1
|
Huang G, Lu J, Yin X, Zhang L, Lin H, Zhang X, Liu C, Zuo J. Integrating QTL mapping with transcriptome analysis mined candidate genes of growth stages in castor (Ricinus communis L.). BMC Genomics 2025; 26:178. [PMID: 39987060 PMCID: PMC11846381 DOI: 10.1186/s12864-025-11348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The growth stages largely determine the crop yield, while little is known about their genetic mechanisms in castor. In this study, the QTL mapping and candidate gene mining of growth stages were conducted using populations F2 and BC1, combining with differential expression analysis and weighted gene co-expression network analysis (WGCNA). The traits studied included the emergence date (ED), the budding date of primary spike (PSBD), the flowering date of primary spike (PSFD), the maturation date of primary spike (PSMD), and the maturation date of primary branch spike (PBSMD). RESULTS A total of 20 QTLs conferring four traits (ED, PSBD, PSFD and PBSMD) were identified in the F2 population, with a phenotypic variation explained (PVE) of single QTL ranged from 0.24 to 25.46%. Five QTLs underlying PSMD and PBSMD were identified in the BC1 population, with a PVE of single QTL ranged from 4.74 to 10.82%. To our surprise, almost all the identified QTLs were clustered within two marker intervals, the RCM1769-RCM1838 on linkage group 6 and RCM950-RCM917 on linkage group 3. Subsequently, 473 open reading frames (ORFs) were searched out within these two clusters and 110 differentially expressed genes (DEGs) were screened out from these ORFs by the comparative transcriptome clean data (a total of 140.86 G) at the budding date, the initial flowering date and the full flowering date between parental racemes. With these DEGs, five distinct gene co-expression modules were generated using WGCNA. Showing significant differential expression between parents, four candidate genes (LOC8261128, LOC8278994, LOC8281165 and LOC8259049) in module MEturquoise, were recognized and were annotated as RcSYN3, RcNTT, RcGG3 and RcSAUR76 respectively. This finding implies their potential role in regulating the growth stages of castor. CONCLUSION In this study, numerous QTLs conferring growth stages were detected and four candidate genes were mined, which need to be functionally validated. The results provided a new insight into the genetic structure of ED, PSBD, PSFD, PSMD and PBSMD, offered the candidate genes and molecular markers for their improvement as well in castor.
Collapse
Affiliation(s)
- Guanrong Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiannong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xuegui Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Liuqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haihong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chaoyu Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinying Zuo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Liu C, Yan J, Zhang Z, Pei L, Li C, Zhang X, Shi S. Genetic Variation Analysis and Development of KASP Marker for Leaf Area and Hight in Southern-Type Populus deltoides. PLANTS (BASEL, SWITZERLAND) 2025; 14:330. [PMID: 39942892 PMCID: PMC11820701 DOI: 10.3390/plants14030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Populus deltoides holds significant ecological and economic importance and is a crucial gene donor for the world's staple poplar varieties. To select and breed P. deltoides with improved agronomic traits, nine growth and leaf traits were examined in 375 different genotypes, assessing their genetic diversity and performing correlation and comprehensive ranking analyses. Phenotyping results were then utilized to screen a total of 2,009,263 SNP (single nucleotide polymorphism) loci significantly associated with the nine phenotypic traits. A total of 45 SNP loci exhibited significant associations with growth traits based on a general linear model (GLM) analysis. By analyzing the Linkage disequilibrium (LD) block of five SNP loci with significant leaf area and height, we identified five candidate genes related to leaf area and height. Three of the five SNP loci were successfully validated using KASP (kompetitive allele-specific PCR) assays. One loci Chr08_16007979 was closely linked with leaf area, and two loci Chr05_12148738, and Chr05_17106547 were closely linked with height. The developed functional KASP markers offer valuable insights for subsequent further marker-assisted breeding and genetic improvement studies in southern-type poplars.
Collapse
Affiliation(s)
- Chunxiao Liu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071001, China; (C.L.); (Z.Z.)
| | - Jiawei Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, The Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (J.Y.); (L.P.)
| | - Zhongxu Zhang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071001, China; (C.L.); (Z.Z.)
| | - Lu Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, The Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (J.Y.); (L.P.)
| | - Caihua Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China;
| | - Xiaoman Zhang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071001, China; (C.L.); (Z.Z.)
