1
|
Dos Santos Andrade AT, Tavares CPDS, Ferreira FADS, de Oliveira AC, Lima SC, do Nascimento Neto JF, Pereira BGV, Rodrigues GO, da Silva JS, Pinheiro VCS, Roque RA. Effect of pyriproxyfen on biological parameters and morphometry of Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) in the city of Manaus, Amazonas. Acta Trop 2025; 265:107609. [PMID: 40185218 DOI: 10.1016/j.actatropica.2025.107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
In Brazil, Aedes aegypti is the primary vector of arboviruses, and its control relies mainly on insecticide use. However, excessive application on these products has led to the selection of resistant populations. To address this challenge, products like Pyriproxyfen (PPF), an insect growth regulator, have been used as a viable alternative. In this context, the present study evaluated the susceptibility, resistance ratio, and biological changes of A. aegypti exposed to PPF. Samples were collected in eight neighborhoods using oviposition traps, and the Rockefeller strain was used as a susceptibility standard. Fecundity tests recorded a hatching rate of 72.4 % in the PPF groups, compared to 89.2 % in the control (p < 0.05), and fertility of 72.4 % for PPF compared to 89.2 % in the control (t = 204.5, df = 4, p < 0.05). Longevity was assessed in males, females, and couples (χ² = 20.35, df = 5, p > 0.05). Wing morphometric analyses were reinforced by Mahalanobis distance (1.7127; p < 0.001), Procrustes analysis (0.0064; p = 0.5027), and canonical variable analyses. The width of the cephalic capsules was greater in mosquitoes exposed to PPF (Mann-Whitney U = 369; p < 0.0099). The emergence inhibition rate ranged from 65.33 ± 4 to 100 ± 0 for the Rockefeller strain and from 59.33 ± 4 to 88.66 ± 2 for the field population, with a resistance ratio of 0.68. The study concludes that the A. aegypti population in Manaus, remains susceptible to PPF, and the observed alterations were not significant enough to compromise the vector's biology.
Collapse
Affiliation(s)
- Aylane Tamara Dos Santos Andrade
- Programa de Pós-Graduação, Rede de Biodiversidade e Biotecnologia da Amazônia Legal-BIONORTE, Manaus, Amazonas, Brasil; Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil.
| | - Cláudia Patrícia da Silva Tavares
- Programa de Pós-Graduação, Rede de Biodiversidade e Biotecnologia da Amazônia Legal-BIONORTE, Manaus, Amazonas, Brasil; Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | | | - André Correa de Oliveira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Suelen Costa Lima
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Joaquim Ferreira do Nascimento Neto
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Bianca Geovana Viana Pereira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Genilson Oliveira Rodrigues
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | | | | | - Rosemary Aparecida Roque
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| |
Collapse
|
2
|
Petersen V, Santana M, Karina-Costa M, Nachbar JJ, Martin-Martin I, Adelman ZN, Burini BC. Aedes ( Ochlerotatus) scapularis, Aedes japonicus japonicus, and Aedes ( Fredwardsius) vittatus (Diptera: Culicidae): Three Neglected Mosquitoes with Potential Global Health Risks. INSECTS 2024; 15:600. [PMID: 39194805 DOI: 10.3390/insects15080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
More than 3550 species of mosquitoes are known worldwide, and only a fraction is involved in the transmission of arboviruses. Mosquitoes in sylvatic and semi-sylvatic habitats may rapidly adapt to urban parks and metropolitan environments, increasing human contact. Many of these mosquitoes have been found naturally infected with arboviruses from the Alphaviridae, Flaviviridae, and Bunyaviridae families, with many being the cause of medically important diseases. However, there is a gap in knowledge about the vector status of newly invasive species and their potential threat to human and domestic animal populations. Due to their rapid distribution, adaptation to urban environments, and anthropophilic habits, some neglected mosquito species may deserve more attention regarding their role as secondary vectors. Taking these factors into account, we focus here on Aedes (Ochlerotatus) scapularis (Rondani), Aedes japonicus japonicus (Theobald), and Aedes (Fredwardsius) vittatus (Bigot) as species that have the potential to become important disease vectors. We further discuss the importance of these neglected mosquitoes and how factors such as urbanization, climate change, and globalization profoundly alter the dynamics of disease transmission and may increase the participation of neglected species in propagating diseases.
Collapse
Affiliation(s)
- Vivian Petersen
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Micael Santana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Maria Karina-Costa
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Julia Jardim Nachbar
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Ines Martin-Martin
- National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Bianca C Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| |
Collapse
|
3
|
Zadra N, Tatti A, Silverj A, Piccinno R, Devilliers J, Lewis C, Arnoldi D, Montarsi F, Escuer P, Fusco G, De Sanctis V, Feuda R, Sánchez-Gracia A, Rizzoli A, Rota-Stabelli O. Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. INSECTS 2023; 14:904. [PMID: 38132578 PMCID: PMC10743467 DOI: 10.3390/insects14120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.
Collapse
Affiliation(s)
- Nicola Zadra
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Andrea Silverj
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Julien Devilliers
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Clifton Lewis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy;
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Giuseppe Fusco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| |
Collapse
|
4
|
Day CA, Byrd BD, Trout Fryxell RT. La Crosse virus neuroinvasive disease: the kids are not alright. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1165-1182. [PMID: 37862102 DOI: 10.1093/jme/tjad090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023]
Abstract
La Crosse virus (LACV) is the most common cause of neuroinvasive mosquito-borne disease in children within the United States. Despite more than 50 years of recognized endemicity in the United States, the true burden of LACV disease is grossly underappreciated, and there remain severe knowledge gaps that inhibit public health interventions to reduce morbidity and mortality. Long-standing deficiencies in disease surveillance, clinical diagnostics and therapeutics, actionable entomologic and environmental risk indices, case response capacity, public awareness, and availability of community support groups clearly frame LACV disease as neglected. Here we synthesize salient prior research and contextualize our findings as an assessment of current gaps and opportunities to develop a framework to prevent, detect, and respond to LACV disease. The persistent burdens of LACV disease clearly require renewed public health attention, policy, and action.
