expression and function. This study provides new evidence supporting widespread gene retroposition across dinoflagellates and highlights the functional link of retrogenes with the core activity of the cell.
Collapse
Affiliation(s)
- Ronie Haro
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renny Lee
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H. Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Bie L, Sun J, Wang Y, Wang C. Identification of Retrocopies in Lepidoptera and Impact on Domestication of Silkworm. Genes (Basel) 2024; 15:1641. [PMID: 39766908 PMCID: PMC11675541 DOI: 10.3390/genes15121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND During the domestication of silkworm, an economic insect, its physiological characteristics have changed greatly. RNA-based gene duplication, known as retrocopy, plays an important role in the formation of new genes and genome evolution, but the retrocopies of lepidopteran insects have not been fully identified and analyzed, which not only severely limits researchers from exploring the effects of retrocopies on lepidopteran insects but also affects the studies on the domestication of silkworm. METHODS We compared the genomes and proteomes of eight lepidopteran insects and used a series of screening criteria for auxiliary screening to obtain the retrocopies in lepidopteran insects and explored their characteristics. In addition, based on the silkworm transcriptome data from the SilkDB3.0 website, we explored the functions of the retrocopies on the domestication of the silkworm. RESULTS A total of 1993 retrocopies and 1208 parental genes in lepidopteran insects were obtained. We revealed that the retrocopies in Lepidoptera do not conform to the "out of X" hypothesis but fit the "out of testis" hypothesis. These retrocopies were subject to strong functional constraints and performed important functions in growth and development. Transcriptome analysis revealed that the expression pattern of the retrocopies and their parental genes were irrelevant. Through the analysis of the retrocopies in silkworm generated after domestication and located in the candidate domestication regions, the possible universal connection between the retrocopies and the domestication of silkworm were found. CONCLUSIONS Our study pioneered the exploration of retrocopies in multiple Lepidoptera species and found the potential association between the retrocopies and the domestication of silkworm.
Collapse
Affiliation(s)
- Lingzi Bie
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.B.); (J.S.)
| | - Jiahe Sun
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.B.); (J.S.)
| | - Yi Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.B.); (J.S.)
| | - Chunfang Wang
- Southwest University Hospital, Chongqing 400715, China
| |
Collapse
|
3
|
Calatrava V, Stephens TG, Gabr A, Bhaya D, Bhattacharya D, Grossman AR. Retrotransposition facilitated the establishment of a primary plastid in the thecate amoeba Paulinella. Proc Natl Acad Sci U S A 2022; 119:e2121241119. [PMID: 35639693 PMCID: PMC9191642 DOI: 10.1073/pnas.2121241119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/01/2022] [Indexed: 12/23/2022] Open
Abstract
The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a “chromatophore,” a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (∼120 million years ago) that is independent of the evolution of primary plastids in plants (initiated ∼1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were “rewired,” acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host–endosymbiont association and sustained the evolution of a photosynthetic organelle.
Collapse
Affiliation(s)
- Victoria Calatrava
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Arwa Gabr
- Graduate Program in Molecular Biosciences, Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, NJ 08854
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305
| |
Collapse
|
4
|
Wei Z, Sun J, Li Q, Yao T, Zeng H, Wang Y. RetroScan: An Easy-to-Use Pipeline for Retrocopy Annotation and Visualization. Front Genet 2021; 12:719204. [PMID: 34484306 PMCID: PMC8415311 DOI: 10.3389/fgene.2021.719204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Retrocopies, which are considered “junk genes,” are occasionally formed via the insertion of reverse-transcribed mRNAs at new positions in the genome. However, an increasing number of recent studies have shown that some retrocopies exhibit new biological functions and may contribute to genome evolution. Hence, the identification of retrocopies has become very meaningful for studying gene duplication and new gene generation. Current pipelines identify retrocopies through complex operations using alignment programs and filter scripts in a step-by-step manner. Therefore, there is an urgent need for a simple and convenient retrocopy annotation tool. Here, we report the development of RetroScan, a publicly available and easy-to-use tool for scanning, annotating and displaying retrocopies, consisting of two components: an analysis pipeline and a visual interface. The pipeline integrates a series of bioinformatics software programs and scripts for identifying retrocopies in just one line of command. Compared with previous methods, RetroScan increases accuracy and reduces false-positive results. We also provide a Shiny app for visualization. It displays information on retrocopies and their parental genes that can be used for the study of retrocopy structure and evolution. RetroScan is available at https://github.com/Vicky123wzy/RetroScan.
