1
|
Li M, Long Y, Shao L, Meng J, Zheng Z, Wu Y, Zhou X, Liu L, Li Z, Wu Z, Yang S. Targeting tubulin protein to combat fungal disease: Design, synthesis, and its new mechanistic insights of benzimidazole hydrazone derivatives. Int J Biol Macromol 2025; 300:140226. [PMID: 39855516 DOI: 10.1016/j.ijbiomac.2025.140226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
As the vital the biomacromolecule in eukaryotic cells, tubulin protein is essential for preserving cell shape, facilitating cell division, and cell viability. Tubulin has been approved as promising target for anticancer, and antifungal therapy. However, there are still many gaps in tubulin-targeted fungicidal discovery. To expand the structural diversity of benzimidazoles and achieve the distinct interaction model, a series of novel benzimidazole hydrazone derivatives were therefore synthesized. Antifungal results showed that compound A9 was the most effective, achieving an EC50 value of 2.88 μg/mL in vitro against Colletotrichum sublineola. In vivo assay, compound A9 displayed encouraging efficacy, outperforming the reference agents ferimzone and tetramethylthiuram disulfide. Interestingly, mechanistic studies indicated that, compared with carbendazim, compound A9 might form stronger interactions with tubulin, exemplified by the presence of multiple hydrogen bonds and π-π interactions, leading to intracellular microtubule aggregation in compound A9-treated cells. The significantly different interactions models between A9-tubulin and carbendazim-tubulin complexes may endow to produce the low resistance risk. Additionally, compound A9 possessed low phytotoxicity and satisfactory ADME properties. This study not only provides a structural basis for the development of benzimidazole-based fungicides targeting tubulin but also offers new insights into the use of immunofluorescence assays in tubulin-targeting studies.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuanyuan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhenhua Li
- College of Agriculture/Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource, Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Hasnat H, Riti SJ, Shompa SA, Alam S, Islam MM, Kabir F, Khan MS, Shao C, Zeng C, Wang S, Geng P, Al Mamun A. Unveiling the Therapeutic Potentials of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) Flower against Oxidative Stress, Inflammation and Depressive Disorders: GC-MS/MS, In Vitro, In Vivo and In Silico Approaches. Chem Biodivers 2024; 21:e202401268. [PMID: 39177000 DOI: 10.1002/cbdv.202401268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Water hyacinth (Eichhornia crassipes (Mart.) Solms) is a highly invasive aquatic weed native to the Amazonia basin, known for its rapid propagation, adaptability, and utilization in traditional medicine. The study aims to unveil the therapeutic potential of water hyacinth flowers methanolic extract (EC CME) and its four kupchan fractions (EC PESF, EC DCMSF, EC EASF, EC ASF) through diversified chemical-pharmacological approaches. GC-MS/MS of EC-CME uncovered a rich tapestry of 72 phytochemical components. In vitro DPPH scavenging assay and total phenolic content determination assay deciphered promising antioxidant assays with remarkably low IC50 values of 0.353 and 0.485 μg/mL, respectively for EC-ESF and EC-ASF. Besides, different in vivo tests, including tail emersion, acetic acid-induced writhing, and thiopental-induced sleeping test of EC-CME, yielded a remarkable 8.61±0.29 min of tail immersion time compared to the control's 2.05±0.11 min at the highest dose (600 mg/kg). The best % inhibition of writhing was recorded as 47.96 % accrued in 400 mg/kg dose, indicating robust pain-relieving properties. The onset and duration of sleep are significantly ameliorated for EC-CME, unveiling its antidepressant potential. Besides, molecular docking studies along with ADME/T analysis also validated the wet lab findings as well as their safety, efficacy, and drug-likeliness profile. Finally, this work can be an essential hint for utilizing aquatic weeds in drug development research.
