1
|
Karmakar R, Dixit M, Eswar K, Bhattacharjee B, Apoorva B, Gubige M, Sengottaiyan A, Pati F, Rengan AK. Enhanced wound healing properties by sodium alginate-carboxymethyl cellulose hydrogel enriched with decellularized amniotic membrane. Eur J Pharm Biopharm 2025; 207:114621. [PMID: 39725277 DOI: 10.1016/j.ejpb.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings. Here, we developed and evaluated a novel hydrogel composed of sodium alginate (SA) and carboxymethyl cellulose (CMC), enriched with decellularized extracellular matrix of amniotic membrane (dAM), using calcium chloride (CaCl2) as a crosslinker. An incorporation of dAM imparted biomimetic qualities, as evidenced by SEM, showing a fibrous extracellular matrix-like structure. Rheological studies demonstrated the optimal viscosity of SA-CMC-dAM for cell proliferation and adhesion, overcoming limitations of SA and CMC alone. The hydrogel exhibited the highest moisture absorption (12.27±0.59 %) and enhanced hydrophilicity, as confirmed by the contact angle assay, ensuring suitability for wound applications. Biological assessments revealed superior fibroblast migration in scratch assays and significant anti-biofilm activity (∼70 % reduction in E. coli biofilms) alongside antimicrobial efficacy, supported by FDA/PI assays. The zebrafish embryo studies validated its biocompatibility (20 μg/ml) and demonstrated potent anti-inflammatory effects, with a marked reduction in neutrophil recruitment (∼25 %) in tail transection models compared to controls. These findings suggest that the SA-CMC-dAM hydrogel synergises structural, antibacterial, and anti-inflammatory properties, making it a promising candidate for wound healing applications. The biomimetic and multifunctional design provides a strong basis for further translational studies in mammalian systems.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Mansi Dixit
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Basa Apoorva
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India
| | | | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
2
|
Yao Y, Zhou T, Deng Y, Li X, Wei F, Lin B. Self-triggered carboxymethyl chitosan hydrogel for the convenient sustained release of ClO 2 gas with environmental stability and long-term antimicrobial effect. J Mater Chem B 2024; 12:1864-1874. [PMID: 38293805 DOI: 10.1039/d3tb02409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Challenges associated with the storage and uncontrolled release of ClO2 gas present significant hurdles to its practical application. Herein, a clever strategy for self-triggering the sustained release of chlorine dioxide (ClO2) gas is proposed by crosslinking carboxymethyl chitosan (CMCS) with Zn2+ to construct a novel CMCS-Zn@NaClO2 gel with eco-friendly, environmental stability, and convenient, long term, and efficient antibacterial activity. The precursor (NaClO2) in the CMCS solution was alkaline and triggered by the acidic Zn(NO3)2·6H2O solution to achieve sustained self-triggering ClO2 release. The ClO2 gas self-release could be sustained on demand at different temperatures for at least 20 days due to the environmental structure stability of the gel. The hydrogels showed an increase in pore size after sustained release. Molecular dynamics simulations showed the spontaneous release of ClO2 gas at room temperature and the contraction of the CMCS agglomeration, which were consistent with the macroscopic behaviour. The gel displayed a long-acting and high antibacterial efficacy, resulting in a bacteria-killing rate of over 99.9% (inhibitory concentrations of 2.5 mg mL-1 against E. coli and 0.16 mg mL-1 against S. aureus). The hydrogels could effectively extend the shelf life of fruits and demonstrated an excellent wide range of antibacterial properties. This work provides a new approach to solving the storage difficulty of ClO2 gas and offers a fresh perspective on the design of materials with convenient self-triggering release by a precursor, as well as the relationship between the material microstructure and sustained-release behaviour.
