1
|
You M, Ren Z, Ye L, Zhao Q, Liu Z, Song H, Xu C. Combining transcriptomic and metabolomic insights into carbohydrate utilization by Ruminiclostridium papyrosolvens DSM2782. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:22. [PMID: 39987219 PMCID: PMC11847368 DOI: 10.1186/s13068-025-02619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable bioresource on earth, and its biodegradation and utilization would contribute to the sustainable development of the global environment. Ruminiclostridium papyrosolvens, an anaerobic, mesophilic, and cellulolytic bacterium, produces an enzymatic complex known as the cellulosome. As one of the most highly evolved species among Ruminiclostridium-type species, R. papyrosolvens is particularly relevant for understanding how cellulolytic clostridia modulate their biomass degradation mechanisms in response to diverse carbon sources. RESULTS Our study investigates the transcriptional responses of Ruminiclostridium papyrosolvens to different carbon sources to understand its lignocellulose utilization. Using RNA-seq, we analyzed gene expression under glucose, cellobiose, xylan, cellulose, and corn stover, identifying distinct metabolic preferences and regulatory responses. We found significant gene expression changes under corn stover compared to other carbon sources, with enrichment in ABC transporters and cell growth pathways. CAZyme gene expression was regulated by TCSs, affecting sugar transporter systems. Metabolic profiling showed R. papyrosolvens produced more complex metabolites during corn stover fermentation, revealing its adaptability to various carbon sources and implications for metabolic engineering. CONCLUSION This study not only uncovers the intricate response mechanisms of R. papyrosolvens to lignocellulose and its hydrolysates, but it also outlines the strategy for using R. papyrosolvens as a cellulolytic chassis in genetic engineering.
Collapse
Affiliation(s)
- Mengcheng You
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Zhenxing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Letian Ye
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
| | - Qiuyun Zhao
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
| | - Ziyi Liu
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China
| | - Houhui Song
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China.
| | - Chenggang Xu
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang Province, China.
| |
Collapse
|
2
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang D, Liu N, Qiao M, Xu C. Gallic acid as biofilm inhibitor can improve transformation efficiency of Ruminiclostridium papyrosolvens. Biotechnol Lett 2024; 46:1143-1153. [PMID: 39162860 DOI: 10.1007/s10529-024-03522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its genetic transformation has been severely impeded by extracellular biofilm. Here, we analyzed the effects of five different inhibitors with gradient concentrations on R. papyrosolvens growth and biofilm formation. Gallic acid was proved to be a potent inhibitor of biofilm synthesis of R. papyrosolvens. Furthermore, the transformation efficiency of R. papyrosolvens was significantly increased when the cells were treated by the gallic acid, and the mutant strain was successfully obtained by the improved transformation method. Thus, inhibition of biofilm formation of R. papyrosolvens by using gallic acid will contribute to its genetic transformation and efficient metabolic engineering.
Collapse
Affiliation(s)
- Duodong Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Chenggang Xu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China.
| |
Collapse
|
4
|
Wang N, Li P, Cheng Y, Song H, Xu C. Stem-loop structures control mRNA processing of the cellulosomal cip-cel operon in Ruminiclostridium cellulolyticum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:106. [PMID: 37386549 DOI: 10.1186/s13068-023-02357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Anaerobic, mesophilic, and cellulolytic Ruminiclostridium cellulolyticum produces an efficient cellulolytic extracellular complex named cellulosome, which consist of a non-catalytic multi-functional integrating subunit, organizing the various catalytic subunits into the complex. Main components of cellulosome were encoded by the cip-cel operon in R. cellulolyticum, and their stoichiometry is controlled by the mechanism of selective RNA processing and stabilization, which allows to confer each processed RNA portion from the cip-cel mRNA on different fates due to their stability and resolve the potential contradiction between the equimolar stoichiometry of transcripts with a within a transcription unit and the non-equimolar stoichiometry of subunits. RESULTS In this work, RNA processing events were found to occur at six intergenic regions (IRs) harboring stem-loop structures in cip-cel operon. These stem-loops not only stabilize processed transcripts at their both ends, but also act as cleavage signals specifically recognized by endoribonucleases. We further demonstrated that cleavage sites were often located downstream or 3' end of their associated