1
|
Mesenchymal stem cell therapy: A review of clinical trials for multiple sclerosis. Regen Ther 2022; 21:201-209. [PMID: 36092509 PMCID: PMC9420954 DOI: 10.1016/j.reth.2022.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that is the result of the body's own immune cells being auto-reactive to the myelin regions of the body as if these regions were foreign antigens. This demyelination process is damaging to the electrical conductivity of neurons. The current medicines are only capable of fighting off the symptoms of the disease, but not the disease itself. Specialized stem cells, known as mesenchymal stem cells (MSCs), seem to be the candidate therapy to get rid of MS. MSCs can be isolated from multiple sources of the person's body, and even from the umbilical cord (UC) and placenta of a donor. These cells have anti-inflammatory effects so they can target the overactivity and self-antigen attacks by T cells and macrophages; this immune system overactivity is characteristic of MS. MSCs show the ability to locate into brain lesions when injected and thus can compensate for the loss of the brain function by differentiating into neuronal precursor cells and glial cells. The author has listed tables of clinical trials that have utilized MSCs from different sources, along with the years and the phase of study completed for each trial. The consensus is that these cells work on inhibiting CD4+ and CD8+ T cell activation, T regulatory cells (Tregs), and macrophage switch into the auto-immune phenotype. The best source of MSCs seems to be the UC due to the easiness of extraction, the noninvasive method of collection, their higher expansion ability and more powerful immune-modulating properties compared to other locations in the body. Studies showed there was a significant decline of mRNA expression of several cytokines after the administration of MSCs derived from the UC (UCMSCs). Other researchers were able to repair the defects of Tregs in MS patients by co-culturing Tregs from these patients with UCMSCs, which decreased the production of the pro-inflammatory cytokine IFN γ, and also suggested a strong link between Tregs lack of functionality in MS patients with the pathogenesis of the disease.
Collapse
|
2
|
Rice CM, Sarkar P, Walsh P, Owen D, Bidgood C, Smith P, Kane NM, Asghar S, Marks DI, Scolding NJ. Repeat infusion of autologous bone marrow cells in progressive multiple sclerosis - A phase I extension study (SIAMMS II). Mult Scler Relat Disord 2022; 61:103782. [PMID: 35397289 DOI: 10.1016/j.msard.2022.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND During the safety and feasibility 'Study of Intravenous Autologous Marrow in Multiple Sclerosis (SIAMMS)', intravenous infusion of autologous marrow was well tolerated. The efficacy of the approach is being explored in a placebo-controlled randomised controlled trial (ACTiMuS, NCT01815632) but it is not known whether repeated infusions will be required to optimise benefit. The objective of the current study was to explore the safety and feasibility of repeat treatment with intravenous autologous bone marrow for patients with progressive multiple sclerosis (MS). METHODS 'SIAMMS II' was a prospective, single centre phase I extension study in which participants in the SIAMMS study were offered repeat bone marrow harvest and infusion of autologous, unfractionated bone marrow as a day-case procedure. The primary outcome measure was number of adverse events and secondary outcome measures included change in clinical rating scales of disability, global evoked potential and cranial magnetic resonance imaging (MRI). RESULTS In total, 4 of the 6 participants in the SIAMMS study had repeat bone marrow harvest and infusion of filtered autologous marrow as a day case procedure which was well tolerated. There were no serious adverse effects. Additional outcome measures including clinical scales, global evoked potentials and cranial MRI were stable. CONCLUSION SIAMMS II demonstrates the safety and feasibility of repeated, non-myeloablative autologous bone marrow-derived cell therapy in progressive MS.
Collapse
Affiliation(s)
- Claire M Rice
- Clinical Neuroscience, Bristol Medical School, University of Bristol, Level 1 Learning and Research Building, Southmead Hospital, Bristol, BS10 5NBww, UK; Department of Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK.
| | - Pamela Sarkar
- Clinical Neuroscience, Bristol Medical School, University of Bristol, Level 1 Learning and Research Building, Southmead Hospital, Bristol, BS10 5NBww, UK; Department of Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Peter Walsh
- Department of Neurophysiology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Denise Owen
- Department of Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Clare Bidgood
- Adult BMT Unit, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, St Michael's Hill, Bristol BS2 8BJ, UK
| | - Paul Smith
- Department of Neuroradiology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Nick M Kane
- Department of Neurophysiology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Suhail Asghar
- NHS Blood and Transplant, North Bristol Park, Filton, Bristol, UK
| | - David I Marks
- Clinical Neuroscience, Bristol Medical School, University of Bristol, Level 1 Learning and Research Building, Southmead Hospital, Bristol, BS10 5NBww, UK; Adult BMT Unit, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, St Michael's Hill, Bristol BS2 8BJ, UK
| | - Neil J Scolding
- Clinical Neuroscience, Bristol Medical School, University of Bristol, Level 1 Learning and Research Building, Southmead Hospital, Bristol, BS10 5NBww, UK
| |
Collapse
|
3
|
Sarkar P, Redondo J, Hares K, Bailey S, Georgievskaya A, Heesom K, Kemp KC, Scolding NJ, Rice CM. Reduced expression of mitochondrial fumarate hydratase in progressive multiple sclerosis contributes to impaired in vitro mesenchymal stromal cell-mediated neuroprotection. Mult Scler 2021; 28:1179-1188. [PMID: 34841955 PMCID: PMC9189727 DOI: 10.1177/13524585211060686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Cell-based therapies for multiple sclerosis (MS), including those employing
autologous bone marrow-derived mesenchymal stromal cells (MSC) are being
examined in clinical trials. However, recent studies have identified
abnormalities in the MS bone marrow microenvironment. Objective: We aimed to compare the secretome of MSC isolated from control subjects
(C-MSC) and people with MS (MS-MSC) and explore the functional relevance of
findings. Methods: We employed high throughput proteomic analysis, enzyme-linked immunosorbent
assays and immunoblotting, as well as in vitro assays of enzyme activity and
neuroprotection. Results: We demonstrated that, in progressive MS, the MSC secretome has lower levels
of mitochondrial fumarate hydratase (mFH). Exogenous mFH restores the in
vitro neuroprotective potential of MS-MSC. Furthermore, MS-MSC expresses
reduced levels of fumarate hydratase (FH) with downstream reduction in
expression of master regulators of oxidative stress. Conclusions: Our findings are further evidence of dysregulation of the bone marrow
microenvironment in progressive MS with respect to anti-oxidative capacity
and immunoregulatory potential. Given the clinical utility of the fumaric
acid ester dimethyl fumarate in relapsing–remitting MS, our findings have
potential implication for understanding MS pathophysiology and personalised
therapeutic intervention.
