1
|
Valle C, Grillo G, Calcio Gaudino E, Ponsetto P, Mazzoli R, Bonavita G, Vitale P, Pessione E, Garcia-Moruno E, Costantini A, Cravotto G, Tabasso S. Grape Stalks Valorization towards Circular Economy: A Cascade Biorefinery Strategy. CHEMSUSCHEM 2025; 18:e202402536. [PMID: 39924442 DOI: 10.1002/cssc.202402536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Lignocellulosic biomasses have the potential to generate by-products with biological activity (i. e., polyphenols) as well as biopolymers (i. e., cellulose, hemicellulose, pectins, lignin). The wine industry is one of the pillars of Italian agri-food sector. Nevertheless, large quantities of by-products such as grape stems are produced, which are usually disposed of at a cost, and therefore represent an attractive negative-cost feedstock for biorefinery. In this work, a sequential protocol for biomass valorization is proposed, characterized by a multidisciplinary strategy using enabling technologies and subcritical water as a green solvent, where physical/chemical treatments synergistically interact with biological treatments. The first phase involved the sequential fractionation of grape stalks, obtaining several product streams rich in polyphenols, hemicellulose, pectin (13.15 % of cumulative yield on biomass), lignin and cellulose. A membrane treatment was employed to recycle materials within the process. Finally, the cellulose-rich residue was exploited as a fermentation substrate for the last step, producing up to 5.8 g/L of lactic acid by harnessing suitably engineered Clostridium thermocellum strains. The polyphenolic fraction successfully inhibited the growth of Brettanomyces bruxellensis and Acetobacter pasteurianus, microorganisms responsible for major wine off-flavors. Globally, this study represents a proof-of-concept of a second-generation biorefining process based on locally available waste biomass.
Collapse
Affiliation(s)
- Carlotta Valle
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Emanuela Calcio Gaudino
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Paola Ponsetto
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Giulia Bonavita
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Pietro Vitale
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Emilia Garcia-Moruno
- Research Centre for Viticulture and Enology CREA-VE, Council of Agricultural Research and Economics, Via Pietro Micca 35, 14100, Asti, Italy
| | - Antonella Costantini
- Research Centre for Viticulture and Enology CREA-VE, Council of Agricultural Research and Economics, Via Pietro Micca 35, 14100, Asti, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
2
|
Zambello IU, Holwerda EK, Lynd LR. Characterization of sugarcane bagasse solubilization and utilization by thermophilic cellulolytic and saccharolytic bacteria at increasing solid loadings. BIORESOURCE TECHNOLOGY 2024; 406:130973. [PMID: 38879051 DOI: 10.1016/j.biortech.2024.130973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges. This study aims to document and characterize carbohydrate solubilization and utilization by defined cocultures of Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum at increasing loadings of sugarcane bagasse. Results show that fractional carbohydrate solubilization decreases as solids loading increases from 10 g/L to 80 g/L. Cocultures enhance solubilization and carbohydrate utilization compared to monocultures, irrespective of initial solids loading. Rinsing bagasse before fermentation slightly decreases solubilization. Experiments studying inhibitory effects using spent media and dilution of broth show that negative effects are temporary or reversible. These findings highlight the potential of converting sugarcane bagasse via CBP, pointing out performance limitations that must be addressed.
Collapse
Affiliation(s)
- Isabela U Zambello
- Advanced Second Generation Biofuel (A2G) Laboratory, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose. Metab Eng 2024; 83:193-205. [PMID: 38631458 DOI: 10.1016/j.ymben.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different β-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the β-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.
