1
|
Chaya GNM, Hamid A, Wani AR, Gutierrez A, Syed MH. Developmental Genetic and Molecular Analysis of Drosophila Central Complex Lineages. Cold Spring Harb Protoc 2025; 2025:pdb.top108429. [PMID: 38622015 DOI: 10.1101/pdb.top108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Complex behaviors are mediated by a diverse class of neurons and glia produced during development. Both neural stem cell-intrinsic and -extrinsic temporal cues regulate the appropriate number, molecular identity, and circuit assembly of neurons. The Drosophila central complex (CX) is a higher-order brain structure regulating various behaviors, including sensory-motor integration, celestial navigation, and sleep. Most neurons and glia in the adult CX are formed during larval development by 16 Type II neural stem cells (NSCs). Unlike Type I NSCs, which directly give rise to the ganglion mother cells (GMCs), Type II NSCs give rise to multiple intermediate neural progenitors (INPs), and each INP in turn generates multiple GMCs, hence fostering the generation of longer and more diverse lineages. This makes Type II NSCs a suitable model to unravel the molecular mechanisms regulating neural diversity in more complex lineages. In this review, we elaborate on the classification and identification of NSCs based on the types of division adopted and the molecular markers expressed in each type. In the end, we discuss genetic methods for lineage analysis and birthdating. We also explain the temporal expression of stem cell factors and genetic techniques to study how stem cell factors may regulate neural fate specification.
Collapse
Affiliation(s)
| | - Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Adil R Wani
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Mubarak Hussain Syed
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
2
|
Manfredini F, Wurm Y, Sumner S, Leadbeater E. Transcriptomic responses to location learning by honeybee dancers are partly mirrored in the brains of dance-followers. Proc Biol Sci 2023; 290:20232274. [PMID: 38113935 PMCID: PMC10730293 DOI: 10.1098/rspb.2023.2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The waggle dances of honeybees are a strikingly complex form of animal communication that underlie the collective foraging behaviour of colonies. The mechanisms by which bees assess the locations of forage sites that they have visited for representation on the dancefloor are now well-understood, but few studies have considered the remarkable backward translation of such information into flight vectors by dance-followers. Here, we explore whether the gene expression patterns that are induced through individual learning about foraging locations are mirrored when bees learn about those same locations from their nest-mates. We first confirmed that the mushroom bodies of honeybee dancers show a specific transcriptomic response to learning about distance, and then showed that approximately 5% of those genes were also differentially expressed by bees that follow dances for the same foraging sites, but had never visited them. A subset of these genes were also differentially expressed when we manipulated distance perception through an optic flow paradigm, and responses to learning about target direction were also in part mirrored in the brains of dance followers. Our findings show a molecular footprint of the transfer of learnt information from one animal to another through this extraordinary communication system, highlighting the dynamic role of the genome in mediating even very short-term behavioural changes.
Collapse
Affiliation(s)
- Fabio Manfredini
- Present address: School of Biological Sciences, University of Aberdeen, AB24 3UL Aberdeen, UK
- Department of Biological Sciences, Royal Holloway University of London, TW20 OEX Egham, UK
| | - Yannick Wurm
- School of Biological & Behavioural Sciences, Queen Mary University of London, E1 4NS London, UK
- Digital Environment Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Seirian Sumner
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, TW20 OEX Egham, UK
| |
Collapse
|
3
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Kim J, Wulschner LEG, Oh WC, Ko J. Trans
‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules. Bioessays 2022; 44:e2200134. [DOI: 10.1002/bies.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jinhu Kim
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| | | | - Won Chan Oh
- Department of Pharmacology University of Colorado School of Medicine Aurora Colorado USA
| | - Jaewon Ko
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| |
Collapse
|
5
|
Wang YW, Wreden CC, Levy M, Meng JL, Marshall ZD, MacLean J, Heckscher E. Sequential addition of neuronal stem cell temporal cohorts generates a feed-forward circuit in the Drosophila larval nerve cord. eLife 2022; 11:79276. [PMID: 35723253 PMCID: PMC9333992 DOI: 10.7554/elife.79276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
How circuits self-assemble starting from neuronal stem cells is a fundamental question in developmental neurobiology. Here, we addressed how neurons from different stem cell lineages wire with each other to form a specific circuit motif. In Drosophila larvae, we combined developmental genetics (twin-spot mosaic analysis with a repressible cell marker, multi-color flip out, permanent labeling) with circuit analysis (calcium imaging, connectomics, network science). For many lineages, neuronal progeny are organized into subunits called temporal cohorts. Temporal cohorts are subsets of neurons born within a tight time window that have shared circuit-level function. We find sharp transitions in patterns of input connectivity at temporal cohort boundaries. In addition, we identify a feed-forward circuit that encodes the onset of vibration stimuli. This feed-forward circuit is assembled by preferential connectivity between temporal cohorts from different lineages. Connectivity does not follow the often-cited early-to-early, late-to-late model. Instead, the circuit is formed by sequential addition of temporal cohorts from different lineages, with circuit output neurons born before circuit input neurons. Further, we generate new tools for the fly community. Our data raise the possibility that sequential addition of neurons (with outputs oldest and inputs youngest) could be one fundamental strategy for assembling feed-forward circuits.