stem-loops that could be classified into two types, with distinct GC-rich stems being required for RNA cleavage. However, the cleavage site in IR4 was found to be located upstream of the stem-loop, as determined by the bottom AT-pair region of this stem-loop, together with its upstream structure. Thus, our findings reveal the structural requirements for processing of cip-cel transcripts, which can be potentially used to control the stoichiometry of gene expression in an operon. CONCLUSIONS Our findings reveal that stem-loop structures acting as RNA cleavage signals not only can be recognized by endoribonucleases and determine the location of cleavage sites but also determine the stoichiometry of their flanking processed transcripts by controlling stability in cip-cel operon. These features represent a complexed regulation of cellulosome in the post-transcriptional level, which can be exploited for designing synthetic elements to control gene expression.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Ping Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Ying Cheng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
5
|
Development of an efficient ClosTron system for gene disruption in Ruminiclostridium papyrosolvens. Appl Microbiol Biotechnol 2023; 107:1801-1812. [PMID: 36808278 DOI: 10.1007/s00253-023-12427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its metabolic engineering is limited by lack of genetic tools. Here, we firstly employed the endogenous xylan-inducible promoter to control ClosTron system for gene disruption of R. papyrosolvens. The modified ClosTron can be easily transformed into R. papyrosolvens and specifically disrupt targeting genes. Furthermore, a counter selectable system based on uracil phosphoribosyl-transferase (Upp) was successfully established and introduced into the ClosTron system, which resulted in plasmid curing rapidly. Thus, the combination of xylan-inducible ClosTron and upp-based counter selectable system makes the gene disruption more efficient and convenient for successive gene disruption in R. papyrosolvens. KEY POINTS: • Limiting expression of LtrA enhanced the transformation of ClosTron plasmids in R. papyrosolvens. • DNA targeting specificity can be improved by precise management of the expression of LtrA. • Curing of ClosTron plasmids was achieved by introducing the upp-based counter selectable system.
Collapse
|
6
|
Development of fluorescence-xBased nucleic acid blot hybridization method using Cy5.5 labeled DNA probes. J Microbiol Methods 2022; 197:106479. [DOI: 10.1016/j.mimet.2022.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022]
|
7
|
Internal Transcription Terminators Control Stoichiometry of ABC Transporters in Cellulolytic Clostridia. Microbiol Spectr 2022; 10:e0165621. [PMID: 35286151 PMCID: PMC9045158 DOI: 10.1128/spectrum.01656-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular substrate-binding proteins (SBPs) of ATP-binding cassette (ABC) importers tend to be expressed in excess relative to their cognate translocators, but how the stoichiometry of ABC transporters is controlled remains unclear. Here, we elucidated a mechanism contributing to differential gene expression in operons encoding ABC importers by employing cellulolytic Clostridia species, specifically Ruminiclostridium cellulolyticum. We found that there were usually stem-loop structures downstream of SBP genes, which could prematurely terminate the transcription of ABC importers and were putative internal intrinsic terminators, resulting in high transcript levels of upstream SBP genes and low transcript levels of downstream cognate translocator genes. This was determined by their termination efficiencies. Internal terminators had a lower U content in their 3′ U-rich tracts and longer GC-rich stems, which distinguishes them from canonical terminators and potentially endows them with special termination efficiencies. The pairing of U-rich tracts and the formation of unpaired regions in these internal terminators contributed to their folding energies, affecting the stability of their upstream SBP transcripts. Our findings revealed a strategy of internal transcriptional terminators controlling in vivo stoichiometry of their flanking transcripts. IMPORTANCE Operons encoding protein complexes or metabolic pathways usually require fine-tuned gene expression ratios to create and maintain the appropriate stoichiometry for biological functions. In this study, a strategy for controlling differential expression of genes in an operon was proposed by utilizing ABC importers from Ruminiclostridium cellulolyticum. We found that a stem-loop structure is introduced into the intergenic regions of operons encoding ABC importers as the putative internal terminator, which results in the premature termination of transcription. Consequently, the stoichiometric ratio of genes flanking terminators is precisely determined by their termination efficiencies and folding energies at the transcriptional level. Thus, it can be utilized as a promising synthetic biology tool to control the differential expression of genes in an operon.