Collapse
Affiliation(s)
- Yuan Yao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Tianrui Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xiaoxing Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Fuxiang Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
3
|
Tang Z, Lin X, Yu M, Mondal AK, Wu H. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int J Biol Macromol 2024; 259:129081. [PMID: 38161007 DOI: 10.1016/j.ijbiomac.2023.129081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Cellulose is the richest renewable polymer source on the earth. TEMPO-mediated oxidized cellulose nanofibers are deduced from enormously available wood biomass and functionalized with carboxyl groups. The preparation procedure of TOCNFs is more environmentally friendly compared to other cellulose, for example, MFC and CNCs. Due to the presence of functional carboxyl groups, TOCNF-based materials have been studied widely in different fields, including biomedicine, wastewater treatment, bioelectronics and others. In this review, the TEMPO oxidation mechanism, the properties and applications of TOCNFs are elaborated. Most importantly, the recent advanced applications and the beneficial role of TOCNFs in the various abovementioned fields are discussed. Furthermore, the performances and research progress on the fabrication of TOCNFs are summarized. It is expected that this timely review will help further research on the invention of novel material from TOCNFs and its applications in different advanced fields, including biomedicine, bioelectronics, wastewater treatment, and the energy sector.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
4
|
Adnane F, Soliman SMA, ElZayat E, Abdelsalam EM, Fahmy HM. Evaluation of chlorophyll-loaded mesoporous silica nanoparticles for photodynamic therapy on cancer cell lines. Lasers Med Sci 2024; 39:45. [PMID: 38253944 PMCID: PMC10803611 DOI: 10.1007/s10103-024-03988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Chlorophyll (Chl) is a promising natural photosensitizer (PS) in photodynamic treatment (PDT). Mesoporous silica nanoparticles (MSNs) were chosen to increase the effectiveness of PDT. This study aimed to evaluate the synergistic efficacy of chlorophyll-loaded mesoporous silica nanoparticles (Chl-MSNs) with photodynamic therapy (PDT) and to investigate their potential toxicity in HepG2, MDA-MB-231, and HSF cell lines. Chl-MSNs were prepared via the physical adsorption method. TEM, DLS, and zeta potential examined morphology, size, and surface characteristics. MSNs and Chl-MSNs were characterized using the same techniques. HPLC was used to assess the encapsulation efficiency. At pH 7.4, an in vitro release experiment of Chl-MSNs was performed. Chl, MSNs, and Chl-MSNs were applied to the three cell lines at different concentrations and subjected to red (650 nm) and blue (450-500 nm) lasers. MSNs and Chl-MSNs' sizes were 90.338 ± 38.49 nm and 123.84 ± 15.67 nm, respectively, as obtained by TEM; the hydrodynamic diameter for MSNs (93.69 ± 20.53 nm) and Chl-MSNs (212.95 ± 19.76 nm); and their zeta potential values are - 16.7 ± 2.19 mV and - 18.84 ± 1.40 mV. The encapsulation efficiency of Chl-MSNs was 70%. Chl-MSNs displayed no toxicity in dark conditions but showed excellent photostability under blue and red light exposure. Furthermore, using Chl over Chl-MSNs has a higher PDT efficiency than the tested cell lines. Chl-MSNs have the potential to be an effective delivery system. PDT proved to be an essential technique for cancer treatment. Blue laser is recommended over red laser with Chl and MSNs for destroying cancer cells.
Collapse
Affiliation(s)
- Fadya Adnane
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | | | - Emad ElZayat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Essam M Abdelsalam
- Laser Applications in Metrology, Photochemistry, and Agriculture (LAMPA) Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Liang C, Meng S, Wang Y, Xie X, Zhang Z, Cheng D. Preparation and activity of sodium carboxymethyl cellulose (CMC-Na) and Metarhizium rileyi ZHKUMR1 composite membrane. Int J Biol Macromol 2023; 253:126858. [PMID: 37703964 DOI: 10.1016/j.ijbiomac.2023.126858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Improving the adhesion capability of Metarhizium rileyi ZHKUMR1 on leaves enabled by the combination with Carboxymethyl Cellulose (CMCNa) materials is feasible to improve the utilization rate of Metarhizium rileyi. Herein, the CMC-Na-ZHKUMR1 membrane was prepared by simply mixing Carboxymethyl Cellulose (CMCNa) with Metarhizium rileyi. Through compatibility test, it was found that the inhibition rates of spore germination and mycelial growth of ZHKUMR1 were only 1.51 % and 3.13 % when the concentration of Carboxymethyl Cellulose (CMCNa) was 0.5 %. By adding 2 % of Carboxymethyl Cellulose (CMCNa) under UV irradiation for 30 min, the protective rate of spore germination of ZHKUMR1 was up to ~12.44 %, where the wettability on corn leaves was achieved and the retention of ZHKUMR1 spores on corn leaves was increased. After indoor activity determination, it was found that after 3 min of simulated rain washing, the lethal rate of corn leaves pretreated with CMC-Na-ZHKUMR1 on the 2nd instar larvae of Spodoptera frugiperda was 46.67 %, which was much higher than that of ZHKUMR1 spore suspension alone. This work clearly showed that Carboxymethyl Cellulose (CMCNa) effectively improved the field application effect of Metarhizium rileyi ZHKUMR1, and this strategy provided guidance for improving the field efficacy of Metarhizium rileyi ZHKUMR1.