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, The Chinese Academy of Forestry, 1958 Box, Beijing 100091, China; (J.Y.); (L.P.)
| |
Collapse
|
3
|
Li K, Guo N, Zhang M, Du Y, Xu J, Li S, Wang J, Wang R, Liu X, Qin M, Xu Y, Zhu Y, Song J, Xu A, Huang Z. Identification of genetic loci and candidate genes regulating photosynthesis and leaf morphology through genome-wide association study in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2024; 15:1467927. [PMID: 39759236 PMCID: PMC11695134 DOI: 10.3389/fpls.2024.1467927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/11/2024] [Indexed: 01/07/2025]
Abstract
Rapeseed (Brassica napus L.) is a major agricultural crop with diverse applications, particularly in the production of seed oil for both culinary use and biodiesel. However, its photosynthetic efficiency, a pivotal determinant of yield, remains relatively low compared with other C3 plants such as rice and soybean, highlighting the necessity of identifying the genetic loci and genes regulating photosynthesis in rapeseed. In this study, we investigated 5 photosynthesis traits and 5 leaf morphology traits in a natural population of rapeseed, and conducted a genome-wide association study (GWAS) to identify significantly associated loci and genes. The results showed that the gas-exchange parameters of the dark reactions in photosynthesis exhibited a significant positive correlation with the chlorophyll content, whereas they showed a weaker negative correlation with the leaf area. By GWAS, a total of 538 quantitative trait nucleotides (QTNs) were identified as significantly associated with traits related to both leaf morphology and photosynthesis. These QTNs were classified into 84 QTL clusters, of which, 21 clusters exhibited remarkable stability across different traits and environmental conditions. In addition, a total of 3,129 potential candidate genes were identified to be significantly associated with the above-mentioned 10 traits, most of which were shared by certain traits, further indicating the reliability of the findings. By integrating GWAS data with GO enrichment analysis and gene expression analysis, we further identified 8 key candidate genes that are associated with the regulation of photosynthesis, chlorophyll content, leaf area, and leaf petiole angle. Taken together, this study identified key genetic loci and candidate genes with the potential to improve photosynthetic efficiency in rapeseed. These findings provide a theoretical framework for breeding new rapeseed varieties with enhanced photosynthetic capabilities.
Collapse
Affiliation(s)
- Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Miao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shimeng Li
- Agricultural Research Institute of Tibet Autonomous Region Agriculture and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Jinxiong Wang
- Agricultural Research Institute of Tibet Autonomous Region Agriculture and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Rongrong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Xiong Y, Chen X, Liu J, Li Y, Bian Z, Zhang X, Zeng S, da Silva JAT, Ma G. Comparative transcriptomic and hormonal analyses reveal potential regulation networks of adventitious root formation in Metasequoia glyptostroboides Hu et Cheng. BMC Genomics 2024; 25:1098. [PMID: 39558286 PMCID: PMC11572361 DOI: 10.1186/s12864-024-10989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The extract from Metasequoia glyptostroboides Hu et Cheng, a rare and endangered species native to China, exhibits numerous biological and pharmacological activities. The species is recalcitrant to rooting during micropropagation, a challenge that has yet to be resolved. In this study, transcriptomic and hormonal analyses were conducted to appreciate the molecular mechanism of adventitious root (AR) formation in optimized rooting conditions. RESULTS The use of 2/5-strength Woody Plant Medium (WPM) significantly promoted AR formation of M. glyptostroboides shoots while the content of endogenous auxin, cytokinins and gibberellins (GAs) varied at different stages of AR formation. Transcriptomic analysis showed the significant up- or down-regulation of differentially expressed genes (DEGs) associated with plant hormone signal transduction and the phenylpropanoid biosynthesis pathway in response to 2/5-strength WPM. DEGs related to the biosynthesis of indole-3-acetic acid, cytokinins and GAs were identified. Transcript factors involved in 13 families were also revealed. A weighted gene co-expression network analysis indicated a strong correlation between hormones and genes involved in plant hormone signal transduction and the phenylpropanoid biosynthetic pathway. CONCLUSIONS These results indicate that the AR-promoting potential of 2/5-strength WPM in M. glyptostroboides was due to complex interactions between hormones and the expression of genes related to plant hormone signal transduction and the phenylpropanoid biosynthetic pathway.