Collapse
Affiliation(s)
- Pamela Sarkar
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Juliana Redondo
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kelly Hares
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steven Bailey
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Anastasia Georgievskaya
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Heesom
- Bristol Proteomics Facility, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kevin C Kemp
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil J Scolding
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Claire M Rice
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| |
Collapse
|
4
|
Mamoei S, Jensen HB, Pedersen AK, Nygaard MKE, Eskildsen SF, Dalgas U, Stenager E. Clinical, Neurophysiological, and MRI Markers of Fampridine Responsiveness in Multiple Sclerosis-An Explorative Study. Front Neurol 2021; 12:758710. [PMID: 34764932 PMCID: PMC8576138 DOI: 10.3389/fneur.2021.758710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023] Open
Abstract
Objective: Persons with multiple sclerosis (PwMS), already established as responders or non-responders to Fampridine treatment, were compared in terms of disability measures, physical and cognitive performance tests, neurophysiology, and magnetic resonance imaging (MRI) outcomes in a 1-year explorative longitudinal study. Materials and Methods: Data from a 1-year longitudinal study were analyzed. Examinations consisted of the timed 25-foot walk test (T25FW), six spot step test (SSST), nine-hole peg test (9-HPT), five times sit-to-stand test (5-STS), symbol digit modalities test (SDMT), transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEP) examining central motor conduction times (CMCT), peripheral motor conduction times (PMCT) and their amplitudes, electroneuronography (ENG) of the lower extremities, and brain structural MRI measures. Results: Forty-one responders and eight non-responders to Fampridine treatment were examined. There were no intergroup differences except for the PMCT, where non-responders had prolonged conduction times compared to responders to Fampridine. Six spot step test was associated with CMCT throughout the study. After 1 year, CMCT was further prolonged and cortical MEP amplitudes decreased in both groups, while PMCT and ENG did not change. Throughout the study, CMCT was associated with the expanded disability status scale (EDSS) and 12-item multiple sclerosis walking scale (MSWS-12), while SDMT was associated with number of T2-weighted lesions, lesion load, and lesion load normalized to brain volume. Conclusions: Peripheral motor conduction time is prolonged in non-responders to Fampridine when compared to responders. Transcranial magnetic stimulation-elicited MEPs and SDMT can be used as markers of disability progression and lesion activity visualized by MRI, respectively. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03401307.
Collapse
Affiliation(s)
- Sepehr Mamoei
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, University Hospital of Southern Jutland, Sønderborg, Denmark
- Open Patient Data Explorative Network, Odense, Denmark
- Neurological Research Unit, MS Clinics of Southern Jutland (Sønderborg, Esbjerg, Kolding), University Hospital of Southern Jutland, Aabenraa, Denmark
| | - Henrik Boye Jensen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Open Patient Data Explorative Network, Odense, Denmark
- Department of Brain and Nerve Diseases, University Hospital of Lillebælt, Kolding, Denmark
| | | | - Mikkel Karl Emil Nygaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Egon Stenager
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, University Hospital of Southern Jutland, Sønderborg, Denmark
- Neurological Research Unit, MS Clinics of Southern Jutland (Sønderborg, Esbjerg, Kolding), University Hospital of Southern Jutland, Aabenraa, Denmark
| |
Collapse
|
5
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
6
|
Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, Djedovic N, Iwaszkiewicz-Grześ D, Chwojnicki K, Miljković Đ, Trzonkowski P, Ramo-Tello C, Martínez-Cáceres EM. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol 2021; 18:1353-1374. [PMID: 33958746 PMCID: PMC8167140 DOI: 10.1038/s41423-020-00618-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a leading cause of chronic neurological disability in young to middle-aged adults, affecting ~2.5 million people worldwide. Currently, most therapeutics for MS are systemic immunosuppressive or immunomodulatory drugs, but these drugs are unable to halt or reverse the disease and have the potential to cause serious adverse events. Hence, there is an urgent need for the development of next-generation treatments that, alone or in combination, stop the undesired autoimmune response and contribute to the restoration of homeostasis. This review analyzes current MS treatments as well as different cell-based therapies that have been proposed to restore homeostasis in MS patients (tolerogenic dendritic cells, regulatory T cells, mesenchymal stem cells, and vaccination with T cells). Data collected from preclinical studies performed in the experimental autoimmune encephalomyelitis (EAE) model of MS in animals, in vitro cultures of cells from MS patients and the initial results of phase I/II clinical trials are analyzed to better understand which parameters are relevant for obtaining an efficient cell-based therapy for MS.
Collapse
Affiliation(s)
- M J Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - S Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I González-Larreategui
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - B Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Fondelli
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - K Chwojnicki
- Department of Anaesthesiology & Intensive Care, Medical University of Gdańsk, Gdańsk, Poland
| | - Đ Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - P Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - C Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - E M Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
7
|
Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. J Neurol 2021; 268:30-44. [PMID: 31190170 PMCID: PMC7815564 DOI: 10.1007/s00415-019-09421-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The greatest unmet need in multiple sclerosis (MS) are treatments that delay, prevent or reverse progression. One of the most tractable strategies to achieve this is to therapeutically enhance endogenous remyelination; doing so restores nerve conduction and prevents neurodegeneration. The biology of remyelination-centred on the activation, migration, proliferation and differentiation of oligodendrocyte progenitors-has been increasingly clearly defined and druggable targets have now been identified in preclinical work leading to early phase clinical trials. With some phase 2 studies reporting efficacy, the prospect of licensed remyelinating treatments in MS looks increasingly likely. However, there remain many unanswered questions and recent research has revealed a further dimension of complexity to this process that has refined our view of the barriers to remyelination in humans. In this review, we describe the process of remyelination, why this fails in MS, and the latest research that has given new insights into this process. We also discuss the translation of this research into clinical trials, highlighting the treatments that have been tested to date, and the different methods of detecting remyelination in people.