Collapse
Affiliation(s)
- Hasin Hasnat
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Saima Jahan Riti
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Suriya Akter Shompa
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Safaet Alam
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mirazul Islam
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Ferdousy Kabir
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Md Salim Khan
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, 6206, Bangladesh
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Chunlai Zeng
- Department of Cardiology, The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| |
Collapse
|
3
|
Li T, Zhou Y, Fu X, Yang L, Liu H, Zhou X, Liu L, Wu Z, Yang S. Identification of novel 4-substituted 7H-pyrrolo[2,3-d]pyrimidine derivatives as new FtsZ inhibitors: Bioactivity evaluation and computational simulation. Bioorg Chem 2024; 150:107534. [PMID: 38896935 DOI: 10.1016/j.bioorg.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Bacterial infections and the consequent outburst of bactericide-resistance issues are fatal menace to both global health and agricultural produce. Hence, it is crucial to explore candidate bactericides with new mechanisms of action. The filamenting temperature-sensitive mutant Z (FtsZ) protein has been recognized as a new promising and effective target for new bactericide discovery. Hence, using a scaffold-hopping strategy, we designed new 7H-pyrrolo[2,3-d]pyrimidine derivatives, evaluated their antibacterial activities, and investigated their structure-activity relationships. Among them, compound B6 exhibited the optimal in vitro bioactivity (EC50 = 4.65 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo), which was superior to the references (bismerthiazol [BT], EC50 = 48.67 µg/mL; thiodiazole copper [TC], EC50 = 98.57 µg/mL]. Furthermore, the potency of compound B6 in targeting FtsZ was validated by GTPase activity assay, FtsZ self-assembly observation, fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR) assay, molecular dynamics simulations, and morphological observation. The GTPase activity assay showed that the final IC50 value of compound B6 against XooFtsZ was 235.0 μM. Interestingly, the GTPase activity results indicated that the B6-XooFtsZ complex has an excellent binding constant (KA = 103.24 M-1). Overall, the antibacterial behavior suggests that B6 can interact with XooFtsZ and inhibit its GTPase activity, leading to bacterial cell elongation and even death. In addition, compound B6 showed acceptable anti-Xoo activity in vivo and low toxicity, and also demonstrated a favorable pharmacokinetic profile predicted by ADMET analysis. Our findings provide new chemotypes for the development of FtsZ inhibitors as well as insights into their underlying mechanisms of action.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xichun Fu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Linli Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongwu Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Jannat T, Hossain MJ, El-Shehawi AM, Kuddus MR, Rashid MA, Albogami S, Jafri I, El-Shazly M, Haque MR. Chemical and Pharmacological Profiling of Wrightia coccinea (Roxb. Ex Hornem.) Sims Focusing Antioxidant, Cytotoxic, Antidiarrheal, Hypoglycemic, and Analgesic Properties. Molecules 2022; 27:4024. [PMID: 35807270 PMCID: PMC9268577 DOI: 10.3390/molecules27134024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3β-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22β-hydroxylupeol (3), and β-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action.
Collapse
Affiliation(s)
- Tabassum Jannat
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
- Department Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Md. Jamal Hossain
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Md. Ruhul Kuddus
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohammad Rashedul Haque
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| |
Collapse
|
5
|
Zhang B, Hu X, Wang H, Wang R, Sun Z, Tan X, Liu S, Wang H. Effects of a dammarane-type saponin, ginsenoside Rd, in nicotine-induced vascular endothelial injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153325. [PMID: 32920289 DOI: 10.1016/j.phymed.2020.153325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Panax notoginseng (Burk.) F.H. Chen is a traditional medicinal plant widely used to prevent and treat cardiovascular diseases. Ginsenoside Rd (GRd) is a major bioactive component of P. notoginseng, but specific effects on cardiovascular disease-related pathogenic processes are rarely studied, especially vascular endothelial injury. PURPOSE This study investigated the potential protective efficacy of GRd against nicotine-induced vascular endothelial cell injury, disruption of vascular nitric oxide (NO) signaling, aberrant endothelium-monocyte adhesion, platelet aggregation, and vasoconstriction. STUDY DESIGN/METHODS Vascular endothelial injury and functional disruption were investigated in cultured human umbilical vein endothelial cells (HUVECs) by biochemical assays for nitric oxide (NO) and angiotensin II (Ang II), immunofluorescence (IF) and western blotting for expression analyses of apoptosis- related proteins, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), Ang II type receptor 1 (AGTR1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB). In addition, vascular protection by GRd was examined in nicotine-administered Sprague-Dawley (SD) rats by serum NO and Ang II assays, and by hematoxylin-eosin (HE) and immunostaining of aorta. We also examined effects of GRd on monocyte (THP-1 cells) adhesion assays, adenosine diphosphate (ADP)-induced platelet aggregation, and phenylephrine (PE)-induced vasoconstriction of isolated rat aortic rings. RESULTS In HUVECs, nicotine significantly suppressed NO production, enhanced Ang II production, downregulated eNOS expression, and upregulated expression levels of AGTR1, TLR4, MyD88, NF-κB, iNOS, Bax/Bcl-2 ratio, cleaved caspase-3, and cytochrome c (cyt c). All of these changes were significantly reversed by GRd. In rats, oral GRd reversed the reduction NO and enhanced Ang II production in serum induced by nicotine administration, and HE staining revealed protection of aortic endothelial cells. In addition, GRd reversed nicotine-mediated enhancement of HUVECs-monocyte adhesion, inhibited ADP-induced platelet aggregation and PE-induced vasoconstriction. CONCLUSION GRd may prevent nicotine-induced cardiovascular diseases by preserving normal vascular endothelial NO signaling, suppressing platelet aggregation and vasoconstriction, and by preventing endothelial cell-monocyte adhesion.
