1
|
Dong Q, Ren H, Cai X, Zhang Y, Lu S, Liu D, Ateeq M, Chen L, Hu YG. Deciphering the regulatory network of lignocellulose biosynthesis in bread wheat through genome-wide association studies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:85. [PMID: 40148541 DOI: 10.1007/s00122-025-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
KEY MESSAGE This study identified 46 key QTL and 17 candidate genes and developed a KASP marker, providing valuable molecular tools for enhancing lignocellulose traits, lodging resistance, and bioenergy potential in wheat. Wheat lignocellulose, composed of lignin, cellulose, and hemicellulose, plays a crucial role in strengthening plant cell walls, enhancing lodging resistance, and contributing to bioenergy production. However, the genetic basis underlying the variation in lignocellulose content in wheat remains poorly understood. The stem lignin, cellulose, and hemicellulos contents in the second stem internode of a panel of 166 wheat accessions grown in three environments were measured, combined with the genotyping data with 660 K wheat SNP chip; a genome-wide association studies (GWAS) were conducted to identify loci associated with the lignocellulose content in wheat. Significant variations in lignin, cellulose, and hemicellulose contents were observed among the wheat accessions. GWAS identified 1146 significant SNPs associated with lignin, cellulose, and hemicellulose contents, distributed across the A, B, and D sub-genomes of wheat. Joint analysis of haplotype blocks refined these associations, identifying 46 significant quantitative trait loci (QTL) regions and 17 candidate genes, primarily linked to vascular development, hemicellulose synthesis, internode elongation regulation, and lignin biosynthesis. A KASP marker (NW_CC5951) for lignocellulose was developed. These findings provide valuable molecular markers for marker-assisted selection, supporting wheat breeding for improved stem quality and lodging resistance, and offer insights into balancing grain yield with lodging resistance and lignocellulosic energy production.
Collapse
Affiliation(s)
- Qingfeng Dong
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Ren
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefen Cai
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Dezheng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Ateeq
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
- Yangling Digital Agriculture Tech CO., LTD., Xi'an, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Sunvittayakul P, Wonnapinij P, Wannitikul P, Phanthanong P, Changwitchukarn K, Suttangkakul A, Utthiya S, Phraemuang A, Kongsil P, Prommarit K, Ceballos H, Gomez LD, Kittipadakul P, Vuttipongchaikij S. Genome-wide association studies unveils the genetic basis of cell wall composition and saccharification of cassava pulp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109312. [PMID: 39579720 DOI: 10.1016/j.plaphy.2024.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Cassava (Manihot esculenta Crantz) is a key crop for starch and biofuels production. This study focuses on the polysaccharide composition and saccharification efficiency in cassava pulp through genome-wide association studies (GWAS), targeting the improvement of root characteristics for industrial use. We analyzed 135 partially inbred lines population, performing monosaccharide composition and saccharification analyses to reveal substantial variability in storage root biomass. Among 33 traits examined, 128 significant SNPs were associated with 23 biomass traits, highlighting a complex genetic architecture. Saccharification potential varied from 39 to 95 nmol Glu mg-1 h-1, with high broad-sense heritability for saccharification and several monosaccharide traits, indicating a strong genetic control. Our findings revealed that cassava pulp comprises similar proportions of pectin, hemicellulose, and cellulose in all genotypes. Correlation analysis showed significant associations between cellulose content and saccharification, suggesting that enhancing these traits can improve bioconversion efficiency. Negative correlations with glucose and glucuronic acid in hemicellulose and pectin fractions imply these components may inhibit saccharification. We identified 118 candidate genes associated with 21 traits, with many involved in stress responses affecting cell wall composition. This study verified 12 key candidate genes through sequence and expression analysis, including MANES_07G081200, a YTH domain-containing protein associated with saccharification. Several stress-response genes, such as MANES_04G118600 and MANES_09G174600, were linked to monosaccharide traits, suggesting that adaptive stress pathways influence biomass characteristics. This study provides insights into the genetic determinants of cassava pulp's saccharification and polysaccharide composition, aiding breeding efforts to develop cassava varieties optimized for industrial applications.