Collapse
Affiliation(s)
- Corey A Day
- Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Brian D Byrd
- Environmental Health Sciences, Western Carolina University, Cullowhee, NC, USA
| | | |
Collapse
|
5
|
Liu Q, Xie JW, Wang M, Du YT, Yin ZG, Zhou NX, Zhao TY, Huang EJ, Zhang HD. Potential Global Distribution of the Invasive Mosquito Aedes koreicus under a Changing Climate. Trop Med Infect Dis 2023; 8:471. [PMID: 37888599 PMCID: PMC10610658 DOI: 10.3390/tropicalmed8100471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Invasive alien species are a growing threat to natural systems, the economy, and human health. Active surveillance and responses that readily suppress newly established colonies are effective actions to mitigate the noxious consequences of biological invasions. Aedes (Hulecoeteomyia) koreicus (Edwards), a mosquito species native to East Asia, has spread to parts of Europe and Central Asia since 2008. In the last decade, Ae. koreicus has been shown to be a competent vector for chikungunya virus and Dirofilaria immitis. However, information about the current and potential distribution of Ae. koreicus is limited. Therefore, to understand the changes in their global distribution and to contribute to the monitoring and control of Ae. koreicus, in this study, the MaxEnt model was used to predict and analyze the current suitable distribution area of Ae. koreicus in the world to provide effective information.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| | - Jing-Wen Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
- The School of Public Health, Fujian Medical University, Fuzhou 350000, China
| | - Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| | - Yu-Tong Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| | - Zi-Ge Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| | - Ning-Xin Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| | - En-Jiong Huang
- The School of Public Health, Fujian Medical University, Fuzhou 350000, China
- Fuzhou International Travel Health Care Center, Fuzhou 350001, China
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Q.L.); (J.-W.X.); (M.W.); (Y.-T.D.); (Z.-G.Y.); (N.-X.Z.); (T.-Y.Z.)
| |
Collapse
|
6
|
Da Re D, Van Bortel W, Reuss F, Müller R, Boyer S, Montarsi F, Ciocchetta S, Arnoldi D, Marini G, Rizzoli A, L'Ambert G, Lacour G, Koenraadt CJM, Vanwambeke SO, Marcantonio M. dynamAedes: a unified modelling framework for invasive Aedes mosquitoes. Parasit Vectors 2022; 15:414. [PMID: 36348368 PMCID: PMC9641901 DOI: 10.1186/s13071-022-05414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mosquito species belonging to the genus Aedes have attracted the interest of scientists and public health officers because of their capacity to transmit viruses that affect humans. Some of these species were brought outside their native range by means of trade and tourism and then colonised new regions thanks to a unique combination of eco-physiological traits. Considering mosquito physiological and behavioural traits to understand and predict their population dynamics is thus a crucial step in developing strategies to mitigate the local densities of invasive Aedes populations. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochastic modelling framework which we coded in the R package dynamAedes. We designed a stage-based and time-discrete stochastic model driven by temperature, photo-period and inter-specific larval competition that can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability by accounting for both active and passive dispersal of mosquito species as well as for the heterogeneity of the input temperature data. Our overarching aim was to provide a flexible, open-source and user-friendly tool rooted in the most updated knowledge on the species' biology which could be applied to the management of invasive Aedes populations as well as to more theoretical ecological inquiries.
Collapse
Affiliation(s)
- Daniele Da Re
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Wim Van Bortel
- Unit Entomology and the Outbreak Research Team, Tropical Medicine Institute, Antwerp, Belgium
| | - Friederike Reuss
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ruth Müller
- Unit Entomology and the Outbreak Research Team, Tropical Medicine Institute, Antwerp, Belgium
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Fabrizio Montarsi
- Laboratory of Parasitology, National reference centre/OIE collaborating centre for diseases at the animal-human interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Silvia Ciocchetta
- The University of Queensland, School of Veterinary Science, Gatton, Australia
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | - Constantianus J M Koenraadt
- Wageningen University & Research, Department of Plant Sciences, Laboratory of Entomology, Wageningen, The Netherlands
| | - Sophie O Vanwambeke
- Georges Lemaître Center for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Matteo Marcantonio
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Deblauwe I, De Wolf K, De Witte J, Schneider A, Verlé I, Vanslembrouck A, Smitz N, Demeulemeester J, Van Loo T, Dekoninck W, Krit M, Madder M, Müller R, Van Bortel W. From a long-distance threat to the invasion front: a review of the invasive Aedes mosquito species in Belgium between 2007 and 2020. Parasit Vectors 2022; 15:206. [PMID: 35698108 PMCID: PMC9195248 DOI: 10.1186/s13071-022-05303-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Invasive mosquito species (IMS) and their associated mosquito-borne diseases are emerging in Europe. In Belgium, the first detection of Aedes albopictus (Skuse 1894) occurred in 2000 and of Aedes japonicus japonicus (Theobald 1901) in 2002. Early detection and control of these IMS at points of entry (PoEs) are of paramount importance to slow down any possible establishment. This article reviews the introductions and establishments recorded of three IMS in Belgium based on published (2007-2014) and unpublished (2015-2020) data collected during several surveillance projects. In total, 52 PoEs were monitored at least once for the presence of IMS between 2007 and 2020. These included used tyre and lucky bamboo import companies, airports, ports, parking lots along highways, shelters for imported cutting plants, wholesale markets, industrial areas, recycling areas, cemeteries and an allotment garden at the country border with colonised areas. In general, monitoring was performed between April and November. Mosquitoes were captured with adult and oviposition traps as well as by larval sampling. Aedes albopictus was detected at ten PoEs, Ae. japonicus at three PoEs and Aedes koreicus (Edwards 1917) at two PoEs. The latter two species have established overwintering populations. The percentage of PoEs positive for Ae. albopictus increased significantly over years. Aedes albopictus is currently entering Belgium through lucky bamboo and used tyre trade and passive ground transport, while Ae. japonicus through used tyre trade and probably passive ground transport. In Belgium, the import through passive ground transport was first recorded in 2018 and its importance seems to be growing. Belgium is currently at the invasion front of Ae. albopictus and Ae. japonicus. The surveillance and control management actions at well-known PoEs associated to long-distance introductions are more straightforward than at less-defined PoEs associated with short-distance introductions from colonised areas. These latter PoEs represent a new challenge for IMS management in Belgium in the coming years. Aedes albopictus is expected to become established in Belgium in the coming years, hence increasing the likelihood of local arbovirus transmission. The implementation of a sustainable, structured and long-term IMS management programme, integrating active and passive entomological surveillance, vector control and Public Health surveillance is therefore pivotal.