Collapse
Affiliation(s)
- Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA.
| | - Trevor Croft
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lauren R Magnusson
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Luis H Reyes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA; Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Xiaowen Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Emily J Miller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Danielle M Riley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Sunnyjoy Dupuis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Kathrin A Laramore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lisa M Keller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Dirk Winkelman
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| |
Collapse
|
4
|
Seo H, Singh P, Wyman CE, Cai CM, Trinh CT. Rewiring metabolism of Clostridium thermocellum for consolidated bioprocessing of lignocellulosic biomass poplar to produce short-chain esters. BIORESOURCE TECHNOLOGY 2023:129263. [PMID: 37271458 DOI: 10.1016/j.biortech.2023.129263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass uses cellulolytic microorganisms to enable enzyme production, saccharification, and fermentation to produce biofuels, biochemicals, and biomaterials in a single step. However, understanding and redirecting metabolisms of these microorganisms compatible with CBP are limited. Here, a cellulolytic thermophile Clostridium thermocellum was engineered and demonstrated to be compatible with CBP integrated with a Co-solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment for conversion of hardwood poplar into short-chain esters with industrial use as solvents, flavors, fragrances, and biofuels. The recombinant C. thermocellum engineered with deletion of carbohydrate esterases and stable overexpression of alcohol acetyltransferases improved ester production without compromised deacetylation activities. These esterases were discovered to exhibit promiscuous thioesterase activities and their deletion enhanced ester production by rerouting the electron and carbon metabolism. Ester production was further improved up to 80-fold and ester composition could be modulated by deleting lactate biosynthesis and using poplar with different pretreatment severity.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Priyanka Singh
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Chemical and Environmental Engineering Department, University of California, Riverside, CA 92521, USA
| | - Charles E Wyman
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Chemical and Environmental Engineering Department, University of California, Riverside, CA 92521, USA
| | - Charles M Cai
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Chemical and Environmental Engineering Department, University of California, Riverside, CA 92521, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
5
|
Uke A, Sornyotha S, Baramee S, Tachaapaikoon C, Pason P, Waeonukul R, Ratanakhanokchai K, Kosugi A. Genomic analysis of Paenibacillus macerans strain I6, which can effectively saccharify oil palm empty fruit bunches under nutrient-free conditions. J Biosci Bioeng 2023:S1389-1723(23)00111-1. [PMID: 37095007 DOI: 10.1016/j.jbiosc.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
The improper disposal of palm oil industrial waste has led to serious environmental pollution. In this study, we isolated Paenibacillus macerans strain I6, which can degrade oil palm empty fruit bunches generated by the palm oil industry in nutrient-free water, from bovine manure biocompost and sequenced its genome on PacBio RSII and Illumina NovaSeq 6000 platforms. We obtained 7.11 Mbp of genomic sequences with 52.9% GC content from strain I6. Strain I6 was phylogenetically closely related to P. macerans strains DSM24746 and DSM24 and was positioned close to the head of the branch containing strains I6, DSM24746, and DSM24 in the phylogenetic tree. We used the RAST (rapid annotation using subsystem technology) server to annotate the strain I6 genome and discovered genes related to biological saccharification; 496 genes were related to carbohydrate metabolism and 306 genes were related to amino acids and derivatives. Among them were carbohydrate-active enzymes (CAZymes), including 212 glycoside hydrolases. Up to 23.6% of the oil palm empty fruit bunches was degraded by strain I6 under anaerobic and nutrient-free conditions. Evaluation of the enzymatic activity of extracellular fractions of strain I6 showed that amylase and xylanase activity was highest when xylan was the carbon source. The high enzyme activity and the diversity in the associated genes may contribute to the efficient degradation of oil palm empty fruit bunches by strain I6. Our results indicate the potential utility of P. macerans strain I6 for lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Ayaka Uke
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Somphit Sornyotha
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan; Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Sirilak Baramee
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
6
|
Herring CD, Ajie MP, Lynd LR. Growth-uncoupled propanediol production in a Thermoanaerobacterium thermosaccharolyticum strain engineered for high ethanol yield. Sci Rep 2023; 13:2394. [PMID: 36765076 PMCID: PMC9918460 DOI: 10.1038/s41598-023-29220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Cocultures of engineered thermophilic bacteria can ferment lignocellulose without costly pretreatment or added enzymes, an ability that can be exploited for low cost biofuel production from renewable feedstocks. The hemicellulose-fermenting species Thermoanaerobacterium thermosaccharolyticum was engineered for high ethanol yield, but we found that the strains switched from growth-coupled production of ethanol to growth uncoupled production of acetate and 1,2-propanediol upon growth cessation, producing up to 6.7 g/L 1,2-propanediol from 60 g/L cellobiose. The unique capability of this species to make 1,2-propanediol from sugars was described decades ago, but the genes responsible were not identified. Here we deleted genes encoding methylglyoxal reductase, methylglyoxal synthase and glycerol dehydrogenase. Deletion of the latter two genes eliminated propanediol production. To understand how carbon flux is redirected in this species, we hypothesized that high ATP levels during growth cessation downregulate the activity of alcohol and aldehyde dehydrogenase activities. Measurements with cell free extracts show approximately twofold and tenfold inhibition of these activities by 10 mM ATP, supporting the hypothesized mechanism of metabolic redirection. This result may have implications for efforts to direct and maximize flux through alcohol dehydrogenase in other species.