Collapse
Affiliation(s)
- Nick Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Sharrack B, Saccardi R, Alexander T, Badoglio M, Burman J, Farge D, Greco R, Jessop H, Kazmi M, Kirgizov K, Labopin M, Mancardi G, Martin R, Moore J, Muraro PA, Rovira M, Sormani MP, Snowden JA. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant 2020; 55:283-306. [PMID: 31558790 PMCID: PMC6995781 DOI: 10.1038/s41409-019-0684-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
These updated EBMT guidelines review the clinical evidence, registry activity and mechanisms of action of haematopoietic stem cell transplantation (HSCT) in multiple sclerosis (MS) and other immune-mediated neurological diseases and provide recommendations for patient selection, transplant technique, follow-up and future development. The major focus is on autologous HSCT (aHSCT), used in MS for over two decades and currently the fastest growing indication for this treatment in Europe, with increasing evidence to support its use in highly active relapsing remitting MS failing to respond to disease modifying therapies. aHSCT may have a potential role in the treatment of the progressive forms of MS with a significant inflammatory component and other immune-mediated neurological diseases, including chronic inflammatory demyelinating polyneuropathy, neuromyelitis optica, myasthenia gravis and stiff person syndrome. Allogeneic HSCT should only be considered where potential risks are justified. Compared with other immunomodulatory treatments, HSCT is associated with greater short-term risks and requires close interspeciality collaboration between transplant physicians and neurologists with a special interest in these neurological conditions before, during and after treatment in accredited HSCT centres. Other experimental cell therapies are developmental for these diseases and patients should only be treated on clinical trials.
Collapse
Affiliation(s)
- Basil Sharrack
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- NIHR Neurosciences Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Firenze, Italy
| | - Tobias Alexander
- Klinik fur Rheumatologie und Klinische Immunologie, Charite-Universitatsmedizin, Berlin, Germany
| | - Manuela Badoglio
- EBMT Paris study office, Department of Haematology, Saint Antoine Hospital, INSERM UMR 938, Sorbonne University, Paris, France
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dominique Farge
- Unité de Médecine Interne, Maladies Auto-immunes et Pathologie Vasculaire (UF 04), Hôpital St-Louis, AP-HP, Paris, France
- Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France, Filière, FAI2R, Paris, France
- EA 3518, Université Denis Diderot, Paris, France
- Department of Internal Medicine, McGill University, Montreal, QC, Canada
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Helen Jessop
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Majid Kazmi
- Kings Health Partners, Department of Haematology, Guys Hospital, London, UK
| | - Kirill Kirgizov
- N.N. Blokhin National Medical Center of Oncology, Institute of Pediatric Oncology and Hematology, Moscow, Russia
| | - Myriam Labopin
- EBMT Paris study office, Department of Haematology, Saint Antoine Hospital, INSERM UMR 938, Sorbonne University, Paris, France
| | - Gianluigi Mancardi
- Department of Neuroscience, University of Genova and Clinical Scientific Institutes Maugeri, Genoa, Italy
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland
| | - John Moore
- Haematology Department, St. Vincent's Health Network, Darlinghurst, NSW, Australia
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Montserrat Rovira
- BMT Unit, Department of Hematology, IDIBAPS, Hospital Clinic, Institut Josep Carreras, Barcelona, Spain
| | - Maria Pia Sormani
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
9
|
Jafarzadeh Bejargafshe M, Hedayati M, Zahabiasli S, Tahmasbpour E, Rahmanzadeh S, Nejad-Moghaddam A. Safety and efficacy of stem cell therapy for treatment of neural damage in patients with multiple sclerosis. Stem Cell Investig 2019; 6:44. [PMID: 32039266 DOI: 10.21037/sci.2019.10.06] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a multifocal inflammatory disease that involves the central nervous system and associated with limbs paralysis and serious problems in sensation, limbs, visual and sphincter. This disease is a result of autoimmune mechanism in which autoantibodies target the self-myelin antigens and cause demyelination. Because of the myelin dysfunction, MS is clinically identified with neurological disabilities. Furthermore, it can be entered into the progressive phase because of irreversible neurodegeneration and axons damage. Unfortunately, there is no effective therapeutic method for this disease and current medications have been focused on amelioration of symptoms and chronic inflammation. Although current immunotherapies ameliorate the reactivity of autoimmune anti-myelin and MS relapse rate, there is no approved method for improvement of the disease progression and repairing of the damaged myelin. Therefore, finding an appropriate clinical treatment for improvement of neurological damages in MS patients is essential. Mesenchymal stem cells (MSCs) are multipotent cells with high proliferative and self-renewal capacities, as well as immunomodulatory and neuroregenerative effects. Bone marrow and adipose tissues derived MSCs have been considered for the treatment of different diseases because not only they can be easily isolated from these tissues, but also a patient can be served as a donor for himself without the risk of rejection. More importantly, autologous MSCs carry a safer pattern without the risk of malignant transformation. Here, we will discuss the effectiveness of MSCs therapy for MS patients by reviewing of clinical trials.