Collapse
Affiliation(s)
- Isra Deblauwe
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Katrien De Wolf
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Jacobus De Witte
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anna Schneider
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ingrid Verlé
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Adwine Vanslembrouck
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Tervuren, Belgium
| | - Julie Demeulemeester
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Wouter Dekoninck
- Royal Belgian Institute of Natural Sciences (Scientific Heritage Service), Brussels, Belgium
| | - Meryam Krit
- The Unit of Eco-Modelling, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maxime Madder
- Clinglobal, Tamarin, Mauritius
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Ruth Müller
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wim Van Bortel
- The Unit of Entomology, Department Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
8
|
Lahondère C, Bonizzoni M. Thermal biology of invasive Aedes mosquitoes in the context of climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100920. [PMID: 35421621 DOI: 10.1016/j.cois.2022.100920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 05/06/2023]
Abstract
The increasing incidence of arboviral diseases in tropical endemic areas and their emergence in new temperate countries is one of the most important challenges that Public Health agencies are currently facing. Because mosquitoes are poikilotherms, shifts in temperature influence physiological functions besides egg viability. These traits impact not only vector density, but also their interaction with their hosts and arboviruses. As such the relationship among mosquitoes, arboviral diseases and temperature is complex. Here, we summarize current knowledge on the thermal biology of Aedes invasive mosquitoes, highlighting differences among species. We also emphasize the need to expand knowledge on the variability in thermal sensitivity across populations within a species, especially in light of climate change that encompasses increase not only in mean environmental temperature but also in the frequency of hot and cold snaps. Finally, we suggest a novel experimental approach to investigate the molecular architecture of thermal adaptation in mosquitoes.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, USA; The Fralin Life Science Institute, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, USA; The Global Change Center, USA; Department of Entomology at Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
9
|
Bakran-Lebl K, Pree S, Brenner T, Daroglou E, Eigner B, Griesbacher A, Gunczy J, Hufnagl P, Jäger S, Jerrentrup H, Klocker L, Paill W, Petermann JS, Barogh BS, Schwerte T, Suchentrunk C, Wieser C, Wortha LN, Zechmeister T, Zezula D, Zimmermann K, Zittra C, Allerberger F, Fuehrer HP. First Nationwide Monitoring Program for the Detection of Potentially Invasive Mosquito Species in Austria. INSECTS 2022; 13:276. [PMID: 35323574 PMCID: PMC8949374 DOI: 10.3390/insects13030276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020. The sampled eggs were counted and the species were identified by genetic analysis. The Asian tiger mosquito Aedes albopictus was found at two sites, once in Tyrol, where this species has been reported before, and for the first time in the province of Lower Austria, at a motorway rest stop. The Asian bush mosquito Aedes japonicus was widespread in Austria. It was found in all provinces and was the most abundant species in the ovitraps by far. Aedes japonicus was more abundant in the South than in the North and more eggs were found in habitats with artificial surfaces than in (semi-) natural areas. Further, the number of Ae. japonicus eggs increased with higher ambient temperature and decreased with higher wind speed. The results of this study will contribute to a better estimation of the risk of mosquito-borne disease in Austria and will be a useful baseline for a future documentation of changes in the distribution of those species.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Institute for Medical Microbiology & Hygiene, AGES—Austrian Agency for Health and Food Safety Ltd., 1096 Vienna, Austria; (P.H.); (F.A.)
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Stefanie Pree
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Thomas Brenner
- GEBL—Gelsenbekaempfung in den Leithaauen, 2452 Mannersdorf, Austria;
| | - Eleni Daroglou
- Verein Biologische Gelsenregulierung March-Thaya Auen, 2273 Hohenau an der March, Austria; (E.D.); (H.J.)
| | - Barbara Eigner
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Antonia Griesbacher
- Data, Statistics & Risk Assessment, AGES—Austrian Agency for Health and Food Safety Ltd., 8010 Graz, Austria;
| | - Johanna Gunczy
- Universalmuseum Joanneum, Studienzentrum Naturkunde, 8045 Graz, Austria; (J.G.); (W.P.)
| | - Peter Hufnagl
- Institute for Medical Microbiology & Hygiene, AGES—Austrian Agency for Health and Food Safety Ltd., 1096 Vienna, Austria; (P.H.); (F.A.)
| | - Stefanie Jäger
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria; (S.J.); (T.S.)
| | - Hans Jerrentrup
- Verein Biologische Gelsenregulierung March-Thaya Auen, 2273 Hohenau an der March, Austria; (E.D.); (H.J.)
| | | | - Wolfgang Paill
- Universalmuseum Joanneum, Studienzentrum Naturkunde, 8045 Graz, Austria; (J.G.); (W.P.)
| | - Jana S. Petermann
- Environment and Biodiversity, University of Salzburg, 5020 Salzburg, Austria; (J.S.P.); (D.Z.)
| | - Bita Shahi Barogh
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Thorsten Schwerte
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria; (S.J.); (T.S.)
| | | | | | - Licha N. Wortha
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | | | - David Zezula
- Environment and Biodiversity, University of Salzburg, 5020 Salzburg, Austria; (J.S.P.); (D.Z.)
| | | | - Carina Zittra
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| | - Franz Allerberger
- Institute for Medical Microbiology & Hygiene, AGES—Austrian Agency for Health and Food Safety Ltd., 1096 Vienna, Austria; (P.H.); (F.A.)