Collapse
Affiliation(s)
- Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaohong Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Junyu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhan Bian
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Yang Y, Guo Y, Wang J, Cheng W, Lyu M, Wang Q, Wu J, Hua M, Zhang W, Sun D, Ge X, Yao X, Chen R. Genome-wide association study and selective sweep analysis uncover candidate genes controlling curd branch length in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:209. [PMID: 39196430 DOI: 10.1007/s00122-024-04719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Cauliflower is a distinct subspecies of the Brassica oleracea plants due to its specialized and edible floral organ. Cauliflower curd is composed of enlarged inflorescence meristems that developed by a series of precise molecular regulations. Based solely on the curd solidity, cauliflower is generally classified into two groups (compact-curd and loose-curd), where curd branch length acts as a crucial parameter to determine the curd morphological difference. Herein, to understand the genetic basis of curd branch development, we utilized a total of 298 inbred lines representing two groups of cauliflower to comprehensively investigate the causal genes and regulatory mechanisms. Phylogenetic and population structure analyses revealed that two subgroups could be further categorized into the compact-curd and the loose-curd groups, respectively. Integrating the genotype and phenotype data, we conducted a genome-wide association study for the length of the outermost branch (LOB) and secondary branch (LSB) of the curd. Sixty-four significant loci were identified that are highly associated with curd branch development. Evidence from genome-wide selective sweep analysis (FST and XP-EHH) narrowed down the major signal on chromosome 8 into an approximately 79 kb region which encodes eleven protein-coding genes. After further analysis of haplotypes, transcriptome profiling, and gene expression validation, we finally inferred that BOB08G028680, as a homologous counterpart of AtARR9, might be the causal gene for simultaneously regulating LOB and LSB traits in cauliflower. This result provides valuable information for improving curd solidity in future cauliflower breeding.
Collapse
Affiliation(s)
- Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Mingyan Hua
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Weihua Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
6
|
Dai Z, Dong S, Cai H, Beckles DM, Guan J, Liu X, Gu X, Miao H, Zhang S. Genome-wide association analysis reveal candidate genes and haplotypes related to root weight in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1417314. [PMID: 39086910 PMCID: PMC11288866 DOI: 10.3389/fpls.2024.1417314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Background The plant root system is critical for the absorption of water and nutrients, and have a direct influence on growth and yield. In cucumber, a globally consumed crop, the molecular mechanism of root development remains unclear, and this has implications for developing stress tolerant varieties. This study sought to determine the genetic patterns and related genes of cucumber root weight. A core cucumber germplasms population was used to do the GWAS analysis in three environments. Results Here, we investigated four root-weight related traits including root fresh weight (RFW), root dry weight (RDW), ratio of root dry weight to root fresh weight (RDFW) and the comprehensive evaluation index, D-value of root weight (DRW) deduced based on the above three traits for the core germplasm of the cucumber global repository. According to the D-value, we identified 21 and 16 accessions with light and heavy-root, respectively. We also found that the East Asian ecotype accessions had significantly heavier root than other three ecotypes. The genome-wide association study (GWAS) for these four traits reveals that 4 of 10 significant loci (gDRW3.1, gDRW3.2, gDRW4.1 and gDRW5.1) were repeatedly detected for at least two traits. Further haplotype and expression analysis for protein-coding genes positioned within these 4 loci between light and heavy-root accessions predicted five candidate genes (i.e., Csa3G132020 and Csa3G132520 both encoding F-box protein PP2-B1 for gDRW3.1, Csa3G629240 encoding a B-cell receptor-associated protein for gDRW3.2, Csa4G499330 encodes a GTP binding protein for gDRW4.1, and Csa5G286040 encodes a proteinase inhibitor for gDRW5.1). Conclusions We conducted a systematic analysis of the root genetic basis and characteristics of cucumber core germplasms population. We detected four novel loci, which regulate the root weight in cucumber. Our study provides valuable candidate genes and haplotypes for the improvement of root system in cucumber breeding.
