1
|
Rajendran N, Han J. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:168-176. [PMID: 36470012 DOI: 10.1016/j.wasman.2022.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
In this present study, the production of poly (butylene succinate) (PBS) from food waste was investigated and critical factors were evaluated. The economic feasibility of the process was investigated, as well as the minimum selling price (MSP) of PBS and sensitivity analysis of economic factors based on critical input parameters. 1,4-butanediol price and solvent usage in PBS purification significantly impacted economics during the process. In this process, the MSP of PBS was 3.5 $/kg. The Monte Carlo simulation technique was used to determine the uncertainty in the MSP of PBS. The plant's return on investment (ROI), payback period, internal rate of return (IRR), and net present value (NPV) were 15.79 %, 6.33 years, 16.48 %, and 58,879,000 USD, respectively. The environmental impact factors were evaluated. The results showed the GHG emission from the process was 5.19 kg CO2-eq/kg of PBS which is low than conventional PBS production.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
2
|
A Review on the Production of C4 Platform Chemicals from Biochemical Conversion of Sugar Crop Processing Products and By-Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development and commercialization of sustainable chemicals from agricultural products and by-products is necessary for a circular economy built on renewable natural resources. Among the largest contributors to the final cost of a biomass conversion product is the cost of the initial biomass feedstock, representing a significant challenge in effective biomass utilization. Another major challenge is in identifying the correct products for development, which must be able to satisfy the need for both low-cost, drop-in fossil fuel replacements and novel, high-value fine chemicals (and/or commodity chemicals). Both challenges can be met by utilizing wastes or by-products from biomass processing, which have very limited starting cost, to yield platform chemicals. Specifically, sugar crop processing (e.g., sugarcane, sugar beet) is a mature industry that produces high volumes of by-products with significant potential for valorization. This review focuses specifically on the production of acetoin (3-hydroxybutanone), 2,3-butanediol, and C4 dicarboxylic (succinic, malic, and fumaric) acids with emphasis on biochemical conversion and targeted upgrading of sugar crop products/by-products. These C4 compounds are easily derived from fermentations and can be converted into many different final products, including food, fragrance, and cosmetic additives, as well as sustainable biofuels and other chemicals. State-of-the-art literature pertaining to optimization strategies for microbial conversion of sugar crop byproducts to C4 chemicals (e.g., bagasse, molasses) is reviewed, along with potential routes for upgrading and valorization. Directions and opportunities for future research and industrial biotechnology development are discussed.
Collapse
|
3
|
Wang Y, Huang J, Liang X, Wei M, Liang F, Feng D, Xu C, Xian M, Zou H. Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit Rev Biotechnol 2022; 43:503-520. [PMID: 35430940 DOI: 10.1080/07388551.2022.2039590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.
Collapse
Affiliation(s)
- Yaqun Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiuhong Liang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Manman Wei
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Kádár CB, Păucean A, Simon E, Vodnar DC, Ranga F, Rusu IE, Vișan VG, Man S, Chiș MS, Drețcanu G. Dynamics of Bioactive Compounds during Spontaneous Fermentation of Paste Obtained from Capsicum ssp.-Stage towards a Product with Technological Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:1080. [PMID: 35448807 PMCID: PMC9025496 DOI: 10.3390/plants11081080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Six cultivars of chili (Cherry, Bulgarian Chilli, Cayenne, Fatalii, Habanero, and Carolina Reaper) from two species (Capsicum annuum and Capsicum chinense) have been studied. Anaerobic, spontaneous fermentation of pure chili paste was conducted for 21 days at 20 °C. The unfermented (UCP) and fermented chili pastes (FCP) were both subjected to physicochemical and microbiological characterization consisting of capsaicinoid, ascorbic acid, short-chain organic acids, phenolic compounds, and simple sugars analysis. Cell viability for Lactic Acid Bacteria (LAB) and Leuconostoc was determined before and after fermentation. Results indicate that capsaicinoids are very stable compounds, as notable differences between unfermented and fermented samples could not be seen. Carolina Reaper and Fatalii cultivars were amongst the most pungent, whereas Cherry, Cayenne, and Bulgarian types were low to moderate in pungency. Average loss of total ascorbic acid was 19.01%. Total phenolic compounds ranged between 36.89−195.43 mg/100 g for the fresh fruits and 35.60−180.40 mg/100 g for the fermented product. Losses through fermentation were not significant (p < 0.05). Plate counts indicated low initial numbers for LAB in the fresh samples, values ranging between 50−3700 CFU/g (colony-forming units). After fermentation, day 21, concentration of LAB (3.8 × 106−6.2 × 108 CFU/g) was high in all samples. Fermented chilies paste with enhanced biochemical and bacterial properties might further be used in the technology of vegetable (brining) or meat (curing) products, processes that generally involve the fermenting activity of different microorganisms, especially (LAB). Thus, the purpose of this research was the investigation of biochemical and microbial transformations that naturally occur in fermented chilies with a future perspective towards technological applications in cured meat products.
Collapse
Affiliation(s)
- Csaba Balázs Kádár
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Elemér Simon
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| | - Dan Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| | - Iulian Eugen Rusu
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Vasile-Gheorghe Vișan
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Simona Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Georgiana Drețcanu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| |
Collapse
|
5
|
Su HY, Lin WH, Liang YL, Chou HH, Wu SW, Shi HL, Chen JY, Cheng KK. Co-production of acetoin and succinic acid using corncob hydrolysate by engineered Enterobacter cloacae. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Cheng J, Tu W, Luo Z, Liang L, Gou X, Wang X, Liu C, Zhang G. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Escherichia coli. Front Bioeng Biotechnol 2021; 9:726126. [PMID: 34604186 PMCID: PMC8481640 DOI: 10.3389/fbioe.2021.726126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
The compounds 5-aminovalerate and δ-valerolactam are important building blocks that can be used to synthesize bioplastics. The production of 5-aminovalerate and δ-valerolactam in microorganisms provides an ideal source that reduces the cost. To achieve efficient biobased coproduction of 5-aminovalerate and δ-valerolactam in Escherichia coli, a single biotransformation step from L-lysine was constructed. First, an equilibrium mixture was formed by L-lysine α-oxidase RaiP from Scomber japonicus. In addition, by adjusting the pH and H2O2 concentration, the titers of 5-aminovalerate and δ-valerolactam reached 10.24 and 1.82 g/L from 40 g/L L-lysine HCl at pH 5.0 and 10 mM H2O2, respectively. With the optimized pH value, the δ-valerolactam titer was improved to 6.88 g/L at pH 9.0 with a molar yield of 0.35 mol/mol lysine. The ratio of 5AVA and δ-valerolactam was obviously affected by pH value. The ratio of 5AVA and δ-valerolactam could be obtained in the range of 5.63:1-0.58:1 at pH 5.0-9.0 from the equilibrium mixture. As a result, the simultaneous synthesis of 5-aminovalerate and δ-valerolactam from L-lysine in Escherichia coli is highly promising. To our knowledge, this result constitutes the highest δ-valerolactam titer reported by biological methods. In summary, a commercially implied bioprocess developed for the coproduction of 5-aminovalerate and δ-valerolactam using engineered Escherichia coli.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhou Luo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinghua Gou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinhui Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Chao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Su HY, Wu SW, Chou HH, Lin WH, Chow TJ, Chiu HH, Fei Q, Cheng KK. Recombinant cyanobacteria cultured in CO2 and seawater as feedstock for coproduction of acetoin and succinate by engineered Enterobacter cloacae. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|