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| |
Collapse
|
10
|
Kerkow A, Wieland R, Gethmann JM, Hölker F, Lentz HH. Linking a compartment model for West Nile virus with a flight simulator for vector mosquitoes. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Krupa E, Gréhal AL, Esnault J, Bender C, Mathieu B. Laboratory Evaluation of Flight Capacities of Aedes japonicus (Diptera: Culicidae) Using a Flight Mill Device. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6449198. [PMID: 34865033 PMCID: PMC8643834 DOI: 10.1093/jisesa/ieab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Dispersion expands the distribution of invasive species and as such, it is a key factor of the colonization process. Aedes japonicus japonicus (Theobald, 1901) is an invasive species of mosquito and a vector of various viruses. It was detected in the northeast of France in 2014. The population of this species can expand its distribution by several kilometers per year. However, though flight capacities play an active part in the dispersion of Ae. japonicus, they remain unknown for this species. In this study, we investigated the flight capacities of Ae. japonicus in a laboratory setting using the flight mill technique. We evaluated the influence of age on flight. We recorded videos of individual flights with a camera mounted on Raspberry Pi. We extracted data on distance, duration, and speed of flight using the Toxtrac and Boris software. Our analysis showed a median flight distance of 438 m with a maximum of 11,466 m. Strong flyers, which represented 10% of the females tested, flew more than 6,115 m during 4 h and 28 min at a speed of 1.7 km per h. As suspected, Ae. japonicus is a stronger flyer than the other invasive species Aedes albopictus (Skuse, 1894) (Diptera: Culicidae). To our knowledge, this is the first flight mill study conducted on Ae. japonicus and therefore the first evaluation of its flight capacity. In the future, the flight propensity of Ae. japonicus determined in this study can be included as a parameter to model the colonization process of this invasive vector species.
Collapse
Affiliation(s)
- Eva Krupa
- Institut de Parasitologie et Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, F-67000, Strasbourg, France
| | - Alexa-Lou Gréhal
- Institut de Parasitologie et Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, F-67000, Strasbourg, France
| | - Jérémy Esnault
- Syndicat de Lutte contre les Moustiques du Bas-Rhin (SLM67), F-67630, Lauterbourg, France
| | - Christelle Bender
- Syndicat de Lutte contre les Moustiques du Bas-Rhin (SLM67), F-67630, Lauterbourg, France
| | - Bruno Mathieu
- Institut de Parasitologie et Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, F-67000, Strasbourg, France
| |
Collapse
|
12
|
Kramer IM, Pfeiffer M, Steffens O, Schneider F, Gerger V, Phuyal P, Braun M, Magdeburg A, Ahrens B, Groneberg DA, Kuch U, Dhimal M, Müller R. The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146128. [PMID: 34030376 DOI: 10.1016/j.scitotenv.2021.146128] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Aedes aegypti and Aedes albopictus transmit diseases such as dengue, and are of major public health concern. Driven by climate change and global trade/travel both species have recently spread to new tropic/subtropic regions and Ae. albopictus also to temperate ecoregions. The capacity of both species to adapt to new environments depends on their ecophysiological plasticity, which is the width of functional niches where a species can survive. Mechanistic distribution models often neglect to incorporate ecophysiological plasticity especially in regards to overwintering capacity in cooler habitats. To portray the ecophysiological plasticity concerning overwintering capability, we conducted temperature experiments with multiple populations of both species originating from an altitudinal gradient in South Asia and tested as follows: the cold tolerance of eggs (-2 °C- 8 days and - 6 °C- 2 days) without and with an experimental winter onset (acclimation: 10 °C- 60 days), differences between a South Asian and a European Ae. albopictus population and the temperature response in life cycles (13 °C, 18 °C, 23 °C, 28 °C). Ecophysiological plasticity in overwintering capacity in Ae. aegypti is high in populations originating from low altitude and in Ae. albopictus populations from high altitude. Overall, ecophysiological plasticity is higher in Ae. albopictus compared to Ae. aegypti. In both species acclimation and in Ae. albopictus temperate continental origin had a huge positive effect on survival. Our results indicate that future mechanistic prediction models can include data on winter survivorship of both, tropic and subtropic Ae. aegypti, whereas for Ae. albopictus this depends on the respective temperate, tropical region the model is focusing on. Future research should address cold tolerance in multiple populations worldwide to evaluate the full potential of the ecophysiological plasticity in the two species. Furthermore, we found that Ae. aegypti can survive winter cold especially when acclimated and will probably further spread to colder ecoregions driven by climate change.
Collapse
Affiliation(s)
- Isabelle Marie Kramer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Marie Pfeiffer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Oliver Steffens
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Friederike Schneider
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Viviane Gerger
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Parbati Phuyal
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Axel Magdeburg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Bodo Ahrens
- Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany.
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | - Ulrich Kuch
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.
| | | | - Ruth Müller
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany; Unit Entomology, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
13
|
|
14
|
Bušić N, Kučinić M, Merdić E, Bruvo-Mađarić B. Diversity of mosquito fauna (Diptera, Culicidae) in higher-altitude regions of Croatia. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:65-75. [PMID: 35229583 DOI: 10.52707/1081-1710-46.1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2021] [Indexed: 06/14/2023]
Abstract
Global climate change and the accompanying rise in temperature could affect the biology and ecology of a number of vectors, including mosquitoes. High altitude areas that were previously unsuitable for the spread of mosquito vector populations could become suitable. The aim of this research was to study the distribution of mosquito species in higher altitude regions of Croatia. Samples were collected in three areas: Slavonian Mountains, Gorski Kotar, and Middle Velebit. Specimens were morphologically determined and confirmed by DNA barcoding and other genetic markers and showed the presence of 16 species belonging to six genera. The most abundant species were the Culex pipiens complex with 50% of the collected specimens. Both pipiens (Linnaeus, 1758) and molestus (Forskal, 1775) biotypes and their hybrids were identified within the complex, followed by Culex torrentium (Martini, 1925) (20.2%), Culiseta longiareolata (Macquart, 1838) (8.5%), and the invasive species Aedes japonicus (Theobald, 1901) (7.8% of the total number of collected specimens). The remaining 12 species made up 14.7% of the collected specimens. Intraspecific COI p-distances were within the standard barcoding threshold for OTUs, while interspecific genetic distances were much higher, confirming the existence of barcoding gaps. Mosquito fauna of Croatian mountains showed a moderate variety and made 30.8% of the total number of recorded mosquito species in Croatia thus far.