Collapse
Affiliation(s)
- Chaopeng Liang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shaoke Meng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongqing Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Xie
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
6
|
Borhani M, Dadpour S, Haghighizadeh A, Etemad L, Soheili V, Memar B, Vafaee F, Rajabi O. Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharm Dev Technol 2023; 28:962-977. [PMID: 37943117 DOI: 10.1080/10837450.2023.2278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Burns can result in infection, disability, psychosocial and economic issues. Advanced wound dressings like hydrogel absorb exudate and maintain moisture. Considering the antimicrobial properties of silver nanoparticles and iron oxide nanoparticles, the efficiency of cross-linked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles for burn wounds repair was investigated in animal model. Cellulose hydrogel dressing made from carboxymethylcellulose and hydroxyethylcellulose crosslinked with different concentrations of citric acid (10, 15, 20, and 30%) was produced. The physicochemical characteristics of the synthetized hydrogels including Fourier-Transform Infrared spectroscopy, Thermal behavior, Swelling properties, and Scanning Electron Microscope (SEM) were evaluated. The silver nanoparticles and iron nanoparticles were produced and the characteristics, cytotoxicity, antimicrobial activities and their synergistic effect were investigated. After adding nanoparticles to hydrogels, the effects of the prepared wound dressings were investigated in a 14-day animal model of burn wound. The results showed that the mixture comprising 12.5 ppm AgNps, and IONPs at a concentration ≤100 ppm was non-cytotoxic. Moreover, the formulations with 20% CA had a swelling ratio of almost 250, 340, and 500 g/g at pHs of 5, 6.2, and 7.4 after one hour, which are lower than those of formulations with 5 and 10% CA. The total mass loss (59.31%) and the exothermic degradation happened in the range of 273-335 °C and its Tm was observed at 318.52 °C for hydrogels with 20% CA. Thus, the dressing comprising 20% CA which was loaded with 12.5 ppm silver nanoparticles (AgNPs) and 100 ppm iron oxide nanoparticles (IONPs) indicated better physicochemical, microbial and non-cytotoxic characteristics, and accelerated the process of wound healing after 14 days. It was concluded that the crosslinked hydrogel loaded with 12.5 ppm AgNPs and 100 ppm IONPs possesses great wound healing activity and could be regarded as an effective topical burn wound healing treatment.