Collapse
|
8
|
Jiang Y, Fu Y, Ren Z, Gou H, Xu C. Screening and application of inducible promoters in Ruminiclostridium papyrosolvens. Lett Appl Microbiol 2020; 71:428-436. [PMID: 32649779 DOI: 10.1111/lam.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Ruminiclostridium papyrosolvens is a promising candidate for producing renewable green chemicals from cellulose due to its cellulolytic and ethanologenic capabilities. It is of significance to screen effective, and convenient-to-use inducible promoters that can be used for regulating the gene expression in R. papyrosolvens. We characterized two endogenous inducible promoters and investigated another two exogenous ones on the adaptability in R. papyrosolvens. Both of the endogenous xylan-inducible promoter Pxyl and exogenous lactose-inducible promoter Plac are found of high specificity and stringency. Pxyl has a short time to be induced while Plac has a low concentration of inducer. With these findings, a mazF-based counter selectable system has been constructed for promoting the efficiency of mutant screening via plasmid curing. The inducible gene expression systems provided novel tools for enhancing the capability of genetic manipulation in engineering R. papyrosolvens. SIGNIFICANCE AND IMPACT OF THE STUDY: Four inducible promoters from Clostridia were characterized in R. papyrosolvens. Xylan-inducible promoter Pxyl was found of a short time while lactose-inducible promoter Plac needs a low concentration of inducer to induce. Employing them, we successfully construct a mazF-based counter selectable system, which would be used to increase the mutant screening efficiency via induction of plasmid curing. The inducible gene expression systems provided novel tools for enhancing the capability of genetic manipulation in engineering R. papyrosolvens.
Collapse
Affiliation(s)
- Y Jiang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Y Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Z Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - H Gou
- Shenzhen Digital Life Institute, Shenzhen, China
| | - C Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
9
|
Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol Adv 2020; 40:107535. [DOI: 10.1016/j.biotechadv.2020.107535] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
|
10
|
Ren Z, You W, Wu S, Poetsch A, Xu C. Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:183. [PMID: 31338125 PMCID: PMC6628489 DOI: 10.1186/s13068-019-1522-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Efficient biotechnological conversion of lignocellulosic biomass to valuable products, such as transportation biofuels, is ecologically attractive, yet requires substantially improved mechanistic understanding and optimization to become economically feasible. Cellulolytic clostridia, such as Ruminiclostridium papyrosolvens (previously Clostridium papyrosolvens), produce a wide variety of carbohydrate-active enzymes (CAZymes) including extracellular multienzyme complexes-cellulosomes with different specificities for enhanced cellulosic biomass degradation. Identification of the secretory components, especially CAZymes, during bacterial growth on lignocellulose and their influence on bacterial catalytic capabilities provide insight into construction of potent cellulase systems of cell factories tuned or optimized for the targeted substrate by matching the type and abundance of enzymes and corresponding transporters. RESULTS In this study, we firstly predicted a total of 174 putative CAZymes from the genome of R. papyrosolvens, including 74 cellulosomal components. To explore profile of secreted proteins involved in lignocellulose degradation, we compared the secretomes of R. papyrosolvens grown on different substrates using label-free quantitative proteomics. CAZymes, extracellular solute-binding proteins (SBPs) of transport systems and proteins involved in spore formation were enriched in the secretome of corn stover for lignocellulose degradation. Furthermore, compared with free CAZymes, complex CAZymes (cellulosomal components) had larger fluctuations in variety and abundance of enzymes among four carbon sources. In particular, cellulosomal proteins encoded by the cip-cel operon and the xyl-doc gene cluster had the highest abundance with corn stover as substrate. Analysis of differential expression of CAZymes revealed a substrate-dependent secretion pattern of CAZymes, which was consistent with their catalytic activity from each secretome determined on different cellulosic substrates. The results suggest that the expression of CAZymes is regulated by the type of substrate in the growth medium. CONCLUSIONS In the present study, our results demonstrated the complexity of the lignocellulose degradation systems of R. papyrosolvens and showed the potency of its biomass degradation activity. Differential proteomic analyses and activity assays of CAZymes secreted by R. papyrosolvens suggested a distinct environment-sensing strategy for cellulose utilization in which R. papyrosolvens modulated the composition of the CAZymes, especially cellulosome, according to the degradation state of its natural substrate.
Collapse
Affiliation(s)
- Zhenxing Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi China
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Wuxin You
- Department of Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Shasha Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, PL48AA UK
| | - Chenggang Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi China
| |
Collapse
|