Collapse
Affiliation(s)
- Christopher D Herring
- Terragia Biofuel Incorporated, Hanover, New Hampshire, United States. .,Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States. .,Center for Bioenergy Innovation, Oak Ridge, Tennessee, United States.
| | - Maulana Permana Ajie
- Technical University of Munich, Munich, Germany.,Bioengineering, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | - Lee R Lynd
- Terragia Biofuel Incorporated, Hanover, New Hampshire, United States.,Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States.,Center for Bioenergy Innovation, Oak Ridge, Tennessee, United States
| |
Collapse
|
7
|
Metabolite-Based Mutualistic Interaction between Two Novel Clostridial Species from Pit Mud Enhances Butyrate and Caproate Production. Appl Environ Microbiol 2022; 88:e0048422. [PMID: 35695571 PMCID: PMC9275218 DOI: 10.1128/aem.00484-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pit mud microbial consortia play crucial roles in the formation of Chinese strong-flavor baijiu's key flavor-active compounds, especially butyric and caproic acids. Clostridia, one of the abundant bacterial groups in pit mud, were recognized as important butyric and caproic acid producers. Research on the interactions of the pit mud microbial community mainly depends on correlation analysis at present. Interaction between Clostridium and other microorganisms and its involvement in short/medium-chain fatty acid (S/MCFA) metabolism are still unclear. We previously found coculture of two clostridial strains isolated from pit mud, Clostridium fermenticellae JN500901 (C.901) and Novisyntrophococcus fermenticellae JN500902 (N.902), could enhance S/MCFA accumulation. Here, we investigated their underlying interaction mechanism through the combined analysis of phenotype, genome, and transcriptome. Compared to monocultures, coculture of C.901 and N.902 obviously promoted their growth, including shortening the growth lag phase and increasing biomass, and the accumulation of butyric acid and caproic acid. The slight effects of inoculation ratio and continuous passage on the growth and metabolism of coculture indicated the relative stability of their interaction. Transwell coculture and transcriptome analysis showed the interaction between C.901 and N.902 was accomplished by metabolite exchange, i.e., formic acid produced by C.901 activated the Wood-Ljungdahl pathway of N.902, thereby enhancing its production of acetic acid, which was further converted to butyric acid and caproic acid by C.901 through reverse β-oxidation. This work demonstrates the potential roles of mutually beneficial interspecies interactions in the accumulation of key flavor compounds in pit mud. IMPORTANCE Microbial interactions played crucial roles in influencing the assembly, stability, and function of the microbial community. The metabolites of pit mud microbiota are the key to flavor formation of Chinese strong-flavor baijiu. So far, researches on the interactions of the pit mud microbial community have been mainly based on the correlation analysis of sequencing data, and more work needs to be performed to unveil the complicated interaction patterns. Here, we identified a material exchange-based mutualistic interaction system involving two fatty acid-producing clostridial strains (Clostridium fermenticellae JN500901 and Novisyntrophococcus fermenticellae JN500902) isolated from pit mud and systematically elucidated their interaction mechanism for promoting the production of butyric acid and caproic acid, the key flavor-active compounds of baijiu. Our findings provide a new perspective for understanding the complicated interactions of pit mud microorganisms.