Collapse
Affiliation(s)
- Yi-wen Wang
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Chris C Wreden
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Maayan Levy
- Committee on Computational Neuroscience, University of ChicagoChicagoUnited States
| | - Julia L Meng
- Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States
| | - Zarion D Marshall
- Committee on Neurobiology, University of ChicagoChicagoUnited States
| | - Jason MacLean
- Committee on Computational Neuroscience, University of ChicagoChicagoUnited States,Committee on Neurobiology, University of ChicagoChicagoUnited States,Department of Neurobiology, University of ChicagoChicagoUnited States,University of Chicago Neuroscience InstituteChicagoUnited States
| | - Ellie Heckscher
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States,Committee on Computational Neuroscience, University of ChicagoChicagoUnited States,Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States,Department of Neurobiology, University of ChicagoChicagoUnited States,University of Chicago Neuroscience InstituteChicagoUnited States
| |
Collapse
|
6
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
7
|
Shuster SA, Wagner MJ, Pan-Doh N, Ren J, Grutzner SM, Beier KT, Kim TH, Schnitzer MJ, Luo L. The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. Proc Natl Acad Sci U S A 2021; 118:e2101826118. [PMID: 34088841 PMCID: PMC8201928 DOI: 10.1073/pnas.2101826118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.
Collapse
Affiliation(s)
- S Andrew Shuster
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305
| | - Mark J Wagner
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Nathan Pan-Doh
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jing Ren
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Medical Research Council Laboratory of Molecular Biology, Cambridge University, Cambridge CB2 0QH, United Kingdom
| | - Sophie M Grutzner
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Kevin T Beier
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Tony Hyun Kim
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Mark J Schnitzer
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Liqun Luo
- HHMI, Stanford University, Stanford, CA 94305;
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
8
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Chen Z, Traniello IM, Rana S, Cash-Ahmed AC, Sankey AL, Yang C, Robinson GE. Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic orco mutation in honey bees. J Neurogenet 2021; 35:320-332. [PMID: 33666542 DOI: 10.1080/01677063.2021.1887173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In insects, odorant receptors facilitate olfactory communication and require the functionality of the highly conserved co-receptor gene orco. Genome editing studies in a few species of ants and moths have revealed that orco can also have a neurodevelopmental function, in addition to its canonical role in adult olfaction, discovered first in Drosophila melanogaster. To extend this analysis, we determined whether orco mutations also affect the development of the adult brain of the honey bee Apis mellifera, an important model system for social behavior and chemical communication. We used CRISPR/Cas9 to knock out orco and examined anatomical and molecular consequences. To increase efficiency, we coupled embryo microinjection with a laboratory egg collection and in vitro rearing system. This new workflow advances genomic engineering technologies in honey bees by overcoming restrictions associated with field studies. We used Sanger sequencing to quickly select individuals with complete orco knockout for neuroanatomical analyses and later validated and described the mutations with amplicon sequencing. Mutant bees had significantly fewer glomeruli, smaller total volume of all the glomeruli, and higher mean individual glomerulus volume in the antennal lobe compared to wild-type controls. RNA-Sequencing revealed that orco knockout also caused differential expression of hundreds of genes in the antenna, including genes related to neural development and genes encoding odorant receptors. The expression of other types of chemoreceptor genes was generally unaffected, reflecting specificity of CRISPR activity in this study. These results suggest that neurodevelopmental effects of orco are related to specific insect life histories.
