1
|
Dave R, Pandey K, Patel R, Solanki R, Gour N, Bhatia D. Phase Separation in Biological Systems: Implications for Disease Pathogenesis. Chembiochem 2025:e2400883. [PMID: 40180594 DOI: 10.1002/cbic.202400883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Phase separation is the phenomenon where distinct liquid phases, within solution, play a critical role in the organization and function of biomolecular condensates within cells. Dysregulation of phase separation has been implicated, which can be witnessed in various diseases including neurodegenerative disorders, metabolic syndromes, and cancer. This review provides a comprehensive analysis of the role of phase separation in disease pathogenesis, which focuses on single amino acids, carbohydrates, and nucleotides. Molecular mechanisms underlying phase separation are also discussed with specific examples of diseases associated with dysregulated phase separation. Furthermore, consideration of therapeutic strategies targeting phase separation for disease intervention is explored.
Collapse
Affiliation(s)
- Raj Dave
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Kshipra Pandey
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ritu Patel
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| |
Collapse
|
2
|
Ługowska A. Oncological Aspects of Lysosomal Storage Diseases. Cells 2024; 13:1664. [PMID: 39404425 PMCID: PMC11475748 DOI: 10.3390/cells13191664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are caused by the deficient activity of a lysosomal hydrolase or the lack of a functional membrane protein, transporter, activator, or other protein. Lysosomal enzymes break down macromolecular compounds, which contribute to metabolic homeostasis. Stored, undegraded materials have multiple effects on cells that lead to the activation of autophagy and apoptosis, including the toxic effects of lyso-lipids, the disruption of intracellular Ca2+ ion homeostasis, the secondary storage of macromolecular compounds, the activation of signal transduction, apoptosis, inflammatory processes, deficiencies of intermediate compounds, and many other pathways. Clinical observations have shown that carriers of potentially pathogenic variants in LSD-associated genes and patients affected with some LSDs are at a higher risk of cancer, although the results of studies on the frequency of oncological diseases in LSD patients are controversial. Cancer is found in individuals affected with Gaucher disease, Fabry disease, Niemann-Pick type A and B diseases, alfa-mannosidosis, and sialidosis. Increased cancer prevalence has also been reported in carriers of a potentially pathogenic variant of an LSD gene, namely CLN3, SGSH, GUSB, NEU1, and, to a lesser extent, in other genes. In this review, LSDs in which oncological events can be observed are described.
Collapse
Affiliation(s)
- Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
3
|
Brignone MS, Lanciotti A, Molinari P, Mallozzi C, De Nuccio C, Caprini ES, Petrucci TC, Visentin S, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1: A new calcium-sensitive protein functionally activated by endoplasmic reticulum calcium release and calmodulin binding in astrocytes. Neurobiol Dis 2024; 190:106388. [PMID: 38141856 DOI: 10.1016/j.nbd.2023.106388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.
Collapse
Affiliation(s)
- M S Brignone
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Lanciotti
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - P Molinari
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - C Mallozzi
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Istituto Superiore di Sanità, Research Coordination and Support Service, Viale Regina Elena 299, 00161 Rome, Italy
| | - E S Caprini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - T C Petrucci
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - E Ambrosini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
4
|
Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases. Int J Mol Sci 2021; 22:ijms22189962. [PMID: 34576125 PMCID: PMC8467458 DOI: 10.3390/ijms22189962] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
|
5
|
Cao Q, Yang F, Wang H. CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways. Int J Neurosci 2021; 131:735-744. [PMID: 32715907 DOI: 10.1080/00207454.2020.1796661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Epilepsy is a pivotal neurological disorder characterized by the synchronous discharging of neurons to induce momentary brain dysfunction. Temporal lobe epilepsy is the most common type of epilepsy, with seizures originating from the mesial temporal lobe. The hippocampus forms part of the mesial temporal lobe and plays a significant role in epileptogenesis; it also has a vital influence on the mental development of children. In this study, we aimed to explore the effects of CB2 receptor (CB2R) activation on ERK and p38 signaling in nerve cells of a rat epilepsy model. MATERIALS AND METHODS We treated Sprague-Dawley rats with pilocarpine to induce an epilepsy model and treated such animals with a CB2R agonist (JWH133) alone or with a CB2R antagonist (AM630). Nissl's stain showed the neuron conditon in different groups. Western blot analyzed the level of p-ERK and p-p38. RESULTS JWH133 can increase the latent period of first seizure attack and decrease the Grades IV-V magnitude ratio after the termination of SE. Nissl's stain showed JWH133 protected neurons in the hippocampus while AM630 inhibited the functioning of CB2R in neurons. Western blot analysis showed that JWH133 decreased levels of p-ERK and p-p38, which is found at increased levels in the hippocampus of our epilepsy model. In contrast, AM630 inhibited the protective function of JWH133 and also enhanced levels of p-ERK and p-p38. CONCLUSIONS CB2R activation can induce neurons proliferation and survival through activation of ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fenghua Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Shematorova