Collapse
Affiliation(s)
- Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Jiahe Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qinhui Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ting Yao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Haiyue Zeng
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zhang X, Cvetkovska M, Morgan-Kiss R, Hüner NPA, Smith DR. Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience 2021; 24:102084. [PMID: 33644715 PMCID: PMC7887394 DOI: 10.1016/j.isci.2021.102084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
Antarctica is home to an assortment of psychrophilic algae, which have evolved various survival strategies for coping with their frigid environments. Here, we explore Antarctic psychrophily by examining the ∼212 Mb draft nuclear genome of the green alga Chlamydomonas sp. UWO241, which resides within the water column of a perennially ice-covered, hypersaline lake. Like certain other Antarctic algae, UWO241 encodes a large number (≥37) of ice-binding proteins, putatively originating from horizontal gene transfer. Even more striking, UWO241 harbors hundreds of highly similar duplicated genes involved in diverse cellular processes, some of which we argue are aiding its survival in the Antarctic via gene dosage. Gene and partial gene duplication appear to be an ongoing phenomenon within UWO241, one which might be mediated by retrotransposons. Ultimately, we consider how such a process could be associated with adaptation to extreme environments but explore potential non-adaptive hypotheses as well. Chlamydomonas sp. UWO241 is a green alga originating from Lake Bonney, Antarctica We present a draft nuclear genome sequence of UWO241 (∼212 Mb). The UWO genome contains hundreds of highly similar duplicated genes These duplicates, we argue, might be involved in cold adaptation
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res 2018; 46:6909-6919. [PMID: 30053227 PMCID: PMC6061784 DOI: 10.1093/nar/gky532] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Among green freshwater microalgae, Chlamydomonas reinhardtii has the most comprehensive and developed molecular toolkit, however, advanced genetic and metabolic engineering driven from the nuclear genome is generally hindered by inherently low transgene expression levels. Progressive strain development and synthetic promoters have improved the capacity of transgene expression; however, the responsible regulatory mechanisms are still not fully understood. Here, we elucidate the sequence specific dynamics of native regulatory element insertion into nuclear transgenes. Systematic insertions of the first intron of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 2 (rbcS2i1) throughout codon-optimized coding sequences (CDS) generates optimized algal transgenes which express reliably in C. reinhardtii. The optimal rbcS2i1 insertion site for efficient splicing was systematically determined and improved gene expression rates were shown using a codon-optimized sesquiterpene synthase CDS. Sequential insertions of rbcS2i1 were found to have a step-wise additive effect on all levels of transgene expression, which is likely correlated to a synergy of transcriptional machinery recruitment and mimicking the short average exon lengths natively found in the C. reinhardtii genome. We further demonstrate the value of this optimization with five representative transgene examples and provide guidelines for the design of any desired sequence with this strategy.
Collapse
MESH Headings
- Abies/enzymology
- Abies/genetics
- Chlamydomonas reinhardtii/genetics
- Codon/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Synthetic
- Introns
- Isomerases/biosynthesis
- Isomerases/genetics
- Mutagenesis, Insertional
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Pogostemon/enzymology
- Pogostemon/genetics
- Protein Engineering
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/biosynthesis
- Ribulose-Bisphosphate Carboxylase/genetics
- Transgenes
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Julian Wichmann
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kyle J Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Song B, Chen S, Chen W. Dinoflagellates, a Unique Lineage for Retrogene Research. Front Microbiol 2018; 9:1556. [PMID: 30050525 PMCID: PMC6050394 DOI: 10.3389/fmicb.2018.01556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
The birth and evolution of retrogenes have played crucial roles in genome evolution. Dinoflagellates represent a unique lineage for retrogene research because the retrogenes can be reliably identified by the presence of a 22 nucleotide splice leader called DinoSL, which is post-transcriptionally added to the 5' terminus of all mRNAs. Compared to studies of retrogenes conducted in other model genomes, dinoflagellate retrogenes can potentially be more comprehensively characterized because intron-containing retrogenes have already been detected. Unfortunately, dinoflagellate retrogene research has long been neglected. Here, we review the work on dinoflagellate retrogenes and show their distinct character. Like the dinoflagellate genome itself, dinoflagellate retrogenes are also characterized by many unusual features, including a high survival rate and large numbers in the genome. These data are critical complements to what we know about retrogenes, and will further frame our understanding of retroposition and its roles in genome evolution, as well as providing new insights into retrogene studies in other genomes.
