1
|
Stalmach A, Boehm I, Fernandes M, Rutter A, Skipworth RJE, Husi H. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions. Molecules 2022; 27:5514. [PMID: 36080280 PMCID: PMC9457532 DOI: 10.3390/molecules27175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.
Collapse
Affiliation(s)
- Angelique Stalmach
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Ines Boehm
- Edinburgh Cancer Research UK Tissue Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Alison Rutter
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Holger Husi
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|