Collapse
Affiliation(s)
| | - Mohammad Hedayati
- Department of Cell and Molecular Biology, Rasht Branch, University of Guilan, Rasht, Iran
| | - Sahar Zahabiasli
- Department of Plantprotection, Rasht Branch, University of Guilan, Rasht, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations, Genetics & Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Rahmanzadeh
- Enzyme Technology Lab, Genetics & Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Nejad-Moghaddam
- Marine Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat Rev Drug Discov 2019; 18:905-922. [PMID: 31399729 DOI: 10.1038/s41573-019-0035-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that involves demyelination and axonal degeneration. Although substantial progress has been made in drug development for relapsing-remitting MS, treatment of the progressive forms of the disease, which are characterized clinically by the accumulation of disability in the absence of relapses, remains unsatisfactory. This unmet clinical need is related to the complexity of the pathophysiological mechanisms involved in MS progression. Chronic inflammation, which occurs behind a closed blood-brain barrier with activation of microglia and continued involvement of T cells and B cells, is a hallmark pathophysiological feature. Inflammation can enhance mitochondrial damage in neurons, which, consequently, develop an energy deficit, further reducing axonal health. The growth-inhibitory and inflammatory environment of lesions also impairs remyelination, a repair process that might protect axons from degeneration. Moreover, neurodegeneration is accelerated by the altered expression of ion channels on denuded axons. In this Review, we discuss the current understanding of these disease mechanisms and highlight emerging therapeutic strategies based on these insights, including those targeting the neuroinflammatory and degenerative aspects as well as remyelination-promoting approaches.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany. .,Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Jason R Plemel
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Evolution of Visual Outcomes in Clinical Trials for Multiple Sclerosis Disease-Modifying Therapies. J Neuroophthalmol 2019; 38:202-209. [PMID: 29750734 DOI: 10.1097/wno.0000000000000662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
: BACKGROUND:: The visual pathways are increasingly recognized as an ideal model to study neurodegeneration in multiple sclerosis (MS). Low-contrast letter acuity (LCLA) and optical coherence tomography (OCT) are validated measures of function and structure in MS. In fact, LCLA was the topic of a recent review by the Multiple Sclerosis Outcome Assessments Consortium (MSOAC) to qualify this visual measure as a primary or secondary clinical trial endpoint with the Food and Drug Administration (FDA) and other regulatory agencies. This review focuses on the use of LCLA and OCT measures as outcomes in clinical trials to date of MS disease-modifying therapies. METHODS A Pubmed search using the specific key words "optical coherence tomography," "low-contrast letter acuity," "multiple sclerosis," and "clinical trials" was performed. An additional search on the clinicaltrials.gov website with the same key words was used to find registered clinical trials of MS therapies that included these visual outcome measures. RESULTS As demonstrated by multiple clinical trials, LCLA and OCT measures are sensitive to treatment effects in MS. LCLA has been used in many clinical trials to date, and findings suggest that 7 letters of LCLA at the 2.5% contrast level are meaningful change. Few clinical trials using the benefits of OCT have been performed, although results of observational studies have solidified the ability of OCT to assess change in retinal structure. Continued accrual of clinical trial and observational data is needed to validate the use of OCT in clinical trials, but preliminary work suggests that an intereye difference in retinal nerve fiber layer thickness of 5-6 μm is a clinically meaningful threshold that identifies an optic nerve lesion in MS. CONCLUSIONS Visual impairment represents a significant component of overall disability in MS. LCLA and OCT enhance the detection of visual pathway injury and can be used as measures of axonal and neuronal integrity. Continued investigation is ongoing to further incorporate these vision-based assessments into clinical trials of MS therapies.
Collapse
|
12
|
Autologous Hematopoietic Cell Transplantation in Multiple Sclerosis: Changing Paradigms in the Era of Novel Agents. Stem Cells Int 2019; 2019:5840286. [PMID: 31341484 PMCID: PMC6612973 DOI: 10.1155/2019/5840286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/22/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) is established as a standard of care for diseases ranging from hematological malignancies to other neoplastic pathologies and severe immunological deficiencies. In April 1995, our group performed the first AHSCT in progressive multiple sclerosis (MS). Since then, a plethora of studies have been published with encouraging but controversial results. Major challenges in the field include appropriate patient selection, improvements in AHSCT procedure, and timing of this treatment modality. Beyond AHSCT, several new intravenous or oral agents have been developed and approved over the last 20 years in MS. The emergence of multiple effective therapies for MS has created a challenging scenario for both treating physicians and patients. Novel cell-based therapies other than AHSCT are also currently investigated in MS patients with promising results. Our review is aimed at summarizing state-of-the-art knowledge on basic principles and results of AHSCT in MS and its role compared to novel agents.
Collapse
|
13
|
Feng J, Offerman E, Lin J, Fisher E, Planchon SM, Sakaie K, Lowe M, Nakamura K, Cohen JA, Ontaneda D. Exploratory MRI measures after intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler J Exp Transl Clin 2019; 5:2055217319856035. [PMID: 31236284 PMCID: PMC6572894 DOI: 10.1177/2055217319856035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) have immunomodulatory and neuro-protective properties and are being studied for treatment of multiple sclerosis (MS). Tractography-based diffusion tensor imaging (DTI), cortical thickness (Cth) and T2 lesion volume (T2LV) can provide insight into treatment effects. Objective The objective of this study was to analyse the effects of MSC transplantation in MS on exploratory MRI measures. Methods MRIs were obtained from 24 MS patients from a phase 1 open-label study of autologous MSC transplantation. DTI metrics were obtained in lesions and normal-appearing white matter motor tracts (NAWM). T2LV and Cth were derived. Longitudinal evolution of MRI outcomes were modelled using linear mixed effects. Pearson’s correlation was calculated between MRI and clinical measures. Results Lesional radial diffusivity (RD) and axial diffusivity (AD) decreased pre-transplant and showed no changes post-transplant. There were mixed trends in NAWM RD and AD pre/post-transplant. Transplantation stabilized T2LV growth. NAWM RD and AD correlated with Cth, T2LV and with leg and arm function but not with cognition. Lesional DTI demonstrated similar but less robust correlations. Conclusions Microstructural tissue integrity is altered in MS. DTI changes pre-transplant may be influenced by concomitant lesion accrual. Contributor to DTI stabilization post-transplant is multifactorial. DTI of major motor tracts correlated well with clinical measures, highlighting its sensitivity to clinically meaningful changes.
Collapse
Affiliation(s)
- Jenny Feng
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, USA
| | | | - Jian Lin
- Imaging Institute, Cleveland Clinic, USA
| | | | - Sarah M Planchon
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, USA
| | | | - Mark Lowe
- Imaging Institute, Cleveland Clinic, USA
| | | | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, USA
| |
Collapse
|
14
|
Schmierer K, Miquel ME. Magnetic resonance imaging correlates of neuro-axonal pathology in the MS spinal cord. Brain Pathol 2019; 28:765-772. [PMID: 30375114 DOI: 10.1111/bpa.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
In people with multiple sclerosis (MS), the spinal cord is the structure most commonly affected by clinically detectable pathology at presentation, and a key part of the central nervous system involved in chronic disease deterioration. Indices, such as the spinal cord cross-sectional area at the level C2 have been developed as tools to predict future disability, and-by inference-axonal loss. However, this and other histo-pathological correlates of spinal cord magnetic resonance imaging (MRI) changes in MS remain incompletely understood. In recent years, there has been a surge of interest in developing quantitative MRI tools to measure specific tissue features, including axonal density, myelin content, neurite density, and orientation, among others, with an emphasis on the spinal cord. Quantitative MRI techniques including T1 and T2 , magnetization transfer and a number of diffusion-derived indices have all been applied to MS spinal cord. Particularly diffusion-based MRI techniques combined with microscopic resolution achievable using high magnetic field scanners enable a new level of anatomical detail and quantification of indices that are clinically meaningful.