Collapse
Affiliation(s)
- Bo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sijie Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wenbin Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
8
|
Naduthodi MIS, Barbosa MJ, van der Oost J. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes. Biotechnol J 2018; 13:e1700591. [PMID: 29396999 DOI: 10.1002/biot.201700591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/20/2018] [Indexed: 12/29/2022]
Abstract
The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox.
Collapse
Affiliation(s)
- Mihris Ibnu Saleem Naduthodi
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands.,Bioprocess Engineering, AlgaePARC, Wageningen University and Research, Wageningen, Netherlands
| | - Maria J Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, Wageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 2017; 18:104. [PMID: 28595587 PMCID: PMC5463336 DOI: 10.1186/s13059-017-1201-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long-term evolution of sex chromosomes is a dynamic process shaped by gene gain and gene loss. Sex chromosome gene traffic has been studied in XY and ZW systems but no detailed analyses have been carried out for haploid phase UV sex chromosomes. Here, we explore sex-specific sequences of seven brown algal species to understand the dynamics of the sex-determining region (SDR) gene content across 100 million years of evolution. RESULTS A core set of sex-linked genes is conserved across all the species investigated, but we also identify modifications of both the U and the V SDRs that occurred in a lineage-specific fashion. These modifications involve gene loss, gene gain and relocation of genes from the SDR to autosomes. Evolutionary analyses suggest that the SDR genes are evolving rapidly and that this is due to relaxed purifying selection. Expression analysis indicates that genes that were acquired from the autosomes have been retained in the SDR because they confer a sex-specific role in reproduction. By examining retroposed genes in Saccharina japonica, we demonstrate that UV sex chromosomes have generated a disproportionate number of functional orphan retrogenes compared with autosomes. Movement of genes out of the UV sex chromosome could be a means to compensate for gene loss from the non-recombining region, as has been suggested for Y-derived retrogenes in XY sexual systems. CONCLUSION This study provides the first analysis of gene traffic in a haploid UV system and identifies several features of general relevance to the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Nicholas R T Toda
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Svenja Heesch
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
11
|
Casola C, Betrán E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 2017; 9:1351-1373. [PMID: 28605529 PMCID: PMC5470649 DOI: 10.1093/gbe/evx081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, TX
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
12
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
13
|
Wang Y. PlantRGDB: A Database of Plant Retrocopied Genes. PLANT & CELL PHYSIOLOGY 2017; 58:e2. [PMID: 28111365 DOI: 10.1093/pcp/pcw210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/17/2016] [Indexed: 05/26/2023]
Abstract
RNA-based gene duplication, known as retrocopy, plays important roles in gene origination and genome evolution. The genomes of many plants have been sequenced, offering an opportunity to annotate and mine the retrocopies in plant genomes. However, comprehensive and unified annotation of retrocopies in these plants is still lacking. In this study I constructed the PlantRGDB (Plant Retrocopied Gene DataBase), the first database of plant retrocopies, to provide a putatively complete centralized list of retrocopies in plant genomes. The database is freely accessible at http://probes.pw.usda.gov/plantrgdb or http://aegilops.wheat.ucdavis.edu/plantrgdb. It currently integrates 49 plant species and 38,997 retrocopies along with characterization information. PlantRGDB provides a user-friendly web interface for searching, browsing and downloading the retrocopies in the database. PlantRGDB also offers graphical viewer-integrated sequence information for displaying the structure of each retrocopy. The attributes of the retrocopies of each species are reported using a browse function. In addition, useful tools, such as an advanced search and BLAST, are available to search the database more conveniently. In conclusion, the database will provide a web platform for obtaining valuable insight into the generation of retrocopies and will supplement research on gene duplication and genome evolution in plants.
Collapse
Affiliation(s)
- Yi Wang
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- USDA-ARS, Plant Gene Expression Center, Albany, CA, USA
| |
Collapse
|