1
|
Yang YQ, Li X, Wang ZZ, Huang XY, Zeng DW, Zhao XQ, Liu ZQ, Zhang FL. Single cell protein production of co-culture Kodamaea ohmeri and Lactococcus lactis in corn straw hydrolysate. BIORESOURCE TECHNOLOGY 2025:132649. [PMID: 40409427 DOI: 10.1016/j.biortech.2025.132649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/25/2025]
Abstract
With the world population continuously increasing, the protein demand will double by 2050. Single cell protein (SCP) derived from lignocellulosic biomass offers a sustainable solution. Many inhibitors are produced during the pretreatment process of lignocellulosic biomass. Inhibitor-rich hydrolysates limit microorganisms cell growth and SCP yields. In this work, we report a co-culture consortium of Kodamaea ohmeri SSK (pentose-utilizing yeast) and Lactococcus lactis LX (probiotic bacterium) that efficiently converts real corn straw hydrolysate into SCP. K. ohmeri SSK can tolerate inhibitors such as furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid and consume glucose, xylose, and arabinose in real hydrolysate. L. lactis LX showed less growth in monoculture than that of co-culture. The total amino acid content from co-cultured K. ohmeri SSK and L. lactis LX was increased to 331.42 mg/g crude protein, but that of monocultured K. ohmeri SSK was 309.89 mg/g crude protein containing 17 amino acids. This work demonstrates a symbiotic microbial platform can produce SCP from non-detoxified lignocellulosic biomass. The co-culture robust inhibitor tolerance and balanced amino acid profile highlight its potential for industrial-scale protein production. These results will represent an attractive choice cell factory for lignocellulosic substrate utilization and provide a platform for biomass conversion to SCP.
Collapse
Affiliation(s)
- Yong-Qiang Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xu Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen-Zhi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Yan Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Qiang Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Yang YQ, Li X, Wang ZF, Deng YL, Wang ZZ, Fang XY, Zhang MD, Sun W, Zhao XQ, Liu ZQ, Zhang FL. Whole Genome Sequencing of Kodamaea ohmeri SSK and Its Characterization for Degradation of Inhibitors from Lignocellulosic Biomass. BIOLOGY 2025; 14:458. [PMID: 40427648 DOI: 10.3390/biology14050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025]
Abstract
Lignocellulosic biomass is widely recognized as a renewable resource for bioconversion. However, the presence of inhibitors such as furfural, 5-HMF, and acetic acid can inhibit cell growth, thereby affecting the overall efficiency of the bioconversion process. The studies on the degradation of lignocellulosic hydrolysate inhibitors by Saccharomyces cerevisiae have been limited. In this research, a yeast strain Kodamaea ohmeri can degrade inhibitors furfural, 5-HMF, and acetic acid, and the genome sequence of the strain was analyzed. Furthermore, the molecular detoxification mechanism of K. ohmeri SSK against lignocellulosic hydrolysate inhibitors was predicted using whole genome sequencing. Annotation based on the COG/KEGG databases identified 57 key detoxification genes, including the alcohol dehydrogenase (ADH) gene, aldo-keto/aldehyde reductase (AKR/ARI) gene, and aldehyde dehydrogenase (ALDH) gene. Stress tolerance experiments revealed that the maximum tolerance concentration for the strain was 5.2 g/L of furfural, 2.5 g/L of 5-HMF, and 5.9 g/L of acetic acid, respectively. A NAD(P)+-dependent bifunctional enzyme with possible ADH and ARI activities was found by conserved domain analysis. Phylogenetic analysis indicated that this enzyme shared 99% homology with the detoxification enzyme from S. cerevisiae S288C (GenBank: Q04894.1). This study represents the first comprehensive analysis of the inhibitor detoxification network in K. ohmeri SSK from a genome perspective, providing theoretical targets and design strategies for developing highly efficient biorefinery strains.
