1
|
Dyhrfort P, Lindblad C, Widgren A, Virhammar J, Piehl F, Bergquist J, Al Nimer F, Rostami E. Deciphering Proteomic Expression in Inflammatory Disorders: A Mass Spectrometry Exploration Comparing Infectious, Noninfectious, and Traumatic Brain Injuries in Human Cerebrospinal Fluid. Neurotrauma Rep 2024; 5:857-873. [PMID: 39391051 PMCID: PMC11462427 DOI: 10.1089/neur.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The central nervous system (CNS) evokes a complex inflammatory response to injury. Inflammatory cascades are present in traumatic, infectious, and noninfectious disorders affecting the brain. It contains a mixture of pro- and anti-inflammatory reactions involving well-known proteins, but also numerous proteins less explored in these processes. The aim of this study was to explore the distinct inflammatory response in traumatic brain injury (TBI) compared with other CNS injuries by utilization of mass-spectrometry. In total, 56 patients had their cerebrospinal fluid (CSF) analyzed with the use of mass-spectrometry. Among these, CSF was collected via an external ventricular drain (EVD) from n = 21 patients with acute TBI. The resulting protein findings were then compared with CSF obtained by lumbar puncture from n = 14 patients with noninfectious CNS disorders comprising relapsing-remitting multiple sclerosis, anti-N-methyl-d-aspartate-receptor encephalitis, acute disseminated encephalomyelitis, and n = 14 patients with progressive multifocal leukoencephalopathy, herpes simplex encephalitis, and other types of viral meningitis. We also utilized n = 7 healthy controls (HCs). In the comparison between TBI and noninfectious inflammatory CNS disorders, concentrations of 55 proteins significantly differed between the groups. Among them, 23 and 32 proteins were up- and downregulated, respectively, in the TBI group. No proteins were uniquely identified in either group. In the comparison of TBI and HC, 51 proteins were significantly different, with 24 and 27 proteins being up- and downregulated, respectively, in TBI. Two proteins (fibrinogen gamma chain and transketolase) were uniquely identified in all samples of the TBI group. Also in the last comparison, TBI versus infectious inflammatory CNS disorders, 51 proteins differed between the two groups, with 19 and 32 proteins being up- and downregulated, respectively, in TBI, and no unique proteins being identified. Due to large discrepancies between the groups compared, the following proteins were selected for further deeper analysis among those being differentially regulated: APOE, CFB, CHGA, CHI3L1, C3, FCGBP, FGA, GSN, IGFBP7, LRG1, SERPINA3, SOD3, and TTR. We found distinct proteomic profiles in the CSF of TBI patients compared with HC and different disease controls, indicating a specific interplay between inflammatory factors, metabolic response, and cell integrity. In relation to primarily infectious or inflammatory disorders, unique inflammatory pathways seem to be engaged, and could potentially serve as future treatment targets.
Collapse
Affiliation(s)
- Philip Dyhrfort
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Caroline Lindblad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neurosciences, Addenbrooke’s Hospital, Cambridge University, Turku, Finland
| | - Anna Widgren
- Department of Chemistry—BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry—BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Borucki DM, Rohrer B, Tomlinson S. Complement propagates visual system pathology following traumatic brain injury. J Neuroinflammation 2024; 21:98. [PMID: 38632569 PMCID: PMC11022420 DOI: 10.1186/s12974-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is associated with the development of visual system disorders. Visual deficits can present with delay and worsen over time, and may be associated with an ongoing neuroinflammatory response that is known to occur after TBI. Complement system activation is strongly associated with the neuroinflammatory response after TBI, but whether it contributes to vision loss after TBI is unexplored. METHODS Acute and chronic neuroinflammatory changes within the dorsal lateral geniculate nucleus (dLGN) and retina were investigated subsequent to a moderate to severe murine unilateral controlled cortical impact. Neuroinflammatory and histopathological outcomes were interpreted in the context of behavioral and visual function data. To investigate the role of complement, cohorts were treated after TBI with the complement inhibitor, CR2-Crry. RESULTS At 3 days after TBI, complement component C3 was deposited on retinogeniculate synapses in the dLGN both ipsilateral and contralateral to the lesion, which was reduced in CR2-Crry treated animals. This was associated with microglia morphological changes in both the ipsilateral and contralateral dLGN, with a less ramified phenotype in vehicle compared to CR2-Crry treated animals. Microglia in