Collapse
Affiliation(s)
- Klaus Schmierer
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK.,Barts Health NHS Trust, Clinical Board Medicine (Neuroscience), The Royal London Hospital, London, UK
| | - Marc E Miquel
- Barts Health NHS Trust, Clinical Physics, London, UK
| |
Collapse
|
15
|
Zhang Y, Salter A, Wallström E, Cutter G, Stüve O. Evolution of clinical trials in multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419826547. [PMID: 30833985 PMCID: PMC6391540 DOI: 10.1177/1756286419826547] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Clinical trials have advanced the treatment of multiple sclerosis (MS) by demonstrating the safety and efficacy of disease-modifying therapies (DMTs). This review discusses major changes to MS clinical trials in the era of DMTs. As treatment options for MS continue to increase, patients in modern MS trials present earlier and with milder disease compared with historic MS populations. While placebo-controlled trials for some questions may still be relevant, DMT trials in relapsing–remitting MS (RRMS) are no longer ethical. The replacement of the placebo arm by an active comparator arm in trials have raised the cost of trials by requiring larger sample sizes to detect on-study changes in treatment effects. Efforts to improve trial efficiency in RRMS have focused on exploring adaptive designs and relying on sensitive magnetic resonance imaging measures of disease activity. In trials for progressive forms of MS (PMS), the lack of sensitive outcome measures that can be used in shorter-term trials have delayed the development of effective treatments. Recent shifting of the focus to advancing trials in PMS has identified paraclinical outcome measurements with improved potential, and the testing of agents for neuroprotection and remyelination is in progress.
Collapse
Affiliation(s)
- Yinan Zhang
- Department of Neurology and Neurotherapeutics, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Salter
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik Wallström
- Sanofi Genzyme, Neuro and Gene Therapy, Cambridge, MA, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olaf Stüve
- Neurology Section, VA North Texas Health Care System, Medical Service, 4500 South Lancaster Rd., Dallas, TX 75216, USADepartment of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
| |
Collapse
|
16
|
Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 2018; 19:31-43. [PMID: 30587061 DOI: 10.1080/14737175.2019.1559051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Multiple Sclerosis (MS) is the most common chronic autoimmune neuroinflammatory condition in young adults. It is often accompanied by optic neuritis (ON) and retinal neuro-axonal damage causing visual disturbances. Optical coherence tomography (OCT) is a sensitive non-invasive method for quantifying intraretinal layer volumes. Recently, OCT not only showed to be a reliable marker for ON-associated damage, but also proved its high prognostic value for functional outcome and disability accrual in patients with MS. Consequently, OCT is discussed as a potential marker for monitoring disease severity and therapeutic response in individual patients. Areas covered: This article summarizes our current understanding of structural retinal changes in MS and describes the future potential of OCT for differential diagnosis, monitoring of the disease course and for clinical trials. Expert commentary: Today, OCT is used in clinical practice in specialized MS centers. Standardized parameters across devices are urgently needed for supporting clinical utility. Novel parameters are desirable to increase sensitivity and specificity in terms of MS.
Collapse
Affiliation(s)
- Frederike C Oertel
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Hanna G Zimmermann
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Alexander U Brandt
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,b Department of Neurology , University of California Irvine , Irvine , CA , USA
| | - Friedemann Paul
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,c Department of Neurology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,d Experimental and Clinical Research Center , Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| |
Collapse
|
17
|
|
18
|
Cerqueira JJ, Compston DAS, Geraldes R, Rosa MM, Schmierer K, Thompson A, Tinelli M, Palace J. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? J Neurol Neurosurg Psychiatry 2018; 89:844-850. [PMID: 29618493 PMCID: PMC6204938 DOI: 10.1136/jnnp-2017-317509] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- João J Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mario M Rosa
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Klaus Schmierer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Alan Thompson
- Faculty of Brain Sciences, University College London, London, UK
| | - Michela Tinelli
- LSE Enterprise, London School of Economics, London, UK
- Personal Social Services research Unit (PSSRU), London School of Economics and Political Science, London, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
De Angelis F, Plantone D, Chataway J. Pharmacotherapy in Secondary Progressive Multiple Sclerosis: An Overview. CNS Drugs 2018; 32:499-526. [PMID: 29968175 DOI: 10.1007/s40263-018-0538-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is an immune-mediated inflammatory disease of the central nervous system characterised by demyelination, neuroaxonal loss and a heterogeneous clinical course. Multiple sclerosis presents with different phenotypes, most commonly a relapsing-remitting course and, less frequently, a progressive accumulation of disability from disease onset (primary progressive multiple sclerosis). The majority of people with relapsing-remitting multiple sclerosis, after a variable time, switch to a stage characterised by gradual neurological worsening known as secondary progressive multiple sclerosis. We have a limited understanding of the mechanisms underlying multiple sclerosis, and it is believed that multiple genetic, environmental and endogenous factors are elements driving inflammation and ultimately neurodegeneration. Axonal loss and grey matter damage have been regarded as amongst the leading causes of irreversible neurological disability in the progressive stages. There are over a dozen disease-modifying therapies currently licenced for relapsing-remitting multiple sclerosis, but none of these has provided evidence of effectiveness in secondary progressive multiple sclerosis. Recently, there has been some early modest success with siponimod in secondary progressive multiple sclerosis and ocrelizumab in primary progressive multiple sclerosis. Finding treatments to delay or prevent the courses of secondary progressive multiple sclerosis is an unmet and essential goal of the research in multiple sclerosis. In this review, we discuss new findings regarding drugs with immunomodulatory, neuroprotective or regenerative properties and possible treatment strategies for secondary progressive multiple sclerosis. We examine the field broadly to include trials where participants have progressive or relapsing phenotypes. We summarise the most relevant results from newer investigations from phase II and III randomised controlled trials over the past decade, with particular attention to the last 5 years.