Collapse
Affiliation(s)
- Yong-Qiang Yang
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Fei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Long Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen-Zhi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing-Yu Fang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mao-Dong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Qiang Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Persson K, Onyema VO, Nwafor IP, Peri KVR, Otti C, Nnaemeka P, Onyishi C, Okoye S, Moneke A, Amadi O, Warringer J, Geijer C. Lactose-assimilating yeasts with high fatty acid accumulation uncovered by untargeted bioprospecting. Appl Environ Microbiol 2025; 91:e0161524. [PMID: 39745379 PMCID: PMC11784187 DOI: 10.1128/aem.01615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/27/2024] [Indexed: 02/01/2025] Open
Abstract
Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries. Through internal transcribed spacer sequencing of the lactose-assimilating strains, we identified 30 different yeast species from both the Ascomycota and Basidiomycota phyla, of which several have not previously been shown to grow on lactose, and some are candidates for new species. Observed differences in growth and ratios of intra- and extracellular lactase activities suggest that the yeasts use a range of different strategies to metabolize lactose. Notably, several basidiomycetous yeasts, including Apiotrichum mycotoxinivorans, Papiliotrema laurentii, and Moesziomyces antarcticus, accumulated lipids up to 40% of their cell dry weight, proving that they can convert lactose into a bioproduct of significant biotechnology interest. IMPORTANCE This study paves the way to a better understanding of the natural yeast biodiversity in the largely under-sampled biodiversity hotspot area of tropical West Africa. Our discovery of several yeasts capable of efficiently converting lactose into lipids underscores the value of bioprospecting to identify yeast strains with significant biotechnological potential, which can aid the transition to a circular bioeconomy. Furthermore, the extensive strain collection gathered will facilitate future screening and the development of new cell factories.
Collapse
Affiliation(s)
- Karl Persson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
| | - Vanessa O. Onyema
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ijeoma Princess Nwafor
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Kameshwara V. R. Peri
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| | - Chika Otti
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Priscilla Nnaemeka
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Chioma Onyishi
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Sylvia Okoye
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Anene Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Onyetugo Amadi
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Västra Götaland County, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden
| |
Collapse
|
4
|
Paul D, Arora A, Verma ML. Editorial: Advances in Microbial Biofuel Production. Front Microbiol 2021; 12:746216. [PMID: 34650544 PMCID: PMC8506158 DOI: 10.3389/fmicb.2021.746216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Debarati Paul
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anju Arora
- Division of Microbiology, Centre for Conservation and Utilisation of Blue Green Algae, Indian Agricultural Research Institute, New Delhi, India
| | - Madan L Verma
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology, Una, India
| |
Collapse
|
5
|
Zhou G, Gao S, Chang D, Shimizu KY, Cao W. Succession of fungal community and enzyme activity during the co-decomposition process of rice (Oryza sativa L.) straw and milk vetch (Astragalus sinicus L.). WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:1-10. [PMID: 34390974 DOI: 10.1016/j.wasman.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The co-incorporation of rice straw (RS) and milk vetch (MV) into paddy fields has been increasingly applied as a sustainable farming practice in southern China. Our previous study revealed the contribution of bacteria to the co-decomposition of the RS and MV mixture, although additional underlying factors driving the co-decomposition process need to be clarified. The present study further determined the succession of fungal communities and enzyme activity in the co-decomposition process of the RS and MV mixture. The results showed that non-additive synergistic effects on biomass loss were observed in 55.6% of the sampled RS and MV mixture during the co-decomposition process, stimulating mixture decomposition. Overall fungal abundance was 19.6-30.6% higher in the RS and MV mixture throughout the study than in the single residue. Fungal diversity and community structure were mainly affected by the sampling date rather than the type of residue. Specifically, mixing RS and MV significantly increased the abundance of Peziza sp. and Reticulascus tulasneorum (lignocellulose- and lignin-decomposing fungi) and exhibited higher activities of C- and N-related hydrolases than monospecific residues. Random forest (RF) models showed that bacteria contributed more to the residue decomposition and activities of C-related hydrolases, N-related hydrolases, and oxidases than fungi. However, both RF and partial least squares path models revealed that fungal abundance and community structure directly or indirectly affected the residue decomposition rate. These findings showed that mixing RS and MV could stimulate their decomposition by enhancing C-related hydrolase activity and Peziza sp. and Reticulascus tulasneorum abundance.