Collapse
Affiliation(s)
- Nataša Bušić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Osijek, Croatia
| | - Mladen Kučinić
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
| | - Enrih Merdić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Osijek, Croatia
| | | |
Collapse
|
15
|
Krupa E, Henon N, Mathieu B. Diapause characterisation and seasonality of Aedes japonicus japonicus (Diptera, Culicidae) in the northeast of France. ACTA ACUST UNITED AC 2021; 28:45. [PMID: 34037519 PMCID: PMC8152802 DOI: 10.1051/parasite/2021045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022]
Abstract
The invasive mosquito Aedes japonicus japonicus (Theobald, 1901) settled in 2013 in the Alsace region, in the northeast of France. In this temperate area, some mosquito species use diapause to survive cold winter temperatures and thereby foster settlement and dispersal. This study reports diapause and its seasonality in a field population of Ae. japonicus in the northeast of France. For two years, eggs were collected from May to the beginning of November. They were most abundant in summer and became sparse in late October. Diapause eggs were determined by the presence of a fully developed embryo in unhatched eggs after repeated immersions. Our study showed effective diapause of Ae. japonicus in this part of France. At the start of the egg-laying period (week 20), we found up to 10% of eggs under diapause, and this rate reached 100% in October. The 50% cut-off of diapause incidence was determined by the end of summer, leading to an average calculated maternal critical photoperiod of 13 h 23 min. Interestingly, diapause was shown to occur in part of the eggs even at the earliest period of the two seasons, i.e. in May of each year. Even though we observed that the size of eggs was positively correlated with diapause incidence, morphology cannot be used as the unique predictive indicator of diapause status due to overlapping measurements between diapausing and non-diapausing eggs. This study provides new knowledge on diapause characterisation and invasive traits of Ae. japonicus.
Collapse
Affiliation(s)
- Eva Krupa
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Nicolas Henon
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| | - Bruno Mathieu
- Université de Strasbourg, DIHP Dynamique des Interactions Hôte Pathogène UR 7292, 67000 Strasbourg, France
| |
Collapse
|
16
|
Smitz N, De Wolf K, Deblauwe I, Kampen H, Schaffner F, De Witte J, Schneider A, Verlé I, Vanslembrouck A, Dekoninck W, Meganck K, Gombeer S, Vanderheyden A, De Meyer M, Backeljau T, Werner D, Müller R, Van Bortel W. Population genetic structure of the Asian bush mosquito, Aedes japonicus (Diptera, Culicidae), in Belgium suggests multiple introductions. Parasit Vectors 2021; 14:179. [PMID: 33766104 PMCID: PMC7995749 DOI: 10.1186/s13071-021-04676-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aedes japonicus japonicus has expanded beyond its native range and has established in multiple European countries, including Belgium. In addition to the population located at Natoye, Belgium, locally established since 2002, specimens were recently collected along the Belgian border. The first objective of this study was therefore to investigate the origin of these new introductions, which were assumed to be related to the expansion of the nearby population in western Germany. Also, an intensive elimination campaign was undertaken at Natoye between 2012 and 2015, after which the species was declared to be eradicated. This species was re-detected in 2017, and thus the second objective was to investigate if these specimens resulted from a new introduction event and/or from a few undetected specimens that escaped the elimination campaign. METHODS Population genetic variation at nad4 and seven microsatellite loci was surveyed in 224 and 68 specimens collected in Belgium and Germany, respectively. German samples were included as reference to investigate putative introduction source(s). At Natoye, 52 and 135 specimens were collected before and after the elimination campaign, respectively, to investigate temporal changes in the genetic composition and diversity. RESULTS At Natoye, the genotypic microsatellite make-up showed a clear difference before and after the elimination campaign. Also, the population after 2017 displayed an increased allelic richness and number of private alleles, indicative of new introduction(s). However, the Natoye population present before the elimination programme is believed to have survived at low density. At the Belgian border, clustering results suggest a relation with the western German population. Whether the introduction(s) occur via passive human-mediated ground transport or, alternatively, by natural spread cannot be determined yet from the dataset. CONCLUSION Further introductions within Belgium are expected to occur in the near future, especially along the eastern Belgian border, which is at the front of the invasion of Ae. japonicus towards the west. Our results also point to the complexity of controlling invasive species, since 4 years of intense control measures were found to be not completely successful at eliminating this exotic at Natoye.
Collapse
Affiliation(s)
- Nathalie Smitz
- Royal Museum for Central Africa (BopCo & Biology Department), Leuvensesteenweg 17, 3080, Tervuren, Belgium.
| | - Katrien De Wolf
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Isra Deblauwe
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Helge Kampen
- Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | - Jacobus De Witte
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Anna Schneider
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Ingrid Verlé
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Adwine Vanslembrouck
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.,Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Wouter Dekoninck
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Kenny Meganck
- Royal Museum for Central Africa (BopCo & Biology Department), Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Sophie Gombeer
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Ann Vanderheyden
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Marc De Meyer
- Royal Museum for Central Africa (BopCo & Biology Department), Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium.,Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374, Müncheberg, Germany
| | - Ruth Müller
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Wim Van Bortel
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.,Outbreak Research Team, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
17
|
Lippi CA, Gaff HD, White AL, Ryan SJ. Scoping review of distribution models for selected Amblyomma ticks and rickettsial group pathogens. PeerJ 2021; 9:e10596. [PMID: 33643699 PMCID: PMC7896504 DOI: 10.7717/peerj.10596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/26/2020] [Indexed: 01/23/2023] Open
Abstract
The rising prevalence of tick-borne diseases in humans in recent decades has called attention to the need for more information on geographic risk for public health planning. Species distribution models (SDMs) are an increasingly utilized method of constructing potential geographic ranges. There are many knowledge gaps in our understanding of risk of exposure to tick-borne pathogens, particularly for those in the rickettsial group. Here, we conducted a systematic scoping review of the SDM literature for rickettsial pathogens and tick vectors in the genus Amblyomma. Of the 174 reviewed articles, only 24 studies used SDMs to estimate the potential extent of vector and/or pathogen ranges. The majority of studies (79%) estimated only tick distributions using vector presence as a proxy for pathogen exposure. Studies were conducted at different scales and across multiple continents. Few studies undertook original data collection, and SDMs were mostly built with presence-only datasets from public database or surveillance sources. The reliance on existing data sources, using ticks as a proxy for disease risk, may simply reflect a lag in new data acquisition and a thorough understanding of the tick-pathogen ecology involved.