Collapse
Affiliation(s)
- Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK.
| | - Domenico Plantone
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| |
Collapse
|
20
|
Alawieh A, Zhao J, Feng W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav Brain Res 2018; 340:94-101. [PMID: 27531500 PMCID: PMC5305670 DOI: 10.1016/j.bbr.2016.08.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
Neurological disorders are a major cause of chronic disability globally among which stroke is a leading cause of chronic disability. The advances in the medical management of stroke patients over the past decade have significantly reduced mortality, but at the same time increased numbers of disabled survivors. Unfortunately, this reduction in mortality was not paralleled by satisfactory therapeutics and rehabilitation strategies that can improve functional recovery of patients. Motor recovery after brain injury is a complex, dynamic, and multifactorial process in which an interplay among genetic, pathophysiologic, sociodemographic and therapeutic factors determines the overall recovery trajectory. Although stroke recovery is the most well-studied form of post-injury neuronal recovery, a thorough understanding of the pathophysiology and determinants affecting stroke recovery is still lacking. Understanding the different variables affecting brain recovery after stroke will not only provide an opportunity to develop therapeutic interventions but also allow for developing personalized platforms for patient stratification and prognosis. We aim to provide a narrative review of major determinants for post-stroke recovery and their implications in other forms of brain injury.
Collapse
Affiliation(s)
- Ali Alawieh
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jing Zhao
- Minhang District Central Hospital, Fudan University, Shanghai, 201199, China
| | - Wuwei Feng
- Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Health Science and Research, The Center of Rehabilitation Science in Neurological Conditions, College of Health Professions, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
21
|
Schmierer K, McDowell A, Petrova N, Carassiti D, Thomas DL, Miquel ME. Quantifying multiple sclerosis pathology in post mortem spinal cord using MRI. Neuroimage 2018; 182:251-258. [PMID: 29373838 DOI: 10.1016/j.neuroimage.2018.01.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/04/2018] [Accepted: 01/21/2018] [Indexed: 11/26/2022] Open
Abstract
Multiple sclerosis (MS) is a common inflammatory, demyelinating and degenerative disease of the central nervous system. The majority of people with MS present with symptoms due to spinal cord damage, and in more advanced MS a clinical syndrome resembling that of progressive myelopathy is not uncommon. Significant efforts have been undertaken to predict MS-related disability based on short-term observations, for example, the spinal cord cross-sectional area measured using MRI. The histo-pathological correlates of spinal cord MRI changes in MS are incompletely understood, however a surge of interest in tissue microstructure has recently led to new approaches to improve the precision with which MRI indices relate to underlying tissue features, such as myelin content, neurite density and orientation, among others. Quantitative MRI techniques including T1 and T2, magnetisation transfer (MT) and a number of diffusion-derived indices have all been successfully applied to post mortem MS spinal cord. Combining advanced quantification of histological features with quantitative - particularly diffusion-based - MRI techniques provide a new platform for high-quality MR/pathology data generation. To more accurately quantify grey matter pathology in the MS spinal cord, a key driver of physical disability in advanced MS, remains an important challenge of microstructural imaging.
Collapse
Affiliation(s)
- K Schmierer
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK; Barts Health NHS Trust, Clinical Board Medicine (Neuroscience), The Royal London Hospital, London, UK.
| | - A McDowell
- UCL Great Ormond Street Institute of Child Health, Developmental Imaging and Biophysics Section, London, UK
| | - N Petrova
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK
| | - D Carassiti
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK
| | - D L Thomas
- UCL Institute of Neurology, Leonard Wolfson Experimental Neurology Centre, Department of Brain Repair and Rehabilitation, Queen Square, London, UK
| | - M E Miquel
- Barts Health NHS Trust, Clinical Physics, London, UK
| |
Collapse
|
22
|
Tur C, Moccia M, Barkhof F, Chataway J, Sastre-Garriga J, Thompson AJ, Ciccarelli O. Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting. Nat Rev Neurol 2018; 14:75-93. [PMID: 29326424 DOI: 10.1038/nrneurol.2017.171] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increasing numbers of drugs are being developed for the treatment of multiple sclerosis (MS). Measurement of relevant outcomes is key for assessing the efficacy of new drugs in clinical trials and for monitoring responses to disease-modifying drugs in individual patients. Most outcomes used in trial and clinical settings reflect either clinical or neuroimaging aspects of MS (such as relapse and accrual of disability or the presence of visible inflammation and brain tissue loss, respectively). However, most measures employed in clinical trials to assess treatment effects are not used in routine practice. In clinical trials, the appropriate choice of outcome measures is crucial because the results determine whether a drug is considered effective and therefore worthy of further development; in the clinic, outcome measures can guide treatment decisions, such as choosing a first-line disease-modifying drug or escalating to second-line treatment. This Review discusses clinical, neuroimaging and composite outcome measures for MS, including patient-reported outcome measures, used in both trials and the clinical setting. Its aim is to help clinicians and researchers navigate through the multiple options encountered when choosing an outcome measure. Barriers and limitations that need to be overcome to translate trial outcome measures into the clinical setting are also discussed.
Collapse
Affiliation(s)
- Carmen Tur
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK
| | - Marcello Moccia
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Via Sergio Pansini 5, Naples 80131, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,Institute of Healthcare Engineering, University College London, Engineering Front Building, Room 2.01, 2nd Floor, Torrington Place, WC1E 7JE London, UK.,Vrije Universiteit (VU) University Medical Centre - Radiology and Nuclear Medicine, Van der Boechorststraat 7 F/A-114, 1081 BT Amsterdam, Netherlands.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK
| | - Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia, Department of Neurology and Neuroimmunology, Vall d'Hebron University Hospital, 119-129, 08035 Barcelona, Spain
| | - Alan J Thompson
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK.,University College London Faculty of Brain Sciences, Institute of Neurology, Department of Brain Repair and Rehabilitation, Queen Square, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, University College of London Institute of Neurology, London WC1B 5EH, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, 170 Tottenham Court Rd, W1T 7HA London, UK
| |
Collapse
|
23
|
Scolding NJ, Pasquini M, Reingold SC, Cohen JA. Cell-based therapeutic strategies for multiple sclerosis. Brain 2017; 140:2776-2796. [PMID: 29053779 PMCID: PMC5841198 DOI: 10.1093/brain/awx154] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/03/2017] [Accepted: 05/06/2017] [Indexed: 12/23/2022] Open
Abstract
The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials.