Collapse
Affiliation(s)
- Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
6
|
Dulce VR, Anne G, Manuel K, Carlos AA, Jacobo RC, Sergio de Jesús CE, Eugenia LC. Cocoa bean turning as a method for redirecting the aroma compound profile in artisanal cocoa fermentation. Heliyon 2021; 7:e07694. [PMID: 34401578 PMCID: PMC8353487 DOI: 10.1016/j.heliyon.2021.e07694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 07/28/2021] [Indexed: 11/01/2022] Open
Abstract
Two artisanal fermentation processes for Criollo cocoa beans with different turning start times (24 h and 48 h) were studied. The aromatic profile of cocoa turned every 24 h (B1) displayed volatile compounds associated with fermented, bready, and fruity aromas. When cocoa beans were fermented with a different turning technique with a start time of 48 h (B2), they provided volatile compounds mainly associated with descriptors of floral, woody, sweet, fruity and chocolate aromas. The turning start time of 48 h stimulated a microbial profile dominated by yeast such as Hanseniaspora opuntiae, Pichia manshurica, and Meyerozyma carpophila, favoring the production of several key aroma markers associated with cocoa bean fermentation quality, such as phenylethyl acetate, 2-phenylacetaldehyde, 3-methylbutanal, 2-phenylethyl alcohol, 2,3-butanedione, 3-methylbutanoic acid, and 2-methylpropanoic acid, while an immediate turning start time (24 h) favored an aerobic environment that stimulated the rapid growth of Acetobacter pasteurianus, Bacillus subtilis and a higher biodiversity of lactic acid bacteria (LAB) (e.g., Lactobacillus plantarum and Pediococcus acidilactici), which increased the production of ethyl acetate and 3-hydroxy-2-butanone. Volatile compound generation and microbial populations were evaluated and analyzed by multivariate analysis (principal component analysis and partial least squares discriminant analysis) to find correlations and significant differences. This study shows that the method of turning Criollo cacao beans can lead to the formation of desirable aromatic compounds.
Collapse
Affiliation(s)
- Velásquez-Reyes Dulce
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Gschaedler Anne
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Kirchmayr Manuel
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Avendaño-Arrazate Carlos
- Genetic Department, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), C. E. Rosario Izapa, Chiapas. Km. 18. Carretera Tapachula-Cacahoatán, 30780 Tuxtla Chico, Chiapas, Mexico
| | - Rodríguez-Campos Jacobo
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Calva-Estrada Sergio de Jesús
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Lugo-Cervantes Eugenia
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| |
Collapse
|
7
|
Ortiz-Álvarez J, Vera-Ponce de León A, Trejo-Cerro O, Vu HT, Chávez-Camarillo G, Villa-Tanaca L, Hernández-Rodríguez C. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in the presence of heavy metals. J Basic Microbiol 2019; 59:792-806. [PMID: 31368594 DOI: 10.1002/jobm.201900027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo Vera-Ponce de León
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Trejo-Cerro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Hoa T Vu
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Griselda Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
8
|
Draft Genome Sequence of the Yeast Kodamaea ohmeri, a Symbiont of the Small Hive Beetle. Microbiol Resour Announc 2019; 8:8/26/e00450-19. [PMID: 31248992 PMCID: PMC6597686 DOI: 10.1128/mra.00450-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kodamaea ohmeri is a symbiont of the small hive beetle (SHB), which is a scavenger of honey bee colonies. The SHB causes absconding of the economically important honey bee (Apis mellifera) and deposits K. ohmeri in the honeycomb. We describe long-read sequencing and further analyses of the K. ohmeri genome.
Collapse
|
9
|
Ortiz-Álvarez J, Vera-Ponce de León A, Trejo-Cerro O, Vu HT, Chávez-Camarillo G, Villa-Tanaca L, Hernández-Rodríguez C. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in the presence of heavy metals. J Basic Microbiol 2019. [PMID: 31183881 DOI: 10.1002/jobm.jobm201900027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 11/11/2022]
Abstract
The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo Vera-Ponce de León
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Trejo-Cerro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Hoa T Vu
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Griselda Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|