Collapse
Affiliation(s)
- Catherine A. Lippi
- Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Holly D. Gaff
- Department of Biology, Old Dominion University, Norfolk, VA, USA
- School of Mathematics, Statistics and Computer Science, University of Kwa-Zulu Natal, Durban, South Africa
| | - Alexis L. White
- Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Day CA, Armstrong EG, Byrd BD. Population Growth Rates of Aedes atropalpus (Diptera: Culicidae) Are Depressed at Lower Temperatures Where Aedes japonicus japonicus (Diptera: Culicidae) Are Naturally Abundant in Rock Pools. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:493-497. [PMID: 32865211 DOI: 10.1093/jme/tjaa183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Recent studies report extensive reductions in the abundance of the North American rock pool mosquito, Aedes atropalpus (Diptera: Culicidae), following the invasion of Ae. japonicus japonicus in the United States. Although developmental temperature is recognized as an important component of the invasion biology of Ae. j. japonicus, its impacts on the population growth and fitness of Ae. atropalpus remain largely undefined. In this study we reared Ae. atropalpus larvae at three temperature ranges reflecting ecologically important temperatures in natural rock pools: a low temperature range (mean: 19°C) where Ae. j. japonicus is common and Ae. atropalpus is often rare, a middle temperature range (mean: 25°C) where both species are naturally found in similar relative abundances, and a higher temperature range (mean: 31°C) where Ae. atropalpus is the dominant species. We measured survival, development time, wing length, and fecundity to calculate a finite population growth rate at each temperature. Our results indicate that Ae. atropalpus population growth suffers in colder rock pools, which informs the perceived displacement of the species in temperate habitats. The population growth rate was highest in the middle temperature range, but not significantly higher than in the highest temperature range used in this study. The developmental success of Ae. atropalpus at the intermediate temperature range suggests that competition with Ae. j. japonicus in rock pools within that range may significantly impact natural Ae. atropalpus populations.
Collapse
Affiliation(s)
- Corey A Day
- Mosquito and Vector-Borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC
| | - Eleanor G Armstrong
- Mosquito and Vector-Borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC
| | - Brian D Byrd
- Mosquito and Vector-Borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC
| |
Collapse
|
19
|
Früh L, Kampen H, Koban MB, Pernat N, Schaub GA, Werner D. Oviposition of Aedes japonicus japonicus (Diptera: Culicidae) and associated native species in relation to season, temperature and land use in western Germany. Parasit Vectors 2020; 13:623. [PMID: 33334377 PMCID: PMC7744736 DOI: 10.1186/s13071-020-04461-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aedes japonicus japonicus, first detected in Europe in 2000 and considered established in Germany 10 years later, is of medical importance due to its opportunistic biting behaviour and its potential to transmit pathogenic viruses. Its seasonal phenology, temperature and land use preference related to oviposition in newly colonised regions remain unclear, especially in the context of co-occurring native mosquito species. METHODS Focussing on regions in Germany known to be infested by Ae. japonicus japonicus, we installed ovitraps in different landscapes and their transition zones and recorded the oviposition activity of mosquitoes in relation to season, temperature and land use (arable land, forest, settlement) in two field seasons (May-August 2017, April-November 2018). RESULTS Ae. japonicus japonicus eggs and larvae were encountered in 2017 from June to August and in 2018 from May to November, with a markedly high abundance from June to September in rural transition zones between forest and settlement, limited to water temperatures below 30 °C. Of the three native mosquito taxa using the ovitraps, the most frequent was Culex pipiens s.l., whose offspring was found in high numbers from June to August at water temperatures of up to 35 °C. The third recorded species, Anopheles plumbeus, rarely occurred in ovitraps positioned in settlements and on arable land, but was often associated with Ae. japonicus japonicus. The least frequent species, Aedes geniculatus, was mostly found in ovitraps located in the forest. CONCLUSIONS The transition zone between forest and settlement was demonstrated to be the preferred oviposition habitat of Ae. japonicus japonicus, where it was also the most frequent container-inhabiting mosquito species in this study. Compared to native taxa, Ae. japonicus japonicus showed an extended seasonal activity period, presumably due to tolerance of colder water temperatures. Higher water temperatures and arable land represent distribution barriers to this species. The frequently co-occurring native species An. plumbeus might be useful as an indicator for potentially suitable oviposition habitats of Ae. japonicus japonicus in hitherto uncolonised regions. The results contribute to a better understanding of mosquito ecology and provide a basis for more targeted monitoring, distribution modelling and risk management of mosquitoes.
Collapse
Affiliation(s)
- Linus Früh
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Insel Riems, 17493 Greifswald, Germany
| | - Marcel B. Koban
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Universität Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Nadja Pernat
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Günter A. Schaub
- Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
| |
Collapse
|
20
|
Riles MT, Day CA, Killingsworth D. Field Observations of Invasive Species Aedes japonicus and Larval Contemporaries in Escambia County, Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:269-271. [PMID: 33647118 DOI: 10.2987/20-6981.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Asian bush mosquito, Aedes japonicus, is an invasive species that is well established in North America and Europe. Though it is considered a temperate species, we have observed an established population of Ae. japonicus in the subtropical climate of northwestern Florida. To evaluate the temporal patterns of Ae. japonicus abundance, mosquito larvae were collected from 15 artificial containers in Escambia County, FL, from August 2019 to July 2020, with the prediction that Ae. japonicus abundance would peak in the winter months and decline with increasing ambient temperatures. Aedes japonicus larvae were collected in low abundances during each month except for February (n = 51), with no clear temporal patterns of abundance. Larval contemporaries belonging to other species were considered in sampling of containers and were also cataloged. We demonstrate monthly observance of this temperate species at a single site in the Florida panhandle, exemplifying the persistence of Ae. japonicus through all seasons in a subtropical climate.
Collapse
|
21
|
Day CA, Lewandowski K, Vonesh JR, Byrd BD. Phenology of Rock Pool Mosquitoes in the Southern Appalachian Mountains: Surveys Reveal Apparent Winter Hatching of Aedes japonicus and the Potential For Asymmetrical Stage-Specific Interactions. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:216-226. [PMID: 33647114 DOI: 10.2987/20-6964.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The North American rock pool mosquito, Aedes atropalpus, has reportedly decreased in abundance following the introduction of Ae. japonicus japonicus to the USA, but the specific mechanisms responsible for the reduction remain unclear. Thus, there is a need for field studies to improve our knowledge of natural rock pool systems where both species co-occur. We sampled rock pool invertebrates over a 12-month period along the Chattooga River at a high-elevation site (728 m) near Cashiers, NC, and at a lower-elevation site (361 m) near Clayton, GA. We identified 12 orders of macroinvertebrates representing at least 19 families and 5 mosquito species. Aedes j. japonicus was present year-round at both sites. We observed overwintering Ae. j. japonicus larvae in pools with water temperatures as cold as 3°C and detected apparent winter egg hatching in water below 10°C. Aedes atropalpus was rarely encountered at the high-elevation site but was highly abundant in the summer months at the low-elevation site. Late-stage Ae. j. japonicus larvae inhabited pools in March 2019 when Ae. atropalpus first appeared in the same pools, creating the potential for asymmetrical stage-specific interactions. Our observations provide evidence of overwintering and early hatching of Ae. j. japonicus in the southeastern climate. Further study of the importance of stage-dependent competition and winter egg hatching of diapausing Ae. j. japonicus eggs is warranted.