Collapse
Affiliation(s)
- Neil J Scolding
- Department of Neurology, University of Bristol Southmead Hospital, Bristol BS10 5NB, UK
| | - Marcelo Pasquini
- Center for International Blood and Marrow Transplant Research (CIBMTR), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephen C Reingold
- Scientific and Clinical Research Associates, LLC, Salisbury, CT 06068, USA
| | - Jeffrey A Cohen
- Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Moccia M, de Stefano N, Barkhof F. Imaging outcome measures for progressive multiple sclerosis trials. Mult Scler 2017; 23:1614-1626. [PMID: 29041865 PMCID: PMC5650056 DOI: 10.1177/1352458517729456] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
Imaging markers that are reliable, reproducible and sensitive to neurodegenerative changes in progressive multiple sclerosis (MS) can enhance the development of new medications with a neuroprotective mode-of-action. Accordingly, in recent years, a considerable number of imaging biomarkers have been included in phase 2 and 3 clinical trials in primary and secondary progressive MS. Brain lesion count and volume are markers of inflammation and demyelination and are important outcomes even in progressive MS trials. Brain and, more recently, spinal cord atrophy are gaining relevance, considering their strong association with disability accrual; ongoing improvements in analysis methods will enhance their applicability in clinical trials, especially for cord atrophy. Advanced magnetic resonance imaging (MRI) techniques (e.g. magnetization transfer ratio (MTR), diffusion tensor imaging (DTI), spectroscopy) have been included in few trials so far and hold promise for the future, as they can reflect specific pathological changes targeted by neuroprotective treatments. Positron emission tomography (PET) and optical coherence tomography have yet to be included. Applications, limitations and future perspectives of these techniques in clinical trials in progressive MS are discussed, with emphasis on measurement sensitivity, reliability and sample size calculation.
Collapse
Affiliation(s)
- Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Frederik Barkhof
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK; Translational Imaging Group, UCL Institute of Healthcare Engineering, University College London, London, UK; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Sarkar P, Redondo J, Kemp K, Ginty M, Wilkins A, Scolding NJ, Rice CM. Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy 2017; 20:21-28. [PMID: 28917625 PMCID: PMC5758344 DOI: 10.1016/j.jcyt.2017.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we examined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC secretome. METHODS Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm) isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor withdrawal and (2) nitric oxide-induced neurotoxicity. RESULTS Reduced neuronal survival following trophic factor withdrawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors, there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated from patients with MS. DISCUSSION Our findings have significant implications for MSC-based therapy in neurodegenerative conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that understanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance to other neurodegenerative conditions.
Collapse
Affiliation(s)
- Pamela Sarkar
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Juliana Redondo
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Kevin Kemp
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Mark Ginty
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Neil J Scolding
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Claire M Rice
- School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
26
|
Yong H, Chartier G, Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. J Neurosci Res 2017; 96:927-950. [PMID: 28580582 DOI: 10.1002/jnr.24090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder of the central nervous system with a presentation and disease course that is largely unpredictable. MS can cause loss of balance, impaired vision or speech, weakness and paralysis, fatigue, depression, and cognitive impairment. Immunomodulation is a major target given the appearance of focal demyelinating lesions in myelin-rich white matter, yet progression and an increasing appreciation for gray matter involvement, even during the earliest phases of the disease, highlights the need to afford neuroprotection and limit neurodegenerative processes that correlate with disability. This review summarizes key aspects of MS pathophysiology and histopathology with a focus on neuroimmune interactions in MS, which may facilitate neurodegeneration through both direct and indirect mechanisms. There is a focus on processes thought to influence disease progression and the role of oxidative stress and mitochondrial dysfunction in MS. The goals and efficacy of current disease-modifying therapies and those in the pipeline are discussed, highlighting recent advances in our understanding of pathways mediating disease progression to identify and translate both immunomodulatory and neuroprotective therapeutics from the bench to the clinic.
Collapse
Affiliation(s)
- Heather Yong
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Chartier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Quandt
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Abstract
Cell therapy is considered a promising potential treatment for multiple sclerosis, perhaps particularly for the progressive form of the disease for which there are currently no useful treatments. Over the past two decades or more, much progress has been made in understanding the biology of MS and in the experimental development of cell therapy for this disease. Three quite distinct forms of cell therapy are currently being pursued. The first seeks to use stem cells to replace damaged myelin-forming oligodendrocytes within the CNS; the second aims, in effect, to replace the individual's misfunctioning immune system, making use of haematopoietic stem cells; and the third seeks to utilise endogenous stem cell populations by mobilisation with or without in vitro expansion, exploiting their various reparative and neuroprotective properties. In this article we review progress in these three separate areas, summarising the experimental background and clinical progress thus far made.
Collapse
|
28
|
Redondo J, Sarkar P, Kemp K, Virgo PF, Pawade J, Norton A, Emery DC, Guttridge MG, Marks DI, Wilkins A, Scolding NJ, Rice CM. Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro. Mult Scler 2017; 24:919-931. [PMID: 28548004 PMCID: PMC6029147 DOI: 10.1177/1352458517711276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Autologous bone-marrow-derived cells are currently employed in clinical
studies of cell-based therapy in multiple sclerosis (MS) although the bone
marrow microenvironment and marrow-derived cells isolated from patients with
MS have not been extensively characterised. Objectives: To examine the bone marrow microenvironment and assess the proliferative
potential of multipotent mesenchymal stromal cells (MSCs) in progressive
MS. Methods: Comparative phenotypic analysis of bone marrow and marrow-derived MSCs
isolated from patients with progressive MS and control subjects was
undertaken. Results: In MS marrow, there was an interstitial infiltrate of inflammatory cells with
lymphoid (predominantly T-cell) nodules although total cellularity was
reduced. Controlling for age, MSCs isolated from patients with MS had
reduced in vitro expansion potential as determined by population doubling
time, colony-forming unit assay, and expression of β-galactosidase. MS MSCs
expressed reduced levels of Stro-1 and displayed accelerated shortening of
telomere terminal restriction fragments (TRF) in vitro. Conclusion: Our results are consistent with reduced proliferative capacity and ex vivo
premature ageing of bone-marrow-derived cells, particularly MSCs, in MS.
They have significant implication for MSC-based therapies for MS and suggest
that accelerated cellular ageing and senescence may contribute to the
pathophysiology of progressive MS.
