1
|
Wang L, Zhang S, Zhang Y, Li J, Zhang Y, Zhou D, Li C, He L, Li H, Wang F, Gao J. Integrative analysis of physiology, biochemistry and transcriptome reveals the mechanism of leaf size formation in Chinese cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1183398. [PMID: 37089651 PMCID: PMC10118011 DOI: 10.3389/fpls.2023.1183398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Introduction The leaf, the main product organ, is an essential factor in determining the Chinese cabbage growth, yield and quality. Methods To explore the regulatory mechanism of leaf size development of Chinese cabbage, we investigated the leaf size difference between two high-generation inbred lines of Chinese cabbage, Y2 (large leaf) and Y7 (small leaf). Furtherly, the transcriptome and cis-acting elements analyses were conducted. Results and Discussion According to our results, Y2 exhibited a higher growth rate than Y7 during the whole growth stage. In addition, the significant higher leaf number was observed in Y2 than in Y7. There was no significant difference in the number of epidermal cells and guard cells per square millimeter between Y2 and Y7 leaves. It indicated that cell numbers caused the difference in leaf size. The measurement of phytohormone content confirmed that GA1 and GA3 mainly play essential roles in the early stage of leaf growth, and IPA and ABA were in the whole leaf growth period in regulating the cell proliferation difference between Y2 and Y7. Transcriptome analysis revealed that cyclins BraA09g010980.3C (CYCB) and BraA10g027420.3C (CYCD) were mainly responsible for the leaf size difference between Y2 and Y7 Chinese cabbage. Further, we revealed that the transcription factors BraA09gMYB47 and BraA06gMYB88 played critical roles in the difference of leaf size between Y2 and Y7 through the regulation of cell proliferation. Conclusion This observation not only offers essential insights into understanding the regulation mechanism of leaf development, also provides a promising breeding strategy to improve Chinese cabbage yield.
Collapse
Affiliation(s)
- Lixia Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ye Zhang
- College of Life Science, Huangshan University, Huangshan, China
| | - Jingjuan Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yihui Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dandan Zhou
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Cheng Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lilong He
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huayin Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fengde Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Fengde Wang, ; Jianwei Gao,
| | - Jianwei Gao
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Fengde Wang, ; Jianwei Gao,
| |
Collapse
|
2
|
Baral P, Kumar V, Agrawal D. Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform. Crit Rev Biotechnol 2021; 42:873-891. [PMID: 34530648 DOI: 10.1080/07388551.2021.1973363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the techno-commercial success of any lignocellulosic biorefinery, the cost-effective production of fermentable sugars for the manufacturing of bio-based products is indispensable. High-solids enzymatic saccharification (HSES) is a straightforward approach to develop an industrially deployable sugar platform. Economic incentives such as reduced capital and operational expenditure along with environmental benefits in the form of reduced effluent discharge makes this strategy more lucrative for exploitation. However, HSES suffers from the drawback of non-linear and disproportionate sugar yields with increased substrate loadings. To overcome this bottleneck, researchers tend to perform HSES at high enzyme loadings. Nonetheless, the production costs of cellulases are one of the key contributors that impair the entire process economics. This review highlights the relentless efforts made globally to attain a high-titer of sugars and their fermentation products by performing efficient HSES at low cellulase loadings. In this context, technical innovations such as advancements in new pretreatment strategies, next-generation cellulase cocktails, additives, accessory enzymes, novel reactor concepts and enzyme recycling studies are especially showcased. This review further covers new insights, learnings and prospects in the area of lignocellulosic bioprocessing.
Collapse
Affiliation(s)
- Pratibha Baral
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| |
Collapse
|
3
|
Dong X, Wang W, Li S, Han H, Lv P, Yang C. Thermoacidophilic Alicyclobacillus Superoxide Dismutase: Good Candidate as Additives in Food and Medicine. Front Microbiol 2021; 12:577001. [PMID: 33815303 PMCID: PMC8014015 DOI: 10.3389/fmicb.2021.577001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Thermoacidophilic Alicyclobacillus strains attract great interests as the resource of thermostable or acidic enzymes. In this study, a putative gene encoding superoxide dismutase (AaSOD) was identified in a thermoacidophilic Alicyclobacillus strain. With a 16-fold activity observed, the AaSOD activity expressing in the medium of manganese enrichment was much higher than that in the iron medium. In addition, the purified AaSOD can be reconstituted exclusively with either Fe2+ or Mn2+, with its Mn-bound protein showing 25-fold activity than that of Fe-bound form. The optimal temperature for AaSOD reaction was 35°C, and was highly stable at any certain temperature up to 80°C. Of particular interest, the enzyme is found to be very stable across a wide pH range spanning from 2.0 to 10.0, which confers its robust stability in the acidic stomach environment and implies striking potentials as food additive and for medical use.
Collapse
Affiliation(s)
- Xueqian Dong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China.,Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shannan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Hongyu Han
- Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peiwen Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Gebbie L, Dam TT, Ainscough R, Palfreyman R, Cao L, Harrison M, O'Hara I, Speight R. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol 2020; 20:12. [PMID: 32111201 PMCID: PMC7049217 DOI: 10.1186/s12896-020-00609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sugarcane bagasse is a major source of lignocellulosic biomass, yet its economic potential is not fully realised. To add value to bagasse, processing is needed to gain access to the embodied recalcitrant biomaterials. When bagasse is stored in piles in the open for long periods it is colonised by microbes originating from the sugarcane, the soil nearby or spores in the environment. For these microorganisms to proliferate they must digest the bagasse to access carbon for growth. The microbial community in bagasse piles is thus a potential resource for the discovery of useful and novel microbes and industrial enzymes. We used culturing and metabarcoding to understand the diversity of microorganisms found in a uniquely undisturbed bagasse storage pile and screened the cultured organisms for fibre-degrading enzymes. RESULTS Samples collected from 60 to 80 cm deep in the bagasse pile showed hemicellulose and partial lignin degradation. One hundred and four microbes were cultured from different layers and included a high proportion of oleaginous yeast and biomass-degrading fungi. Overall, 70, 67, 70 and 57% of the microbes showed carboxy-methyl cellulase, xylanase, laccase and peroxidase activity, respectively. These percentages were higher in microbes selectively cultured from deep layers, with all four activities found for 44% of these organisms. Culturing and amplicon sequencing showed that there was less diversity and therefore more selection in the deeper layers, which were dominated by thermophiles and acid tolerant organisms, compared with the top of pile. Amplicon sequencing indicated that novel fungi were present in the pile. CONCLUSIONS A combination of culture-dependent and independent methods was successful in exploring the diversity in the bagasse pile. The variety of species that was found and that are known for biomass degradation shows that the bagasse pile was a valuable selective environment for the identification of new microbes and enzymes with biotechnological potential. In particular, lignin-modifying activities have not been reported previously for many of the species that were identified, suggesting future studies are warranted.
Collapse
Affiliation(s)
- Leigh Gebbie
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Tuan Tu Dam
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Rebecca Ainscough
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Robin Palfreyman
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Li Cao
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Mark Harrison
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Ian O'Hara
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Robert Speight
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia.
| |
Collapse
|