Collapse
Affiliation(s)
- Baobao Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Huizhe Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Zhongxuan Sun
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Xiaomei Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Shumeng Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People' Republic of China.
| |
Collapse
|
6
|
Ullah R, Ali G, Ahmad N, Akram M, Kumari G, Amin MU, Umar MN. Attenuation of Spatial Memory in 5xFAD Mice by Halting Cholinesterases, Oxidative Stress and Neuroinflammation Using a Cyclopentanone Derivative. Pharmaceuticals (Basel) 2020; 13:E318. [PMID: 33086500 PMCID: PMC7603158 DOI: 10.3390/ph13100318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and chronic neurological disorder that gradually destroys memory and thinking skills. The research study was designed to investigate the underlying molecular signaling involved in the neuroprotective effects of cyclopentanone derivative i.e., 2-(hydroxyl-(3-nitrophenyl)methyl)cyclopentanone (3NCP) as a therapeutic agent for AD. In this study, In vivo studies were carried out on a well-known 5xFAD mice model using different behavioural test models such as open field, rotarod, Morris water maze (MWM), and Y-maze tests. Furthermore, in vitro cholinesterase inhibition activity assays were carried out. The frontal cortex (FC) and hippocampus (HC) homogenates were tested for the levels/activities of cholinesterases, glutathione (GSH), glutathione S-transferase (GST), and catalase. Furthermore, the hippocampal expression of inflammatory cytokines was observed via RT-PCR and western blot. The results of in vivo studies show an enhancement in the learning behavior. The 3NCP treatment reduced latency time in MWM and Y-maze tests, also increase spontaneous alternation indicate significant effect of 3NCP on memory. Furthermore, open field and rotarod studies revealed that 3NCP does not cause motor coordination deficit. The results of the in vitro studies revealed that the IC50 values of the 3NCP against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were 16.17 and 20.51 µg/mL, respectively. This decline in AChE and BChE was further supported by ex vivo studies. Further, the 3NCP mitigates the GSH level, GST, and catalase activities in HC and FC. The mRNA and protein expression of inflammatory cytokines (IL-1β, IL-6, TNF-α) markedly declined in RT-PCR and western blotting. The results of the current study conclusively demonstrate that 3NCP reduces oxidative stress and mitigates neuroinflammation in 5xFAD mice, implying that 3NCP may be a potential therapeutic candidate for AD treatment in the future.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Nisar Ahmad
- Department of Pharmacy, National University of Pakistan, Pasrur Road, Sialkot 51310, Punjab, Pakistan;
| | - Muhammad Akram
- Department of Pharmacology, Faculty of Pharmacy, University of Sindh, Jamshoro 76080, Pakistan; (M.A.); (G.K.)
| | - Geeta Kumari
- Department of Pharmacology, Faculty of Pharmacy, University of Sindh, Jamshoro 76080, Pakistan; (M.A.); (G.K.)
| | - Muhammad Usman Amin
- Department of Pharmacy, Abasyn University, Ring Road, Peshawar 25120, Pakistan;
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan;
| |
Collapse
|