Collapse
Affiliation(s)
- Pongsakorn Sunvittayakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pitchaporn Wannitikul
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Phongnapha Phanthanong
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanokpoo Changwitchukarn
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supanut Utthiya
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Apimon Phraemuang
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Hernan Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Leonardo D Gomez
- Centre of Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Zamorski R, Baba K, Noda T, Sawada R, Miyata K, Itoh T, Kaku H, Shibuya N. Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:321-336. [PMID: 38434111 PMCID: PMC10905567 DOI: 10.5511/plantbiotechnology.23.0809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 03/05/2024]
Abstract
Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.
Collapse
Affiliation(s)
- Ryszard Zamorski
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz 85-796, Poland
| | - Kei’ichi Baba
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Noda
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido 082-0081, Japan
| | - Rimpei Sawada
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Mobara, Chiba 297-0017, Japan
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takao Itoh
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hanae Kaku
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Peringottillam M, Sundaram KT, Manickavelu A. Genetic potential of grain-related traits in rice landraces: phenomics and multi-locus association analyses. Mol Biol Rep 2023; 50:9323-9334. [PMID: 37815669 DOI: 10.1007/s11033-023-08807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Grain length, width, weight, and the number of grains per panicle are crucial determinants contributing to yield in cereal crops. Understanding the genetic basis of grain-related traits has been the main research object in crop science. METHODS AND RESULTS Kerala has a collection of different rice landraces. Characterization of these valuable genetic resources for 39 distinct agro-morphological traits was carried out in two seasons from 2017 to 2019 directly in farmers field. Most characteristics were polymorphic except ligule shape, leaf angle, and panicle axis. The results of principal component analysis implied that leaf length, plant height, culm length, flag leaf length, and grain-related traits were the principal discriminatory characteristics of rice landraces. For identifying the genetic basis of key grain traits of rice, three multi locus GWAS models were performed based on 1,47,994 SNPs in 73 rice accessions. As a result, 48 quantitative trait nucleotides (QTNs) were identified to be associated with these traits. After characterization of their function and expression, 15 significant candidate genes involved in regulating grain width, number of grains per panicle, and yield were identified. CONCLUSIONS The detected QTNs and candidate genes in this study could be further used for marker-assisted high-quality breeding of rice.
Collapse
Affiliation(s)
- Maya Peringottillam
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671316, Kerala, India
| | - Krishna T Sundaram
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671316, Kerala, India
- International Rice Research Institute (IRRI), South Asia hub, Patancheru, India
| | - Alagu Manickavelu
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671316, Kerala, India.
| |
Collapse
|
5
|
Esposito S, Taranto F, Vitale P, Ficco DBM, Colecchia SA, Stevanato P, De Vita P. Unlocking the molecular basis of wheat straw composition and morphological traits through multi-locus GWAS. BMC PLANT BIOLOGY 2022; 22:519. [PMID: 36344939 PMCID: PMC9641881 DOI: 10.1186/s12870-022-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition. RESULTS Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H2-dependent PCR; rhAMP). CONCLUSIONS The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, (CNR-IBBR), 70126 Bari, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71122 Foggia, Italy
| | - Donatella Bianca Maria Ficco
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Salvatore Antonio Colecchia
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Legnaro Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| |
Collapse
|
6
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw. THE PLANT GENOME 2022; 15:e20174. [PMID: 34806838 DOI: 10.1002/tpg2.20174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cellulose and lignin are the two main components of secondary plant cell walls with substantial impact on stalk in the field and on straw during industrial processing. The amount of fermentable sugar that can be accessed is another important parameter affecting various industrial applications. In the present study, genetic variability of rice (Oryza sativa L.) genotypes for cellulose, lignin, and fermentable sugars contents was analyzed in rice straw. A genome-wide association study of 33,484 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) >0.05 was performed. The genome-wide association study identified seven, three, and three genomic regions to be significantly associated with cellulose, lignin, and fermentable sugar contents, respectively. Candidate genes in the associated genomic regions were enzymes mainly involved in cell wall metabolism. Novel SNP markers associated with cellulose were tagged to GH16, peroxidase, GT6, GT8, and CSLD2. For lignin content, Villin protein, OsWAK1/50/52/53, and GH16 were identified. For fermentable sugar content, UTP-glucose-1-phosphate uridylyltransferase, BRASSINOSTEROID INSENSITIVE 1, and receptor-like protein kinase 5 were found. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in biosynthesis, turnover, and modification of major cell wall components and saccharides in rice straw.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
| | | | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56-58, Stockholm, 100 44, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|