Collapse
|
8
|
Chen C, Qi K, Chi F, Song X, Feng Y, Cui Q, Liu YJ. Dissolved xylan inhibits cellulosome-based saccharification by binding to the key cellulosomal component of Clostridium thermocellum. Int J Biol Macromol 2022; 207:784-790. [PMID: 35351552 DOI: 10.1016/j.ijbiomac.2022.03.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Polysaccharides derived from lignocellulose are promising sustainable carbon sources. Cellulosome is a supramolecular machine integrating multi-function enzymes for effective lignocellulose bio-saccharification. However, how various non-cellulose components of lignocellulose affect the cellulosomal saccharification is hitherto unclear. This study first investigated the stability and oxygen sensitivity of the cellulosome from Clostridium thermocellum during long-term saccharification process. Then, the differential inhibitory effects of non-cellulose components, including lignin, xylan, and arabinoxylan, on the cellulosome-based saccharification were determined. The results showed that lignin played inhibitory roles by non-productively adsorbing extracellular proteins of C. thermocellum. Differently, arabinoxylan preferred to bind with the cellulosomal components. Almost no adsorption of cellulosomal proteins on solid xylan was detected. Instead, xylan in water-dissolved form interacted with the cellulosomal proteins, especially the key exoglucanase Cel48S, leading to the xylan inhibitory effect. Compared to xylan, xylooligosaccharides influenced the cellulosome activity slightly. Hence, this work demonstrates that the timely hydrolysis or removal of dissolved xylan is important for cellulosome-based lignocellulose saccharification.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kuan Qi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Chi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
9
|
Nhim S, Waeonukul R, Uke A, Baramee S, Ratanakhanokchai K, Tachaapaikoon C, Pason P, Liu YJ, Kosugi A. Biological cellulose saccharification using a coculture of Clostridium thermocellum and Thermobrachium celere strain A9. Appl Microbiol Biotechnol 2022; 106:2133-2145. [PMID: 35157106 PMCID: PMC8930880 DOI: 10.1007/s00253-022-11818-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/30/2021] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
Abstract An anaerobic thermophilic bacterial strain, A9 (NITE P-03545), that secretes β-glucosidase was newly isolated from wastewater sediments by screening using esculin. The 16S rRNA gene sequence of strain A9 had 100% identity with that of Thermobrachium celere type strain JW/YL-NZ35. The complete genome sequence of strain A9 showed 98.4% average nucleotide identity with strain JW/YL-NZ35. However, strain A9 had different physiological properties from strain JW/YL-NZ35, which cannot secrete β-glucosidases or grow on cellobiose as the sole carbon source. The key β-glucosidase gene (TcBG1) of strain A9, which belongs to glycoside hydrolase family 1, was characterized. Recombinant β-glucosidase (rTcBG1) hydrolyzed cellooligosaccharides to glucose effectively. Furthermore, rTcBG1 showed high thermostability (at 60°C for 2 days) and high glucose tolerance (IC50 = 0.75 M glucose), suggesting that rTcBG1 could be used for biological cellulose saccharification in cocultures with Clostridium thermocellum. High cellulose degradation was observed when strain A9 was cocultured with C. thermocellum in a medium containing 50 g/l crystalline cellulose, and glucose accumulation in the culture supernatant reached 35.2 g/l. In contrast, neither a monoculture of C. thermocellum nor coculture of C. thermocellum with strain JW/YL-NZ35 realized efficient cellulose degradation or high glucose accumulation. These results show that the β-glucosidase secreted by strain A9 degrades cellulose effectively in combination with C. thermocellum cellulosomes and has the potential to be used in a new biological cellulose saccharification process that does not require supplementation with β-glucosidases. Key points • Strain A9 can secrete a thermostable β-glucosidase that has high glucose tolerance • A coculture of strain A9 and C. thermocellum showed high cellulose degradation • Strain A9 achieves biological saccharification without addition of β-glucosidase Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11818-0.