Collapse
Affiliation(s)
- Zhuonan Dai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hexu Cai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
8
|
Zhao X, Zhang Y, Wang J, Zhao X, Li Y, Teng W, Han Y, Zhan Y. GWAS and WGCNA Analysis Uncover Candidate Genes Associated with Oil Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1351. [PMID: 38794422 PMCID: PMC11125034 DOI: 10.3390/plants13101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Soybean vegetable oil is an important source of the human diet. However, the analysis of the genetic mechanism leading to changes in soybean oil content is still incomplete. In this study, a total of 227 soybean materials were applied and analyzed by a genome-wide association study (GWAS). There are 44 quantitative trait nucleotides (QTNs) that were identified as associated with oil content. A total of six, four, and 34 significant QTN loci were identified in Xiangyang, Hulan, and Acheng, respectively. Of those, 26 QTNs overlapped with or were near the known oil content quantitative trait locus (QTL), and 18 new QTNs related to oil content were identified. A total of 594 genes were located near the peak single nucleotide polymorphism (SNP) from three tested environments. These candidate genes exhibited significant enrichment in tropane, piperidine, and pyridine alkaloid biosynthesiss (ko00960), ABC transporters (ko02010), photosynthesis-antenna proteins (ko00196), and betalain biosynthesis (ko00965). Combined with the GWAS and weighted gene co-expression network analysis (WGCNA), four candidate genes (Glyma.18G300100, Glyma.11G221100, Glyma.13G343300, and Glyma.02G166100) that may regulate oil content were identified. In addition, Glyma.18G300100 was divided into two main haplotypes in the studied accessions. The oil content of haplotype 1 is significantly lower than that of haplotype 2. Our research findings provide a theoretical basis for improving the regulatory mechanism of soybean oil content.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Y.Z.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Y.Z.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| |
Collapse
|
9
|
Zhao X, Zhu H, Liu F, Wang J, Zhou C, Yuan M, Zhao X, Li Y, Teng W, Han Y, Zhan Y. Integrating Genome-Wide Association Study, Transcriptome and Metabolome Reveal Novel QTL and Candidate Genes That Control Protein Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1128. [PMID: 38674535 PMCID: PMC11054237 DOI: 10.3390/plants13081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Protein content (PC) is crucial to the nutritional quality of soybean [Glycine max (L.) Merrill]. In this study, a total of 266 accessions were used to perform a genome-wide association study (GWAS) in three tested environments. A total of 23,131 high-quality SNP markers (MAF ≥ 0.02, missing data ≤ 10%) were identified. A total of 40 association signals were significantly associated with PC. Among them, five novel quantitative trait nucleotides (QTNs) were discovered, and another 32 QTNs were found to be overlapping with the genomic regions of known quantitative trait loci (QTL) related to soybean PC. Combined with GWAS, metabolome and transcriptome sequencing, 59 differentially expressed genes (DEGs) that might control the change in protein content were identified. Meantime, four commonly upregulated differentially abundant metabolites (DAMs) and 29 commonly downregulated DAMs were found. Remarkably, the soybean gene Glyma.08G136900, which is homologous with Arabidopsis hydroxyproline-rich glycoproteins (HRGPs), may play an important role in improving the PC. Additionally, Glyma.08G136900 was divided into two main haplotype in the tested accessions. The PC of haplotype 1 was significantly lower than that of haplotype 2. The results of this study provided insights into the genetic mechanisms regulating protein content in soybean.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Hanhan Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Jie Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing 163711, China;
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar 161006, China;
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| |
Collapse
|
10
|
Wang Y, Wang Z, Zhu S, Pan H, Ding C, Xu M. Analysis of Growth Trajectories and Verification of Related SNPs in Populus deltoides. Int J Mol Sci 2023; 24:16192. [PMID: 38003382 PMCID: PMC10670923 DOI: 10.3390/ijms242216192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
As an important timber genus with high economic and ecological values, Populus is a model for dissecting the genetic architecture of growth traits in perennial forest trees. However, the genetic mechanisms of longitudinal growth traits in poplar remain incompletely understood. In this study, we conducted longitudinal genetic analysis of height and diameter at breast height (DBH) in eleven-year poplar clones using ultra-deep sequencing datasets. We compared four S-shaped growth models, including asymptotic, Gompertz, logistic, and Richard, on eleven-year height and DBH records in terms of five metrics. We constructed the best-fitting growth model (Richard) and determined poplar ontogenetic stages by virtue of growth curve fitting and likelihood ratio testing. This study provides some scientific clues for temporal variation of longitudinal growth traits in Populus species.
Collapse
Affiliation(s)
- Yaolin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Zesen Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Sheng Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Huixin Pan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (Z.W.); (S.Z.); (H.P.)
