1
|
Niikura M, Fukutomi T, Mitobe J, Kobayashi F. Characterization of a nuclear transport factor 2-like domain-containing protein in Plasmodium berghei. Malar J 2024; 23:13. [PMID: 38195464 PMCID: PMC10777651 DOI: 10.1186/s12936-024-04839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Plasmodium lacks an mRNA export receptor ortholog, such as yeast Mex67. Yeast Mex67 contains a nuclear transport factor 2 (NTF2)-like domain, suggesting that NTF2-like domain-containing proteins might be associated with mRNA export in Plasmodium. In this study, the relationship between mRNA export and an NTF2-like domain-containing protein, PBANKA_1019700, was investigated using the ANKA strain of rodent malaria parasite Plasmodium berghei. METHODS The deletion mutant Δ1019700 was generated by introducing gene-targeting vectors into the P. berghei ANKA genome, and parasite growth and virulence were examined. To investigate whether PBANKA_1019700 is involved in mRNA export, live-cell fluorescence imaging and immunoprecipitation coupled to mass spectrometry (IP-MS) were performed using transgenic parasites expressing fusion proteins (1019700::mCherry). RESULTS Deletion of PBANKA_1019700 affected the sexual phase but not the asexual phase of malaria parasites. Live-cell fluorescence imaging showed that PBANKA_1019700 localizes to the cytoplasm. Moreover, IP-MS analysis of 1019700::mCherry indicated that PBANKA_1019700 interacts with ubiquitin-related proteins but not nuclear proteins. CONCLUSIONS PBANKA_1019700 is a noncanonical NTF2-like superfamily protein.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Kanagawa, 252-5201, Japan
| |
Collapse
|
2
|
Niikura M, Fukutomi T, Mitobe J, Kobayashi F. Roles and Cellular Localization of GBP2 and NAB2 During the Blood Stage of Malaria Parasites. Front Cell Infect Microbiol 2021; 11:737457. [PMID: 34604117 PMCID: PMC8479154 DOI: 10.3389/fcimb.2021.737457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
The quality control and export of mRNA by RNA-binding proteins are necessary for the survival of malaria parasites, which have complex life cycles. Nuclear poly(A) binding protein 2 (NAB2), THO complex subunit 4 (THO4), nucleolar protein 3 (NPL3), G-strand binding protein 2 (GBP2) and serine/arginine-rich splicing factor 1 (SR1) are involved in nuclear mRNA export in malaria parasites. However, their roles in asexual and sexual development, and in cellular localization, are not fully understood. In this study using the rodent malaria parasite, Plasmodium berghei, we found that NAB2 and SR1, but not THO4, NPL3 or GBP2, played essential roles in the asexual development of malaria parasites. By contrast, GBP2 but not NPL3 was involved in male and female gametocyte production. THO4 was involved in female gametocyte production, but had a lower impact than GBP2. In this study, we focused on GBP2 and NAB2, which play important roles in the sexual and asexual development of malaria parasites, respectively, and examined their cellular localization. GBP2 localized to both the nucleus and cytoplasm of malaria parasites. Using immunoprecipitation coupled to mass spectrometry (IP-MS), GBP2 interacted with the proteins ALBA4, DOZI, and CITH, which play roles in translational repression. IP-MS also revealed that phosphorylated adapter RNA export protein (PHAX) domain-containing protein, an adaptor protein for exportin-1, also interacted with GBP2, implying that mRNA export occurs via the PHAX domain-containing protein pathway in malaria parasites. Live-cell fluorescence imaging revealed that NAB2 localized at the nuclear periphery. Moreover, IP-MS indicated that NAB2 interacted with transportin. RNA immunoprecipitation coupled to RNA sequencing revealed that NAB2 bound directly to 143 mRNAs, including those encoding 40S and 60S ribosomal proteins. Our findings imply that malaria parasites use an evolutionarily ancient mechanism conserved throughout eukaryotic evolution.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
3
|
Evolution and diversification of the nuclear pore complex. Biochem Soc Trans 2021; 49:1601-1619. [PMID: 34282823 PMCID: PMC8421043 DOI: 10.1042/bst20200570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
Collapse
|
4
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
5
|
Niikura M, Fukutomi T, Fukui K, Inoue SI, Asahi H, Kobayashi F. G-strand binding protein 2 is involved in asexual and sexual development of Plasmodium berghei. Parasitol Int 2020; 76:102059. [PMID: 31958569 DOI: 10.1016/j.parint.2020.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
G-strand binding protein 2 (GBP2) is a Ser/Arg-rich (SR) protein involved in mRNA surveillance and nuclear mRNA quality control in yeast. However, the roles of GBP2 in virulence and sexual development in Plasmodium parasites are unclear, although GBP2 is involved in the asexual development of Plasmodium berghei, the rodent malaria parasite. In this study, we investigated the role of GBP2 in virulence and sexual development of P. berghei using gbp2-deleted P. berghei (Δgbp2 parasites). Then, to identify factors affected by gbp2 deletion, we performed a comparative proteomic analysis of the Δgbp2 parasites. We found that GBP2 was not associated with the development of experimental cerebral malaria during infection with P. berghei, but asexual development of the parasite was delayed with deletion of gbp2. However, the development of P. berghei gametocytes was significantly reduced with deletion of gbp2. Comparative proteomic analysis revealed that the levels of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) in Δgbp2 parasites were significantly higher than those in wild-type (WT) parasites, suggesting that biosynthesis of purine nucleotides may be involved in function of GBP2. Therefore, we investigated the effect of purine starvation on the sexual development and proteome. In nt1-deleted P. berghei (Δnt1 parasites), the production of male and female gametocytes was significantly reduced compared to that in WT parasites. Moreover, we found that protein levels of GBP2 in Δnt1 parasites were markedly lower than in WT parasites. These findings suggest that GBP2 is primarily involved in the sexual development of malaria parasites, and its function may be suppressed by purine starvation.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kana Fukui
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroko Asahi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Japan
| |
Collapse
|
6
|
Goos C, Dejung M, Wehman AM, M-Natus E, Schmidt J, Sunter J, Engstler M, Butter F, Kramer S. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res 2019; 47:266-282. [PMID: 30418648 PMCID: PMC6326799 DOI: 10.1093/nar/gky1136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023] Open
Abstract
The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.
Collapse
Affiliation(s)
- Carina Goos
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Elisabeth M-Natus
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Schmidt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|