Collapse
Affiliation(s)
- Sreyneang Nhim
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), 10150, Bangkok, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), 10150, Bangkok, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Ayaka Uke
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Sirilak Baramee
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), 10150, Bangkok, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), 10150, Bangkok, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), 10150, Bangkok, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Patthra Pason
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), 10150, Bangkok, Thailand.,Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.,Shandong Energy Institute, Qingdao, 266101, People's Republic of China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
10
|
Kubis MR, Holwerda EK, Lynd LR. Declining carbohydrate solubilization with increasing solids loading during fermentation of cellulosic feedstocks by Clostridium thermocellum: documentation and diagnostic tests. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:12. [PMID: 35418299 PMCID: PMC8817502 DOI: 10.1186/s13068-022-02110-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
Background For economically viable 2nd generation biofuels, processing of high solid lignocellulosic substrate concentrations is a necessity. The cellulolytic thermophilic anaerobe Clostridium thermocellum is one of the most effective biocatalysts for solubilization of carbohydrate harbored in lignocellulose. This study aims to document the solubilization performance of Clostridium thermocellum at increasing solids concentrations for two lignocellulosic feedstocks, corn stover and switchgrass, and explore potential effectors of solubilization performance. Results Monocultures of Clostridium thermocellum demonstrated high levels of carbohydrate solubilization for both unpretreated corn stover and switchgrass. However, fractional carbohydrate solubilization decreases with increasing solid loadings. Fermentation of model insoluble substrate (cellulose) in the presence of high solids lignocellulosic spent broth is temporarily affected but not model soluble substrate (cellobiose) fermentations. Mid-fermentation addition of cells (C. thermocellum) or model substrates did not significantly enhance overall corn stover solubilization loaded at 80 g/L, however cultures utilized the model substrates in the presence of high concentrations of corn stover. An increase in corn stover solubilization was observed when water was added, effectively diluting the solids concentration mid-fermentation. Introduction of a hemicellulose-utilizing coculture partner, Thermoanaerobacterium thermosaccharolyticum, increased the fractional carbohydrate solubilization at both high and low solid loadings. Residual solubilized carbohydrates diminished significantly in the presence of T. thermosaccharolyticum compared to monocultures of C. thermocellum, yet a small fraction of solubilized oligosaccharides of both C5 and C6 sugars remained unutilized. Conclusion Diminishing fractional carbohydrate solubilization with increasing substrate loading was observed for C. thermocellum-mediated solubilization and fermentation of unpretreated lignocellulose feedstocks. Results of experiments involving spent broth addition do not support a major role for inhibitors present in the liquid phase. Mid-fermentation addition experiments confirm that C. thermocellum and its enzymes remain capable of converting model substrates during the middle of high solids lignocellulose fermentation. An increase in fractional carbohydrate solubilization was made possible by (1) mid-fermentation solid loading dilutions and (2) coculturing C. thermocellum with T. thermosaccharolyticum, which ferments solubilized hemicellulose. Incomplete utilization of solubilized carbohydrates suggests that a small fraction of the carbohydrates is unaffected by the extracellular carbohydrate-active enzymes present in the culture. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02110-4.
Collapse
Affiliation(s)
- Matthew R Kubis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA. .,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
11
|
Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. ENGINEERING MICROBIOLOGY 2021; 1:100005. [PMID: 39629162 PMCID: PMC11610957 DOI: 10.1016/j.engmic.2021.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2024]
Abstract
Bioconversion of lignocellulosic biomass to fuels and chemicals represents a new manufacturing paradigm that can help address society's energy, resource, and environmental problems. However, the low efficiency and high cost of lignocellulolytic enzymes currently used hinder their use in the industrial deconstruction of lignocellulose. To overcome these challenges, research efforts have focused on engineering the properties, synergy, and production of lignocellulolytic enzymes. First, lignocellulolytic enzymes' catalytic efficiency, stability, and tolerance to inhibitory compounds have been improved through enzyme mining and engineering. Second, synergistic actions between different enzyme components have been strengthened to construct customized enzyme cocktails for the degradation of specific lignocellulosic substrates. Third, biological processes for protein synthesis and cell morphogenesis in microorganisms have been engineered to achieve a high level and low-cost production of lignocellulolytic enzymes. In this review, the relevant progresses and challenges in these fields are summarized. Integrated engineering is proposed to be essential to achieve cost-effective enzymatic deconstruction of lignocellulose in the future.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|