vehicle treated animals also had a greater internalized VGlut2 + synaptic volume after TBI compared to CR2-Crry treated animals. Microglia morphological changes seen acutely persisted for at least 49 days after injury. Complement inhibition also reduced microglial synaptic internalization in the contralateral dLGN and increased the association between VGLUT2 and PSD95 puncta, indicating preservation of intact synapses. Unexpectedly, there were no changes in the thickness of the inner retina, retinal nerve fiber layer or retinal ganglion layer. Neuropathological changes in the dLGN were accompanied by reduced visual acuity at subacute and chronic time points after TBI, with improvement seen in CR2-Crry treated animals. CONCLUSION TBI induces complement activation within the dLGN and promotes microglial activation and synaptic internalization. Complement inhibition after TBI in a clinically relevant paradigm reduces complement activation, maintains a more surveillance-like microglia phenotype, and preserves synaptic density within the dLGN. Together, the data indicate that complement plays a key role in the development of visual deficits after TBI via complement-dependent microglial phagocytosis of synapses within the dLGN.
Collapse
Affiliation(s)
- Davis M Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
3
|
Bhattacharyay S, Beqiri E, Zuercher P, Wilson L, Steyerberg EW, Nelson DW, Maas AIR, Menon DK, Ercole A. Therapy Intensity Level Scale for Traumatic Brain Injury: Clinimetric Assessment on Neuro-Monitored Patients Across 52 European Intensive Care Units. J Neurotrauma 2024; 41:887-909. [PMID: 37795563 PMCID: PMC11005383 DOI: 10.1089/neu.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Intracranial pressure (ICP) data from traumatic brain injury (TBI) patients in the intensive care unit (ICU) cannot be interpreted appropriately without accounting for the effect of administered therapy intensity level (TIL) on ICP. A 15-point scale was originally proposed in 1987 to quantify the hourly intensity of ICP-targeted treatment. This scale was subsequently modified-through expert consensus-during the development of TBI Common Data Elements to address statistical limitations and improve usability. The latest 38-point scale (hereafter referred to as TIL) permits integrated scoring for a 24-h period and has a five-category, condensed version (TIL(Basic)) based on qualitative assessment. Here, we perform a total- and component-score analysis of TIL and TIL(Basic) to: 1) validate the scales across the wide variation in contemporary ICP management; 2) compare their performance against that of predecessors; and 3) derive guidelines for proper scale use. From the observational Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, we extract clinical data from a prospective cohort of ICP-monitored TBI patients (n = 873) from 52 ICUs across 19 countries. We calculate daily TIL and TIL(Basic) scores (TIL24 and TIL(Basic)24, respectively) from each patient's first week of ICU stay. We also calculate summary TIL and TIL(Basic) scores by taking the first-week maximum (TILmax and TIL(Basic)max) and first-week median (TILmedian and TIL(Basic)median) of TIL24 and TIL(Basic)24 scores for each patient. We find that, across all measures of construct and criterion validity, the latest TIL scale performs significantly greater than or similarly to all alternative scales (including TIL(Basic)) and integrates the widest range of modern ICP treatments. TILmedian outperforms both TILmax and summarized ICP values in detecting refractory intracranial hypertension (RICH) during ICU stay. The RICH detection thresholds which maximize the sum of sensitivity and specificity are TILmedian ≥ 7.5 and TILmax ≥ 14. The TIL24 threshold which maximizes the sum of sensitivity and specificity in the detection of surgical ICP control is TIL24 ≥ 9. The median scores of each TIL component therapy over increasing TIL24 reflect a credible staircase approach to treatment intensity escalation, from head positioning to surgical ICP control, as well as considerable variability in the use of cerebrospinal fluid drainage and decompressive craniectomy. Since TIL(Basic)max suffers from a strong statistical ceiling effect and only covers 17% (95% confidence interval [CI]: 16-18%) of the information in TILmax, TIL(Basic) should not be used instead of TIL for rating maximum treatment intensity. TIL(Basic)24 and TIL(Basic)median can be suitable replacements for TIL24 and TILmedian, respectively (with up to 33% [95% CI: 31-35%] information coverage) when full TIL assessment is infeasible. Accordingly, we derive numerical ranges for categorising TIL24 scores into TIL(Basic)24 scores. In conclusion, our results validate TIL across a spectrum of ICP management and monitoring approaches. TIL is a more sensitive surrogate for pathophysiology than ICP and thus can be considered an intermediate outcome after TBI.