Collapse
Affiliation(s)
- Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seema Rana
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alison L Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biochemistry Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
11
|
Xie Q, Brbic M, Horns F, Kolluru SS, Jones RC, Li J, Reddy AR, Xie A, Kohani S, Li Z, McLaughlin CN, Li T, Xu C, Vacek D, Luginbuhl DJ, Leskovec J, Quake SR, Luo L, Li H. Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. eLife 2021; 10:e63450. [PMID: 33427646 PMCID: PMC7870145 DOI: 10.7554/elife.63450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.
Collapse
Affiliation(s)
- Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Graduate Program, Stanford UniversityStanfordUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Felix Horns
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Biophysics Graduate Program, Stanford UniversityStanfordUnited States
| | | | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anay R Reddy
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Sayeh Kohani
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Zhuoran Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David Vacek
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Jure Leskovec
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubStanfordUnited States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
12
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
13
|
Ng R, Wu ST, Su CY. Neuronal Compartmentalization: A Means to Integrate Sensory Input at the Earliest Stage of Information Processing? Bioessays 2020; 42:e2000026. [PMID: 32613656 PMCID: PMC7864560 DOI: 10.1002/bies.202000026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Indexed: 01/08/2023]
Abstract
In numerous peripheral sense organs, external stimuli are detected by primary sensory neurons compartmentalized within specialized structures composed of cuticular or epithelial tissue. Beyond reflecting developmental constraints, such compartmentalization also provides opportunities for grouped neurons to functionally interact. Here, the authors review and illustrate the prevalence of these structural units, describe characteristics of compartmentalized neurons, and consider possible interactions between these cells. This article discusses instances of neuronal crosstalk, examples of which are observed in the vertebrate tastebuds and multiple types of arthropod chemosensory hairs. Particular attention is paid to insect olfaction, which presents especially well-characterized mechanisms of functional, cross-neuronal interactions. These examples highlight the potential impact of peripheral processing, which likely contributes more to signal integration than previously considered. In surveying a wide variety of structural units, it is hoped that this article will stimulate future research that determines whether grouped neurons in other sensory systems can also communicate to impact information processing.
Collapse
Affiliation(s)
| | | | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Cadwell CR, Scala F, Fahey PG, Kobak D, Mulherkar S, Sinz FH, Papadopoulos S, Tan ZH, Johnsson P, Hartmanis L, Li S, Cotton RJ, Tolias KF, Sandberg R, Berens P, Jiang X, Tolias AS. Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex. eLife 2020; 9:e52951. [PMID: 32134385 PMCID: PMC7162653 DOI: 10.7554/elife.52951] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Clones of excitatory neurons derived from a common progenitor have been proposed to serve as elementary information processing modules in the neocortex. To characterize the cell types and circuit diagram of clonally related excitatory neurons, we performed multi-cell patch clamp recordings and Patch-seq on neurons derived from Nestin-positive progenitors labeled by tamoxifen induction at embryonic day 10.5. The resulting clones are derived from two radial glia on average, span cortical layers 2-6, and are composed of a random sampling of transcriptomic cell types. We find an interaction between shared lineage and connection type: related neurons are more likely to be connected vertically across cortical layers, but not laterally within the same layer. These findings challenge the view that related neurons show uniformly increased connectivity and suggest that integration of vertical intra-clonal input with lateral inter-clonal input may represent a developmentally programmed connectivity motif supporting the emergence of functional circuits.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Anatomic Pathology, University of California San FranciscoSan FranciscoUnited States
| | - Federico Scala
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Fabian H Sinz
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Computer Science, University of TübingenTübingenGermany
- Interfaculty Institute for Biomedical Informatics, University of TübingenTübingenGermany
| | - Stelios Papadopoulos
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Zheng H Tan
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Per Johnsson
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Shuang Li
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Ronald J Cotton
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Philipp Berens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Department of Computer Science, University of TübingenTübingenGermany
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonUnited States
| | - Andreas Savas Tolias
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Electrical and Computer Engineering, Rice UniversityHoustonUnited States
| |
Collapse
|
15
|
Li H, Li T, Horns F, Li J, Xie Q, Xu C, Wu B, Kebschull JM, McLaughlin CN, Kolluru SS, Jones RC, Vacek D, Xie A, Luginbuhl DJ, Quake SR, Luo L. Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Curr Biol 2020; 30:1189-1198.e5. [PMID: 32059767 DOI: 10.1016/j.cub.2020.01.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Felix Horns
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Justus M Kebschull
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Sai Saroja Kolluru
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Robert C Jones
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David Vacek
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Sánchez-Guardado L, Lois C. Lineage does not regulate the sensory synaptic input of projection neurons in the mouse olfactory bulb. eLife 2019; 8:46675. [PMID: 31453803 PMCID: PMC6744224 DOI: 10.7554/elife.46675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Lineage regulates the synaptic connections between neurons in some regions of the invertebrate nervous system. In mammals, recent experiments suggest that cell lineage determines the connectivity of pyramidal neurons in the neocortex, but the functional relevance of this phenomenon and whether it occurs in other neuronal types remains controversial. We investigated whether lineage plays a role in the connectivity of mitral and tufted cells, the projection neurons in the mouse olfactory bulb. We used transgenic mice to sparsely label neuronal progenitors and observed that clonally related neurons receive synaptic input from olfactory sensory neurons expressing different olfactory receptors. These results indicate that lineage does not determine the connectivity between olfactory sensory neurons and olfactory bulb projection neurons.