| |
Collapse
|
11
|
Ahmad N, Ibrahim S, Kuang L, Ze T, Wang X, Wang H, Dun X. Integrating genome-wide association study with transcriptomic data to predict candidate genes influencing Brassica napus root and biomass-related traits under low phosphorus conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:149. [PMID: 37789456 PMCID: PMC10548562 DOI: 10.1186/s13068-023-02403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an essential source of edible oil and livestock feed, as well as a promising source of biofuel. Breeding crops with an ideal root system architecture (RSA) for high phosphorus use efficiency (PUE) is an effective way to reduce the use of phosphate fertilizers. However, the genetic mechanisms that underpin PUE in rapeseed remain elusive. To address this, we conducted a genome-wide association study (GWAS) in 327 rapeseed accessions to elucidate the genetic variability of 13 root and biomass traits under low phosphorus (LP; 0.01 mM P +). Furthermore, RNA-sequencing was performed in root among high/low phosphorus efficient groups (HP1/LP1) and high/low phosphorus stress tolerance groups (HP2/LP2) at two-time points under control and P-stress conditions. RESULTS Significant variations were observed in all measured traits, with heritabilities ranging from 0.47 to 0.72, and significant correlations were found between most of the traits. There were 39 significant trait-SNP associations and 31 suggestive associations, which integrated into 11 valid quantitative trait loci (QTL) clusters, explaining 4.24-24.43% of the phenotypic variance observed. In total, RNA-seq identified 692, 1076, 648, and 934 differentially expressed genes (DEGs) specific to HP1/LP1 and HP2/LP2 under P-stress and control conditions, respectively, while 761 and 860 DEGs common for HP1/LP1 and HP2/LP2 under both conditions. An integrated approach of GWAS, weighted co-expression network, and differential expression analysis identified 12 genes associated with root growth and development under LP stress. In this study, six genes (BnaA04g23490D, BnaA09g08440D, BnaA09g04320D, BnaA09g04350D, BnaA09g04930D, BnaA09g09290D) that showed differential expression were identified as promising candidate genes for the target traits. CONCLUSION 11 QTL clusters and 12 candidate genes associated with root and development under LP stress were identified in this study. Our study's phenotypic and genetic information may be exploited for genetic improvement of root traits to increase PUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano, 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Tian Ze
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430062, China.
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
12
|
Xia H, Hao Z, Shen Y, Tu Z, Yang L, Zong Y, Li H. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1544-1563. [PMID: 37272730 DOI: 10.1111/tpj.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The genetic factors underlying growth traits differ over time points or stages. However, most current studies of phenotypes at single time points do not capture all loci or explain the genetic differences underlying growth trajectories. Hybrid Liriodendron exhibits obvious heterosis and is widely cultivated, although its complex genetic mechanism underlying growth traits remains unknown. A genome-wide association study (GWAS) is an effective method for elucidating the genetic architecture by identifying genetic loci underlying complex quantitative traits. In the present study, using a GWAS, we identified robust loci associated with growth trajectories in hybrid Liriodendron populations. We selected 233 hybrid progenies derived from 25 crosses for resequencing, and measured their tree height (H) and diameter at breast height (DBH) for 11 consecutive years; 192 972 high-quality single nucleotide polymorphisms (SNPs) were obtained. The dynamics of the multiyear single-trait GWAS showed that year-specific SNPs predominated, and only five robust SNPs for DBH were identified in at least three different years. Multitrait GWAS analysis with model parameters as latent variables also revealed 62 SNPs for H and 52 for DBH associated with the growth trajectory, displaying different biomass accumulation patterns, among which four SNPs exerted pleiotropic effects. All identified SNPs also exhibited temporal variations in effect sizes and inheritance patterns potentially related to different growth and developmental stages. The haplotypes resulting from these significant SNPs might pyramid favorable loci, benefitting the selection of superior genotypes. The present study provides insights into the genetic architecture of dynamic growth traits and lays a basis for future molecular-assisted breeding.
Collapse
Affiliation(s)
- Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufang Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Yuan P, Liu H, Wang X, Hammond JP, Shi L. Genome-wide association study reveals candidate genes controlling root system architecture under low phosphorus supply at seedling stage in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:63. [PMID: 37521313 PMCID: PMC10382450 DOI: 10.1007/s11032-023-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Optimal root system architecture (RSA) is essential for vigorous growth and yield in crops. Plants have evolved adaptive mechanisms in response to low phosphorus (LP) stress, and one of those is changes in RSA. Here, more than five million single-nucleotide polymorphisms (SNPs) obtained from whole-genome re-sequencing data (WGR) of an association panel of 370 oilseed rape (Brassica napus L.) were used to conduct a genome-wide association study (GWAS) of RSA traits of the panel at LP in "pouch and wick" system. Fifty-two SNPs were forcefully associated with lateral root length (LRL), total root length (TRL), lateral root density (LRD), lateral root number (LRN), mean lateral root length (MLRL), and root dry weight (RDW) at LP. There were significant correlations between phenotypic variation and the number of favorable alleles of the associated loci on chromosomes A06 (chrA06_20030601), C03 (chrC03_3535483), and C07 (chrC07_42348561), respectively. Three candidate genes (BnaA06g29270D, BnaC03g07130D, and BnaC07g43230D) were detected by combining transcriptome, candidate gene association analysis, and haplotype analysis. Cultivar carrying "CCGC" at BnaA06g29270DHap1, "CAAT" at BnaC03g07130DHap1, and "ATC" at BnaC07g43230DHap1 had greater LRL, LRN, and RDW than lines carrying other haplotypes at LP supply. The RSA of a cultivar harboring the three favorable haplotypes was further confirmed by solution culture experiments. These findings define exquisite insights into genetic architectures underlying B. napus RSA at LP and provide valuable gene resources for root breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01411-2.