Collapse
|
22
|
Marini G, Manica M, Arnoldi D, Inama E, Rosà R, Rizzoli A. Influence of Temperature on the Life-Cycle Dynamics of Aedes albopictus Population Established at Temperate Latitudes: A Laboratory Experiment. INSECTS 2020; 11:insects11110808. [PMID: 33212996 PMCID: PMC7698496 DOI: 10.3390/insects11110808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/01/2022]
Abstract
Simple Summary Mosquitoes represent a potential major public health concern, as they are capable of transmitting several pathogens when biting humans. It is well known that temperature is a crucial factor affecting mosquito biology: for instance, warmer conditions can increase survival and fecundity. Here, we quantify the influence of different temperatures on the bionomics of Aedes albopictus, which is a mosquito species native to Southeast Asia that has been able to spread worldwide during the last forty years. We used specimens collected from northern Italy to assess if temperate individuals are characterized, possibly thanks to an adaptation process, by a different thermal response with respect to subtropical individuals. We found that immature stages are well adapted to colder temperatures, which nonetheless seem to prevent any blood-feeding activity. Adult longevity and fecundity were substantially greater at mild conditions. This thermal adaptation might increase the length of the breeding season and could allow the colonization of areas at higher altitude, resulting in an overall increased risk for potential transmission of Ae. albopictus-borne pathogens. Abstract The mosquito species Aedes albopictus has successfully colonized many areas at temperate latitudes, representing a major public health concern. As mosquito bionomics is critically affected by temperature, we experimentally investigated the influence of different constant rearing temperatures (10, 15, 25, and 30 °C) on the survival rates, fecundity, and developmental times of different life stages of Ae. albopictus using a laboratory colony established from specimens collected in northern Italy. We compared our results with previously published data obtained with subtropical populations. We found that temperate Ae. albopictus immature stages are better adapted to colder temperatures: temperate larvae were able to develop even at 10 °C and at 15 °C, larval survivorship was comparable to the one observed at warmer conditions. Nonetheless, at these lower temperatures, we did not observe any blood-feeding activity. Adult longevity and fecundity were substantially greater at 25 °C with respect to the other tested temperatures. Our findings highlight the ability of Ae. albopictus to quickly adapt to colder environments and provide new important insights on the bionomics of this species at temperate latitudes.
Collapse
Affiliation(s)
- Giovanni Marini
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (M.M.); (D.A.); (E.I.); (R.R.); (A.R.)
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, 38100 Trento, Italy
- Correspondence:
| | - Mattia Manica
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (M.M.); (D.A.); (E.I.); (R.R.); (A.R.)
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, 38100 Trento, Italy
- Center for Information and Communication Technology, Bruno Kessler Foundation, 38123 Trento, Italy
| | - Daniele Arnoldi
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (M.M.); (D.A.); (E.I.); (R.R.); (A.R.)
| | - Enrico Inama
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (M.M.); (D.A.); (E.I.); (R.R.); (A.R.)
| | - Roberto Rosà
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (M.M.); (D.A.); (E.I.); (R.R.); (A.R.)
- Center Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (M.M.); (D.A.); (E.I.); (R.R.); (A.R.)
| |
Collapse
|
23
|
Reuss F, Kreß A, Braun M, Magdeburg A, Pfenninger M, Müller R, Mehring M. Knowledge on exotic mosquitoes in Germany, and public acceptance and effectiveness of Bti and two self-prepared insecticides against Aedes japonicus japonicus. Sci Rep 2020; 10:18901. [PMID: 33144626 PMCID: PMC7641113 DOI: 10.1038/s41598-020-75780-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
Mosquito-borne diseases are a continuous challenge to public health. To prevent transmission, Integrated Vector Management (IVM) applies preventive, control, and communicational strategies that should be feasible, environmentally benign, and sustainable. IVM shows higher efficiency when being supported by local communities. Accordingly, we applied a social-ecological approach to identify the public acceptance of control measures and effectiveness of Eurocent coins containing copper, clove essential oil (EO) and Bacillus thuringiensis israelensis (Bti). We performed field and laboratory experiments to demonstrate the toxicity of alternative substances against Aedes japonicus japonicus. In expert interviews, we asked for (1) knowledge on exotic mosquitoes in Germany, (2) potential chances of alternative substances in future mosquito control, and (3) their needs for further clarification before application. We assessed potential users' (4) awareness of exotic mosquitoes and (5) willingness to apply the substances. Self-prepared copper coins and EO were clearly preferred by potential users over Bti. However, 100% mortality of the sensitive first stage could not be reached with the number of ten 5-Eurocent coins showing limited toxicity. Clove EO was shown to work as oviposition deterrent and larvicide with a LC50 of 17 mg l-1 (95% CI: 15-19 mg l-1). This study shows the importance of potential users' perspectives in IVM and the need for authorised insecticides.