EK, Shpakovski GV. Current Insights in Elucidation of Possible Molecular Mechanisms of the Juvenile Form of Batten Disease. Int J Mol Sci 2020; 21:ijms21218055. [PMID: 33137890 PMCID: PMC7663513 DOI: 10.3390/ijms21218055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) collectively constitute one of the most common forms of inherited childhood-onset neurodegenerative disorders. They form a heterogeneous group of incurable lysosomal storage diseases that lead to blindness, motor deterioration, epilepsy, and dementia. Traditionally the NCL diseases were classified according to the age of disease onset (infantile, late-infantile, juvenile, and adult forms), with at least 13 different NCL varieties having been described at present. The current review focuses on classic juvenile NCL (JNCL) or the so-called Batten (Batten-Spielmeyer-Vogt; Spielmeyer-Sjogren) disease, which represents the most common and the most studied form of NCL, and is caused by mutations in the CLN3 gene located on human chromosome 16. Most JNCL patients carry the same 1.02-kb deletion in this gene, encoding an unusual transmembrane protein, CLN3, or battenin. Accordingly, the names CLN3-related neuronal ceroid lipofuscinosis or CLN3-disease sometimes have been used for this malady. Despite excessive in vitro and in vivo studies, the precise functions of the CLN3 protein and the JNCL disease mechanisms remain elusive and are the main subject of this review. Although the CLN3 gene is highly conserved in evolution of all mammalian species, detailed analysis of recent genomic and transcriptomic data indicates the presence of human-specific features of its expression, which are also under discussion. The main recorded to date changes in cell metabolism, to some extent contributing to the emergence and progression of JNCL disease, and human-specific molecular features of CLN3 gene expression are summarized and critically discussed with an emphasis on the possible molecular mechanisms of the malady appearance and progression.
Collapse
Affiliation(s)
- Elena K. Shematorova
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
| | - George V. Shpakovski
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-330-4953; Fax: +7-(495)-335-7103
| |
Collapse
|
7
|
Su C, Liu S, Ma X, Yang X, Liu J, Zheng P, Cao Y. Decitabine attenuates dextran sodium sulfate‑induced ulcerative colitis through regulation of immune regulatory cells and intestinal barrier. Int J Mol Med 2020; 46:583-594. [PMID: 32468024 PMCID: PMC7307821 DOI: 10.3892/ijmm.2020.4605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
To investigate the effect of decitabine on the regulation of intestinal barrier function in mice with inflammatory bowel disease, an experimental model of colitis was established via drinking water with dextran sulfate sodium (DSS). Hematoxylin and eosin staining was used to observe the pathological changes of the colon. Cytokine production was measured by an ELISA assay. Flow cytometry was used to measure the level of regulatory T cells. Immunofluorescence, immunohistochemistry and western blot analyses detected the protein expression and distribution in colon tissue. Following the administration of decitabine, the symptoms of intestinal inflammation in the mice were significantly relieved; the expression of IL-17 was decreased, and the levels of TGF-β and IL-10 were increased. In addition, the induction of forkhead box P3 (Foxp3) in naive T cells increased the proportion of CD4+ Foxp3+ T cells in CD4+ T cells. Furthermore, decitabine increased the levels of zonular occludens-1 and occludin, and inhibited the phosphorylation of ERK1/2, JNK and p38. In conclusion, the present study suggested that decitabine could alleviate DSS-induced impaired colon barrier and the weight loss, mucus and bloody stools in mice by releasing the inhibitory factor IL-10, reducing the pro-inflammatory factor IL-17, activating CD4+ Foxp3+ T cells and inhibiting the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Shaoqun Liu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
8
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
9
|
Huber RJ, Mathavarajah S. Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cell Signal 2019; 58:79-90. [PMID: 30771446 DOI: 10.1016/j.cellsig.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/28/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, commonly known as Batten disease, is currently untreatable due to a lack of understanding of the physiological role of the protein. Recently, work in the social amoeba Dictyostelium discoideum has provided valuable new insight into the function of CLN3 in the cell. More specifically, research has linked the Dictyostelium homolog (gene: cln3, protein: Cln3) to protein secretion, adhesion, and aggregation during starvation, which initiates multicellular development. In this study, we used comparative transcriptomics to explore the mechanisms underlying the aberrant response of cln3- cells to starvation. During starvation, 1153 genes were differentially expressed in cln3- cells compared to WT. Among the differentially expressed genes were homologs of other human NCL genes including TPP1/CLN2, CLN5, CTSD/CLN10, PGRN/CLN11, and CTSF/CLN13. STRING and GO term analyses revealed an enrichment of genes linked to metabolic, biosynthetic, and catalytic processes. We then coupled the findings from the RNA-seq analysis to biochemical assays, specifically showing that loss of cln3 affects the expression and activity of lysosomal enzymes, increases endo-lysosomal pH, and alters nitric oxide homeostasis. Finally, we show that cln3- cells accumulate autofluorescent storage bodies during starvation and provide evidence linking the function of Cln3 to Tpp1 and CtsD activity. In total, this study enhances our knowledge of the molecular mechanisms underlying Cln3 function in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | |
Collapse
|