Collapse
Affiliation(s)
- Pan Yuan
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000 China
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR UK
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
14
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
15
|
Liang T, Hu Y, Xi N, Zhang M, Zou C, Ge F, Yuan G, Gao S, Zhang S, Pan G, Ma L, Lübberstedt T, Shen Y. GWAS across multiple environments and WGCNA suggest the involvement of ZmARF23 in embryonic callus induction from immature maize embryos. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:93. [PMID: 37010631 DOI: 10.1007/s00122-023-04341-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.
Collapse
Affiliation(s)
- Tianhu Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Yibin Academy of Agricultural Sciences, Yibin, 644600, China
| | - Na Xi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Ge
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suzhi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Azam M, Zhang S, Li J, Ahsan M, Agyenim-Boateng KG, Qi J, Feng Y, Liu Y, Li B, Qiu L, Sun J. Identification of hub genes regulating isoflavone accumulation in soybean seeds via GWAS and WGCNA approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1120498. [PMID: 36866374 PMCID: PMC9971994 DOI: 10.3389/fpls.2023.1120498] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Isoflavones are the secondary metabolites synthesized by the phenylpropanoid biosynthesis pathway in soybean that benefits human and plant health. METHODS In this study, we have profiled seed isoflavone content by HPLC in 1551 soybean accessions grown in Beijing and Hainan for two consecutive years (2017 and 2018) and in Anhui for one year (2017). RESULTS A broad range of phenotypic variations was observed for individual and total isoflavone (TIF) content. The TIF content ranged from 677.25 to 5823.29 µg g-1 in the soybean natural population. Using a genome-wide association study (GWAS) based on 6,149,599 single nucleotide polymorphisms (SNPs), we identified 11,704 SNPs significantly associated with isoflavone contents; 75% of them were located within previously reported QTL regions for isoflavone. Two significant regions on chromosomes 5 and 11 were associated with TIF and malonylglycitin across more than 3 environments. Furthermore, the WGCNA identified eight key modules: black, blue, brown, green, magenta, pink, purple, and turquoise. Of the eight co-expressed modules, brown (r = 0.68***), magenta (r = 0.64***), and green (r = 0.51**) showed a significant positive association with TIF, as well as with individual isoflavone contents. By combining the gene significance, functional annotation, and enrichment analysis information, four hub genes Glyma.11G108100, Glyma.11G107100, Glyma.11G106900, and Glyma.11G109100 encoding, basic-leucine zipper (bZIP) transcription factor, MYB4 transcription factor, early responsive to dehydration, and PLATZ transcription factor respectively were identified in brown and green modules. The allelic variation in Glyma.11G108100 significantly influenced individual and TIF accumulation. DISCUSSION The present study demonstrated that the GWAS approach, combined with WGCNA, could efficiently identify isoflavone candidate genes in the natural soybean population.
Collapse
Affiliation(s)
- Muhammad Azam
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengrui Zhang
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ahsan
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Qi
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Feng
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yitian Liu
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Li
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology Ministry of Agriculture and Rural Affairs (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Sun
- The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Gill RA, Helal MMU, Tang M, Hu M, Tong C, Liu S. High-Throughput Association Mapping in Brassica napus L.: Methods and Applications. Methods Mol Biol 2023; 2638:67-91. [PMID: 36781636 DOI: 10.1007/978-1-0716-3024-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Oil seed rape (Braasica napus L.) is ranked second among oil seed crops cultivated globally for edible oil for human, and seed cake for animal consumption. Recent genetic and genomics advancements highlighted the diversity that exists within B. napus, which is largely discovered using the most promising genetic markers called single nucleotide polymorphism (SNP). Their calling rate is also enhanced to ~100 folds after the continuous advancements in the next generation sequencing (NGS) technologies. As the high throughput of NGS resulted in multi-Giga bases data, the detailed quality control (QC) prior to downstream analyses is a pre-requisite. It mainly involved the removal of false positives, missing proportions, filtering of low-quality SNPs, and adjustments of minor-allele frequency and heterozygosity. After marker-trait association, for conformation of target SNPs, validations of SNPs can be performed using various methods, especially allele-specific PCR assay-based methods have been utilized for SNP genotyping of genes targeting agronomic traits and somaclonal variations occurred during transgenic studies. In the present study, the authors mainly argue on the genotypic progress, and pipelines/methods that are being used for detection, calling, filtering, and validation of SNPs. Also, insight is provided into the application of SNPs in linkage and association mapping, including QTL mapping and genome-wide association studies targeting mainly developmental traits related to the root system and plant architecture, flowering time, silique, and oil quality. Briefly, the present study provides the recent information and recommendations on the SNP genotyping methods and its applications, which can be useful for marker-assisted breeding in B. napus and other crops.