Collapse
Affiliation(s)
- Luis Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
17
|
Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons. Proc Natl Acad Sci U S A 2019; 116:16068-16073. [PMID: 31341080 DOI: 10.1073/pnas.1905832116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of the mechanisms of neural circuit assembly is far from complete. Identification of wiring molecules with novel mechanisms of action will provide insights into how complex and heterogeneous neural circuits assemble during development. In the Drosophila olfactory system, 50 classes of olfactory receptor neurons (ORNs) make precise synaptic connections with 50 classes of partner projection neurons (PNs). Here, we performed an RNA interference screen for cell surface molecules and identified the leucine-rich repeat-containing transmembrane protein known as Fish-lips (Fili) as a novel wiring molecule in the assembly of the Drosophila olfactory circuit. Fili contributes to the precise axon and dendrite targeting of a small subset of ORN and PN classes, respectively. Cell-type-specific expression and genetic analyses suggest that Fili sends a transsynaptic repulsive signal to neurites of nonpartner classes that prevents their targeting to inappropriate glomeruli in the antennal lobe.
Collapse
|
18
|
Guajardo R, Luginbuhl DJ, Han S, Luo L, Li J. Functional divergence of Plexin B structural motifs in distinct steps of Drosophila olfactory circuit assembly. eLife 2019; 8:48594. [PMID: 31225795 PMCID: PMC6597256 DOI: 10.7554/elife.48594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the Drosophila olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.
Collapse
Affiliation(s)
- Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Shuo Han
- Department of Chemistry, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
19
|
Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, Nose A. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae. Nat Commun 2019; 10:2654. [PMID: 31201326 PMCID: PMC6572865 DOI: 10.1038/s41467-019-10695-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system. Locomotion involves the coordinated contraction of antagonistic muscles. Here, the authors report that in Drosophila larvae a pair of higher-order feedback neurons temporally regulates the intersegmental coordination of contraction of synergistic muscles enabling bidirectional movement.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Maarten F Zwart
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,School of Psychology and Neuroscience, University of St Andrews, KY16 9JP, Scotland, UK
| | - Akira Fushiki
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - James W Truman
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, 98250, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| |
Collapse
|
20
|
Vasas V, Peng F, MaBouDi H, Chittka L. Randomly weighted receptor inputs can explain the large diversity of colour-coding neurons in the bee visual system. Sci Rep 2019; 9:8330. [PMID: 31171814 PMCID: PMC6554269 DOI: 10.1038/s41598-019-44375-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/10/2019] [Indexed: 01/03/2023] Open
Abstract
True colour vision requires comparing the responses of different spectral classes of photoreceptors. In insects, there is a wealth of data available on the physiology of photoreceptors and on colour-dependent behaviour, but less is known about the neural mechanisms that link the two. The available information in bees indicates a diversity of colour opponent neurons in the visual optic ganglia that significantly exceeds that known in humans and other primates. Here, we present a simple mathematical model for colour processing in the optic lobes of bees to explore how this diversity might arise. We found that the model can reproduce the physiological spectral tuning curves of the 22 neurons that have been described so far. Moreover, the distribution of the presynaptic weights in the model suggests that colour-coding neurons are likely to be wired up to the receptor inputs randomly. The perceptual distances in our random synaptic weight model are in agreement with behavioural observations. Our results support the idea that the insect nervous system might adopt partially random wiring of neurons for colour processing.