Collapse
Affiliation(s)
- Mina Borhani
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atoosa Haghighizadeh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Farzad Vafaee
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Ghumman ASM, Shamsuddin R, Sabir R, Waheed A, Sami A, Almohamadi H. Synthesis and performance evaluation of slow-release fertilizers produced from inverse vulcanized copolymers obtained from industrial waste. RSC Adv 2023; 13:7867-7876. [PMID: 36909756 PMCID: PMC9996625 DOI: 10.1039/d3ra00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
To improve crop nutrient uptake efficacy (NUE) and better manage fertilization, slow-release fertilizers (SRFs) are developed by either coating the urea granules or making a composite. Several materials have already been developed, nevertheless, scalability of those materials is still a challenge due to their inherit drawbacks (such as hydrophilicity, crystallinity, non-biodegradability, etc.). Herein, we utilized a biodegradable, green and sustainable copolymer produced from industrial waste (sulfur-petroleum industry waste and myrcene-citrus industry waste) to coat the urea using a facile coating method to develop novel SRFs and achieve better agronomic and environmental advantages. The copolymer was first synthesized using a facile, solvent-free one-pot method called inverse vulcanization followed by Fourier transform infrared spectroscopy (FTIR) analysis to confirm the successful reaction between myrcene and sulfur subsequently coating the copolymer on urea granule. The morphology and coating thickness of coated fertilizers were analysed using scanning electron microscopy (SEM), followed by a nitrogen release test in distilled water and a soil burial test to confirm the biodegradability. The nitrogen release test revealed that the SRF with the maximum coating thickness of 1733 μm releases only 16% of its total nitrogen after 4 days of incubation compared to the pristine urea which releases all its nutrient within 1 day. The soil burial test confirms the biodegradability of the copolymer, as after 50 days of incubation in soil the copolymer loses almost 18.25% of its total weight indicating that the copolymer is degrading.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia .,Chemical Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Rashid Shamsuddin
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia .,Chemical Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Rabia Sabir
- Department of Chemical Engineering, Wah Engineering College, University of Wah Wah Cantt 47040 Punjab Pakistan
| | - Ammara Waheed
- Department of Chemical Engineering, Wah Engineering College, University of Wah Wah Cantt 47040 Punjab Pakistan
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Hamad Almohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah Madinah Saudi Arabia
| |
Collapse
|
8
|
Shang H, Yang X, Liu H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydr Polym 2023; 313:120875. [PMID: 37182965 DOI: 10.1016/j.carbpol.2023.120875] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The growth of plants is highly dependent on sufficient water and suitable fertilizer nutrients, but the soil often loses moisture and the fertilizers are low efficiency. To address this issue, the temperature-responsive hydrogels were developed using the N-vinylcaprolactam (NVCL) dispersed in water through the emulsification of carboxymethyl cellulose (CMC) and acrylamide (AM), and urea was loaded into the hydrogel as a fertilizer. The amount of CMC and monomer have an effect on the structure, mechanical properties, swelling ability, and temperature sensitivity of the hydrogel. Therefore, the maximum swelling ratio of the hydrogel can reach 2056 % with the increasing hydrophilic groups, and the hydrogel exhibits a deswelling behavior as the temperature rises to higher than LCST due to the temperature responsiveness. Moreover, the fertilizer can rapidly release when the temperature is higher than LSCT, and exhibits similar release behavior in water and soil. Thus, the temperature-responsive hydrogel shows a great potential application for the controlled release of water and fertilizer in agriculture and forestry.
Collapse
|
9
|
Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers (Basel) 2023; 15:polym15020440. [PMID: 36679320 PMCID: PMC9860740 DOI: 10.3390/polym15020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The increase in the population rate has increased the demand for safe and quality food products. However, the current agricultural system faces many challenges in producing vegetables and fruits. Indiscriminate use of pesticides and fertilizers, deficiency of water resources, short shelf life of products postharvest, and nontargeted delivery of agrochemicals are the main challenges. In this regard, carboxymethyl cellulose (CMC) is one of the most promising materials in the agriculture sector for minimizing these challenges due to its mechanical strength, viscosity, wide availability, and edibility properties. CMC also has high water absorbency; therefore, it can be used for water deficiency (as superabsorbent hydrogels). Due to the many hydroxyl groups on its surface, this substance has high efficacy in removing pollutants, such as pesticides and heavy metals. Enriching CMC coatings with additional substances, such as antimicrobial, antibrowning, antioxidant, and antisoftening materials, can provide further novel formulations with unique advantages. In addition, the encapsulation of bioactive materials or pesticides provides a targeted delivery system. This review presents a comprehensive overview of the use of CMC in agriculture and its applications for preserving fruit and vegetable quality, remediating agricultural pollution, preserving water sources, and encapsulating bioactive molecules for targeted delivery.
Collapse
|
10
|
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022; 8:563. [PMID: 36135275 PMCID: PMC9498590 DOI: 10.3390/gels8090563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|