Collapse
Affiliation(s)
- Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Md Mostofa Uddin Helal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
18
|
Wang Y, Wang K, An T, Tian Z, Dun X, Shi J, Wang X, Deng J, Wang H. Genetic dissection of branch architecture in oilseed rape ( Brassica napus L.) germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:1053459. [PMID: 36388516 PMCID: PMC9650407 DOI: 10.3389/fpls.2022.1053459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Branch architecture is an important factor influencing rapeseed planting density, mechanized harvest, and yield. However, its related genes and regulatory mechanisms remain largely unknown. In this study, branch angle (BA) and branch dispersion degree (BD) were used to evaluate branch architecture. Branch angle exhibited a dynamic change from an increase in the early stage to a gradual decrease until reaching a stable state. Cytological analysis showed that BA variation was mainly due to xylem size differences in the vascular bundle of the branch junction. The phenotypic analysis of 327 natural accessions revealed that BA in six environments ranged from 24.3° to 67.9°, and that BD in three environments varied from 4.20 cm to 21.4 cm, respectively. A total of 115 significant loci were detected through association mapping in three models (MLM, mrMLM, and FarmCPU), which explained 0.53%-19.4% of the phenotypic variations. Of them, 10 loci were repeatedly detected in different environments and models, one of which qBAD.A03-2 was verified as a stable QTL using a secondary segregation population. Totally, 1066 differentially expressed genes (DEGs) were identified between branch adaxial- and abaxial- sides from four extremely large or small BA/BD accessions through RNA sequencing. These DEGs were significantly enriched in the pathways related to auxin biosynthesis and transport as well as cell extension such as indole alkaloid biosynthesis, other glycan degradation, and fatty acid elongation. Four known candidate genes BnaA02g16500D (PIN1), BnaA03g10430D (PIN2), BnaC03g06250D (LAZY1), and BnaC06g20640D (ARF17) were identified by both GWAS and RNA-seq, all of which were involved in regulating the asymmetric distribution of auxins. Our identified association loci and candidate genes provide a theoretical basis for further study of gene cloning and genetic improvement of branch architecture.
Collapse
Affiliation(s)
- Ying Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Kaixuan Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Tanzhou An
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinwu Deng
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
19
|
Qadir M, Qin L, Ye J, Ahmad N, Wang X, Shi J, Wang H. Genetic dissection of the natural variation of ovule number per ovary in oilseed rape germplasm ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999790. [PMID: 36176675 PMCID: PMC9513589 DOI: 10.3389/fpls.2022.999790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape is one of the world's largest oil and industrial crops, providing humans with various products, such as vegetable oil and biofuel. Ovules are the direct precursors of seeds, and ovule number per ovary (ONPO) largely determines seed number per fruit that affects both yield and fitness of seed crops. The ONPO shows wide variation in oilseed rape, whereas the underlying genes and mechanisms are poorly known. The present study performed the genetic, physiological and transcriptomic analyses of ovule number per ovary using an association panel and the extreme lines. The ONPO of 327 accessions planted in four environments showed a large variation from 19.2 to 43.8, indicating a great potential for the further genetic improvement of ovule number. The genome-wide association study (GWAS) identified a total of 43 significant SNP markers. Further, these SNPs were integrated into 18 association loci, which were distributed on chromosomes A01, A03, A06, A07, A09, C01, C03, C06, C07, and C09, explaining 4.3-11.5% of the phenotypic variance. The ONPO decreased as their appearance order on the inflorescence and was associated with the level of several types of endogenous phytohormones but not related to leaf area and photosynthetic rate. Comparative transcriptomic analysis identified a total of 4,449 DEGs enriched in 30 classes, including DNA, RNA, protein, signaling, transport, development, cell wall, lipid metabolism, and secondary metabolism. Nearly half of DEGs were involved in the known pathways in regulating ovule number, of which 12 were homologous to know ovule number regulating genes, indicating a strong link between the identified DEGs and ovule number. A total of 73 DEGs were located within the genomic regions of association loci, of which six were identified as candidates based on functional annotation. These results provide useful information for the further genetic improvement of ovule and seed number in oilseed rape.