Collapse
Affiliation(s)
- Juliana Redondo
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Pamela Sarkar
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Kevin Kemp
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Paul F Virgo
- Department of Immunology, Southmead Hospital, Bristol, UK
| | - Joya Pawade
- Department of Pathology, Southmead Hospital, Bristol, UK
| | - Aimie Norton
- Department of Pathology, Southmead Hospital, Bristol, UK
| | - David C Emery
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - David I Marks
- Blood and Marrow Transplant Unit, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | | - Neil J Scolding
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Claire M Rice
- School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
29
|
Londoño AC, Mora CA. Autologous Bone Marrow Transplantation in Multiple Sclerosis: Biomarker Relevance for Patient Recruitment and Follow up. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:455. [PMID: 28090375 PMCID: PMC5226132 DOI: 10.4172/2155-9899.1000455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Despite the current availability of disease modifying therapies for the treatment of multiple sclerosis, there are still patients who suffer from severe neurological dysfunction in the relapsing-remitting or early progressive forms of the disease. For these patients autologous hematopoietic stem cell transplant offers an important therapeutic solution to prevent progression to irreversible disability. In spite of multiple studies in the last two decades, patient inclusion criteria, protocols for peripheral blood stem cell mobilization and bone marrow cell conditioning and methodology of follow up for autologous hematopoietic stem cell transplant in multiple sclerosis have not been strictly unified. METHODS We reviewed five recent clinical studies that confirmed the positive outcome of transplant in spite of disclosing significant differences in methodology of enrollment including patient disease subtypes, disease duration range, disability, regimens of peripheral blood stem cell mobilization and bone marrow cell conditioning, scheduling of imaging studies after transplant, and absence of laboratory biomarkers consistently applied to these studies. RESULTS Therapy with autologous hematopoietic stem cell transplant has shown best results among young individuals with severe relapsing-remitting or early progressive disease through its ability to maintain no evidence of disease activity status in a significantly higher proportion of patients after transplant in comparison to patients treated with disease modifying therapies. Important cross-sectional differences in the reviewed studies were found. CONCLUSION A specific and careful selection of biomarkers, based on the current physiopathological mechanisms known to result in multiple sclerosis, will contribute to a better and earlier patient selection for autologous hematopoietic stem cell transplant and follow up process. An objective and measurable response could be obtained with the determination of biomarkers at the onset of treatment and after follow-up on reconstitution of the immune response. The application of such parameters could also help further our understanding of pathogenesis of the disease.
Collapse
Affiliation(s)
- Ana C. Londoño
- Instituto Neurológico de Colombia-INDEC (A.C.L.), Medellin, Colombia
| | - Carlos A. Mora
- Department of Neurology (C.A.M.), Georgetown Multiple Sclerosis Center, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
30
|
Bhise V, Dhib-Jalbut S. Further understanding of the immunopathology of multiple sclerosis: impact on future treatments. Expert Rev Clin Immunol 2016; 12:1069-89. [PMID: 27191526 DOI: 10.1080/1744666x.2016.1191351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The understanding of the immunopathogenesis of multiple sclerosis (MS) has expanded with more research into T-cell subtypes, cytokine contributors, B-cell participation, mitochondrial dysfunction, and more. Treatment options have rapidly expanded with three relatively recent oral therapy alternatives entering the arena. AREAS COVERED In the following review, we discuss current mechanisms of immune dysregulation in MS, how they relate to current treatments, and the impact these findings will have on the future of therapy. Expert commentary: The efficacy of these medications and understanding their mechanisms of actions validates the immunopathogenic mechanisms thought to underlie MS. Further research has exposed new targets, while new promising therapies have shed light on new aspects into the pathophysiology of MS.
Collapse
Affiliation(s)
- Vikram Bhise
- a Rutgers Biomedical and Health Sciences - Departments of Pediatrics , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| | - Suhayl Dhib-Jalbut
- b Rutgers Biomedical and Health Sciences - Departments of Neurology , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| |
Collapse
|
31
|
Stem Cells for Multiple Sclerosis. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Rice CM, Marks DI, Walsh P, Kane NM, Guttridge MG, Redondo J, Sarkar P, Owen D, Wilkins A, Scolding NJ. Repeat infusion of autologous bone marrow cells in multiple sclerosis: protocol for a phase I extension study (SIAMMS-II). BMJ Open 2015; 5:e009090. [PMID: 26363342 PMCID: PMC4567673 DOI: 10.1136/bmjopen-2015-009090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The 'Study of Intravenous Autologous Marrow in Multiple Sclerosis (SIAMMS)' trial was a safety and feasibility study which examined the effect of intravenous infusion of autologous bone marrow without myeloablative therapy. This trial was well tolerated and improvement was noted in the global evoked potential (GEP)--a neurophysiological secondary outcome measure recording speed of conduction in central nervous system pathways. The efficacy of intravenous delivery of autologous marrow in progressive multiple sclerosis (MS) will be examined in the phase II study the 'Assessment of Bone Marrow-Derived Cellular Therapy in Progressive Multiple Sclerosis (ACTiMuS; NCT01815632)'. In parallel with the 'ACTiMuS' study, the current study 'SIAMMS-II' will explore the feasibility of repeated, non-myeloablative autologous bone marrow-derived cell therapy in progressive MS. Furthermore, information will be obtained regarding the persistence or otherwise of improvements in conduction in central nervous system pathways observed in the original 'SIAMMS' study and whether these can be reproduced or augmented by a second infusion of autologous bone marrow-derived cells. METHODS AND ANALYSIS An open, prospective, single-centre phase I extension study. The six patients with progressive MS who participated in the 'SIAMMS' study will be invited to undergo repeat bone marrow harvest and receive an intravenous infusion of autologous, unfractionated bone marrow as a day-case procedure. The primary outcome measure is the number of adverse events, and secondary outcome measures will include change in clinical rating scales of disability, GEP and cranial MRI. ETHICS AND DISSEMINATION The study has UK National Research Ethics Committee approval (13/SW/0255). Study results will be disseminated via peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT01932593.
Collapse
Affiliation(s)
- Claire M Rice
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| | - David I Marks
- Adult BMT Unit, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust & University of Bristol, St Michael's Hill, Bristol, UK
| | - Peter Walsh
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| | - Nick M Kane
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| | | | - Juliana Redondo
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | - Pamela Sarkar
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| | - Denise Owen
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| | - Alastair Wilkins
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| | - Neil J Scolding
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK
- Bristol Institute of Clinical Neurosciences, Southmead Hospital, Bristol, UK
| |
Collapse
|