Collapse
Affiliation(s)
- Vera Vasas
- Bee Sensory and Behavioural Ecology Lab, Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Fei Peng
- Department of Psychology, School of Public Health, Southern Medical University, 1838 Guangzhou Road, Guangzhou, 510515, Guangdong, China.
| | - HaDi MaBouDi
- Bee Sensory and Behavioural Ecology Lab, Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Lars Chittka
- Bee Sensory and Behavioural Ecology Lab, Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, D-14193, Berlin, Germany
| |
Collapse
|
21
|
Chai PC, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat Commun 2019; 10:643. [PMID: 30733440 PMCID: PMC6367400 DOI: 10.1038/s41467-019-08345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Nervous systems exhibit myriad cell types, but understanding how this diversity arises is hampered by the difficulty to visualize and genetically-probe specific lineages, especially at early developmental stages prior to expression of unique molecular markers. Here, we use a genetic immortalization method to analyze the development of sensory neuron lineages in the Drosophila olfactory system, from their origin to terminal differentiation. We apply this approach to define a fate map of nearly all olfactory lineages and refine the model of temporal patterns of lineage divisions. Taking advantage of a selective marker for the lineage that gives rise to Or67d pheromone-sensing neurons and a genome-wide transcription factor RNAi screen, we identify the spatial and temporal requirements for Pointed, an ETS family member, in this developmental pathway. Transcriptomic analysis of wild-type and Pointed-depleted olfactory tissue reveals a universal requirement for this factor as a switch-like determinant of fates in these sensory lineages. Few tools exist to study molecular diversity during neurodevelopment. Here the authors apply a genetic immortalization method in Drosophila to generate a fate map of olfactory sensory lineages, examine the relationships of this map and the neuroanatomical, molecular and evolutionary properties of the mature circuits, and identify a novel factor controlling lineage development.
Collapse
Affiliation(s)
- Phing Chian Chai
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Leonore Wigger
- Lausanne Genomic Technologies Facility, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Rohith BN, Shyamala BV. Developmental Deformity Due to
scalloped
Non‐Function in
Drosophila
Brain Leads to Cognitive Impairment. Dev Neurobiol 2019; 79:236-251. [DOI: 10.1002/dneu.22668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 11/10/2022]
|
23
|
Abstract
To understand how neurons assemble to form functional circuits, it is necessary to obtain a detailed knowledge of their diversity and to define the developmental specification programs that give rise to this diversity. Invertebrates and vertebrates appear to share common developmental principles of neuronal specification in which cascades of transcription factors temporally pattern progenitors, while spatial cues modify the outcomes of this temporal patterning. Here, we highlight these conserved mechanisms and describe how they are used in distinct neural structures. We present the questions that remain for a better understanding of neuronal specification. Single-cell RNA profiling approaches will potentially shed light on these questions, allowing not only the characterization of neuronal diversity in adult brains, but also the investigation of the developmental trajectories leading to the generation and maintenance of this diversity.
Collapse
Affiliation(s)
- Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA. .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Transcriptional control of long-range cortical projections. Curr Opin Neurobiol 2018; 53:57-65. [DOI: 10.1016/j.conb.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
25
|
Li J, Guajardo R, Xu C, Wu B, Li H, Li T, Luginbuhl DJ, Xie X, Luo L. Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels. eLife 2018; 7:39088. [PMID: 30136927 PMCID: PMC6118820 DOI: 10.7554/elife.39088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/22/2018] [Indexed: 01/13/2023] Open
Abstract
The precise assembly of a neural circuit involves many consecutive steps. The conflict between a limited number of wiring molecules and the complexity of the neural network impels each molecule to execute multiple functions at different steps. Here, we examined the cell-type specific distribution of endogenous levels of axon guidance receptor Plexin B (PlexB) in the developing antennal lobe, the first olfactory processing center in Drosophila. We found that different classes of olfactory receptor neurons (ORNs) express PlexB at different levels in two wiring steps – axonal trajectory choice and subsequent target selection. In line with its temporally distinct patterns, the proper levels of PlexB control both steps in succession. Genetic interactions further revealed that the effect of high-level PlexB is antagonized by its canonical partner Sema2b. Thus, PlexB plays a multifaceted role in instructing the assembly of the Drosophila olfactory circuit through temporally-regulated expression patterns and expression level-dependent effects.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Xiaojun Xie
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|