Collapse
Affiliation(s)
- Muslim Qadir
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Lei Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jiang Ye
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
20
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
21
|
Ahmad N, Su B, Ibrahim S, Kuang L, Tian Z, Wang X, Wang H, Dun X. Deciphering the Genetic Basis of Root and Biomass Traits in Rapeseed (Brassica napus L.) through the Integration of GWAS and RNA-Seq under Nitrogen Stress. Int J Mol Sci 2022; 23:ijms23147958. [PMID: 35887301 PMCID: PMC9323118 DOI: 10.3390/ijms23147958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait–SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7–21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Bin Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Ze Tian
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.W.); (X.D.)
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Correspondence: (H.W.); (X.D.)
| |
Collapse
|
22
|
Genome-Wide Association Studies of Root-Related Traits in Brassica napus L. under Low-Potassium Conditions. PLANTS 2022; 11:plants11141826. [PMID: 35890461 PMCID: PMC9318150 DOI: 10.3390/plants11141826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Roots are essential organs for a plant’s ability to absorb water and obtain mineral nutrients, hence they are critical to its development. Plants use root architectural alterations to improve their chances of absorbing nutrients when their supply is low. Nine root traits of a Brassica napus association panel were explored in hydroponic-system studies under low potassium (K) stress to unravel the genetic basis of root growth in rapeseed. The quantitative trait loci (QTL) and candidate genes for root development were discovered using a multilocus genome-wide association study (ML-GWAS). For the nine traits, a total of 453 significant associated single-nucleotide polymorphism (SNP) loci were discovered, which were then integrated into 206 QTL clusters. There were 45 pleiotropic clusters, and qRTA04-4 and qRTC04-7 were linked to TRL, TSA, and TRV at the same time, contributing 5.25–11.48% of the phenotypic variance explained (PVE) to the root traits. Additionally, 1360 annotated genes were discovered by examining genomic regions within 100 kb upstream and downstream of lead SNPs within the 45 loci. Thirty-five genes were identified as possibly regulating root-system development. As per protein–protein interaction analyses, homologs of three genes (BnaC08g29120D, BnaA07g10150D, and BnaC04g45700D) have been shown to influence root growth in earlier investigations. The QTL clusters and candidate genes identified in this work will help us better understand the genetics of root growth traits and could be employed in marker-assisted breeding for rapeseed adaptable to various conditions with low K levels.
Collapse
|
23
|
Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed ( Brassica napus L.). Int J Mol Sci 2022; 23:ijms23094781. [PMID: 35563170 PMCID: PMC9102059 DOI: 10.3390/ijms23094781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16–14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.
Collapse
|
24
|
Ibrahim S, Li K, Ahmad N, Kuang L, Sadau SB, Tian Z, Huang L, Wang X, Dun X, Wang H. Genetic Dissection of Mature Root Characteristics by Genome-Wide Association Studies in Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122569. [PMID: 34961040 PMCID: PMC8705616 DOI: 10.3390/plants10122569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Roots are complicated quantitative characteristics that play an essential role in absorbing water and nutrients. To uncover the genetic variations for root-related traits in rapeseed, twelve mature root traits of a Brassica napus association panel were investigated in the field within three environments. All traits showed significant phenotypic variation among genotypes, with heritabilities ranging from 55.18% to 79.68%. Genome-wide association studies (GWAS) using 20,131 SNPs discovered 172 marker-trait associations, including 103 significant SNPs (-log10 (p) > 4.30) that explained 5.24-20.31% of the phenotypic variance. With the linkage disequilibrium r2 > 0.2, these significant associations were binned into 40 quantitative trait loci (QTL) clusters. Among them, 14 important QTL clusters were discovered in two environments and/or with phenotypic contributions greater than 10%. By analyzing the genomic regions within 100 kb upstream and downstream of the peak SNPs within the 14 loci, 334 annotated genes were found. Among these, 32 genes were potentially associated with root development according to their expression analysis. Furthermore, the protein interaction network using the 334 annotated genes gave nine genes involved in a substantial number of interactions, including a key gene associated with root development, BnaC09g36350D. This research provides the groundwork for deciphering B. napus' genetic variations and improving its root system architecture.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, Kano, P.M.B. 3011, Kano 700006, Nigeria
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Lintao Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| |
Collapse
|