Collapse
Affiliation(s)
- Shubhayu Bhattacharyay
- Division of Anaesthesia, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Zuercher
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, United Kingdom
| | - Ewout W. Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - David W. Nelson
- Department of Physiology and Pharmacology, Section for Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Andrew I. R. Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - David K. Menon
- Division of Anaesthesia, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
- Cambridge Center for Artificial Intelligence in Medicine, Cambridge, United Kingdom
| |
Collapse
|
4
|
Lindblad C, Rostami E, Helmy A. Interleukin-1 Receptor Antagonist as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1508-1528. [PMID: 37610701 PMCID: PMC10684479 DOI: 10.1007/s13311-023-01421-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury is a common type of acquired brain injury of varying severity carrying potentially deleterious consequences for the afflicted individuals, families, and society. Following the initial, traumatically induced insult, cellular injury processes ensue. These are believed to be amenable to treatment. Among such injuries, neuroinflammation has gained interest and has become a specific focus for both experimental and clinical researchers. Neuroinflammation is elicited almost immediately following trauma, and extend for a long time, possibly for years, after the primary injury. In the acute phase, the inflammatory response is characterized by innate mechanisms such as the activation of microglia which among else mediates cytokine production. Among the earliest cytokines to emerge are the interleukin- (IL-) 1 family members, comprising, for example, the agonist IL-1β and its competitive antagonist, IL-1 receptor antagonist (IL-1ra). Because of its early emergence following trauma and its increased concentrations also after human TBI, IL-1 has been hypothesized to be a tractable treatment target following TBI. Ample experimental data supports this, and demonstrates restored neurological behavior, diminished lesion zones, and an attenuated inflammatory response following IL-1 modulation either through IL-1 knock-out experiments, IL-1β inhibition, or IL-1ra treatment. Of these, IL-1ra treatment is likely the most physiological. In addition, recombinant human IL-1ra (anakinra) is already approved for utilization across a few rheumatologic disorders. As of today, one randomized clinical controlled trial has utilized IL-1ra inhibition as an intervention and demonstrated its safety. Further clinical trials powered for patient outcome are needed in order to demonstrate efficacy. In this review, we summarize IL-1 biology in relation to acute neuroinflammatory processes following TBI with a particular focus on current evidence for IL-1ra treatment both in the experimental and clinical context.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Huang SY, Zhu F, Guo GH. [Research advances on the role of complement system activation in post-burn immunity]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:396-400. [PMID: 37805746 DOI: 10.3760/cma.j.cn501225-20220726-00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Immune activation is one of the major factors of secondary injury post burn, and is the main organismal response in the anti-infection process. As an important part of the innate immune response, the complement system is able to induce the activation of immune cells after burns, promote inflammation and mediate the breakdown of the immune barrier, and even engage in complex cross-linking with the coagulation cascade. This article reviews the role of complement system activation in post-burn immunity and its possibility of clinical translation from the perspectives of innate immunity, acquired immunity, and cross-linking of the complement system with the coagulation cascade.
Collapse
Affiliation(s)
- S Y Huang
- Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - F Zhu
- Burn Department, the First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - G H Guo
- Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
van Erp IAM, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K. Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 2023; 20:284-303. [PMID: 36222978 PMCID: PMC10119357 DOI: 10.1007/s13311-022-01306-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuroinflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenuation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the complement cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.
Collapse
Affiliation(s)
- Inge A M van Erp
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands.
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Wouter Moojen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|