Collapse
Affiliation(s)
- Friederike Reuss
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany.
| | - Aljoscha Kreß
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Axel Magdeburg
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
- LOEWE TBG (Translational Biodiversity Genomics), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Ruth Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Marion Mehring
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
- ISOE - Institute for Social-Ecological Research, Biodiversity and People, Hamburger Allee 45, 60486, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Thermal preferences of subtropical Aedes aegypti and temperate Ae. japonicus mosquitoes. J Therm Biol 2020; 91:102637. [PMID: 32716879 DOI: 10.1016/j.jtherbio.2020.102637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022]
Abstract
Temperature is an important determinant affecting the capacity of disease vectors like mosquitoes (Culicidae) to transmit disease agents. Although the impact of temperature on vector-borne disease dynamics has been studied intensively, the actual temperature encountered by the vector in a heterogeneous landscape is rarely taken into account. If disease vectors have temperature preferences and therefore select specific microhabitats, this would substantially influence key life history traits that determine transmission intensity. The thermal preferences of subtropical Aedes aegypti and temperate Ae. japonicus mosquitoes were investigated in a temperature gradient set-up consisting of a Plexiglas box on top of an aluminium plate on two thermal regulators. Blood-fed (one day after feeding) and unfed (non-blood-fed) mosquitoes were released in small (15-20 °C, 20-25 °C, 25-30 °C) and large (15-30 °C, 30-45 °C) temperature gradients to assess their thermal preferences after 15 min. Additionally, the effect of humidity was investigated in a two-choice chamber setup. Both mosquito species avoided higher temperatures, pronouncedly dangerously high temperatures in the 30-45 °C gradient. At lower temperatures, blood-fed mosquitoes preferred the cooler sides of the 20-25 °C and 25-30 °C gradient, which were all below their rearing temperature. In the lowest gradient of 15-20 °C, no preferences were found. The thermal preference of unfed mosquitoes was similar to that of the blood-fed mosquitoes. No humidity preference or effect of humidity on temperature preferences was observed within the tested range (40-90%). The set-up allows for assessing the thermal preference of mosquitoes under controlled conditions. The observed preference of mosquitoes for cooler temperatures would increase their longevity and slow down pathogen development. If similar microhabitat selection is observed in the field, vector borne disease models should be adjusted accordingly.
Collapse
|
25
|
Cunze S, Kochmann J, Klimpel S. Global occurrence data improve potential distribution models for Aedes japonicus japonicus in non-native regions. PEST MANAGEMENT SCIENCE 2020; 76:1814-1822. [PMID: 31814250 DOI: 10.1002/ps.5710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is great interest in modelling the distribution of invasive species, particularly from the point of view of management. However, distribution modelling for invasive species using ecological niche models (ENMs) involves multiple challenges. Owing to the short time span since the introduction or arrival of a non-indigenous species and the associated dispersal limitations, applying regular ENMs at an early stage of the invasion process may result in an underestimation of the potential niche in the new ranges. This topic is dealt with here using the example of Aedes japonicus japonicus, a vector competent mosquito species for a number of diseases. RESULTS We found high niche unfilling for the species' non-native range niches in Europe and North America compared with the native range niche, which can be explained by the early stage of the invasion process. Comparing four different ENMs based on: (i) the European and (ii) the North American non-native range occurrence data, (iii) (derived) native range occurrence data, and (iv) all available occurrence data together, we found large differences in the projected climatic suitability, with the global data model projecting larger areas with climatic suitability. CONCLUSION ENM in biological invasions can be challenging, especially when distribution data are only poorly available. We suggest one possible way to project climatic suitability for Aedes j. japonicus despite poor data availability for the non-native ranges and missing occurrences from the native range. We discuss aspects of the lack of information and the associated implications for modelling. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Judith Kochmann
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| |
Collapse
|
26
|
Kurucz K, Manica M, Delucchi L, Kemenesi G, Marini G. Dynamics and Distribution of the Invasive Mosquito Aedes koreicus in a Temperate European City. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082728. [PMID: 32326530 PMCID: PMC7216222 DOI: 10.3390/ijerph17082728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/03/2022]
Abstract
Aedes koreicus is a mosquito species native to Asia that has recently successfully invaded new areas in several European countries. Here, we provide important data on Ae. koreicus establishment in Pécs (Southern Hungary). Mosquito surveillance was carried out weekly between 2016 and 2019 at 10 different sites located throughout the city from May to September. We conducted a statistical analysis to evaluate the most important abiotic factors driving Ae. koreicus abundance. We then calibrated a previously developed temperature-dependent mathematical model to the recorded captures to evaluate mosquito abundance in the study area. We found that too high summer temperatures negatively affect mosquito abundance. The model accurately replicated the observed capture patterns, providing an estimate of Ae. koreicus density for each breeding season, which we interpolated to map Ae. koreicus abundance throughout Pécs. We found a negative correlation between mosquito captures and human density, suggesting that Ae. koreicus does not necessarily require humans for its blood meals. Our study provides a successful application of a previously published mathematical model to investigate Ae. koreicus population dynamics, proving its suitability for future studies, also within an epidemiological framework.
Collapse
Affiliation(s)
- Kornélia Kurucz
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Gábor Kemenesi
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Correspondence:
| |
Collapse
|
27
|
Früh L, Kampen H, Schaub GA, Werner D. Predation on the invasive mosquito Aedes japonicus (Diptera: Culicidae) by native copepod species in Germany. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:241-247. [PMID: 31729795 DOI: 10.1111/jvec.12355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/21/2019] [Indexed: 05/25/2023]
Abstract
Some limnic copepod species are predators of mosquito larvae. Seven species belonging to the order Cyclopoida, family Cyclopidae, were collected in the field in Germany and tested for the first time in laboratory bioassays for their potential to serve as biological control agents of the invasive Asian bush mosquito Aedes japonicus (Theobald), a vector of various pathogens causing disease. Females of Diacyclops bicuspidatus (Claus) did not attack 1st instar larvae of Ae. japonicus, but Macrocyclops distinctus (Richard), Cyclops divergens Lindberg, and C. heberti Einsle predated a mean of 14, 18, or 19 1st instar larvae, respectively. Acanthocyclops einslei Mirabdullayev and Defaye killed 30 larvae, and high predation rates with a mean of 39 or 46 larvae, respectively, were obtained by Megacyclops viridis (Jurine) and M. gigas (Claus). In regression analyses, predation rates by M. viridis correlated with body size, with specimens of 1.8 mm length being more effective than smaller or bigger ones. Based on the presented data, the two Megacyclops species seem to be promising candidates for use in field studies on the biological control of Ae. japonicus.
Collapse
Affiliation(s)
- Linus Früh
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Ruhr-Universität Bochum, Group Zoology/Parasitology, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Günter A Schaub
- Ruhr-Universität Bochum, Group Zoology/Parasitology, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
28
|
Kerkow A, Wieland R, Früh L, Hölker F, Jeschke JM, Werner D, Kampen H. Can data from native mosquitoes support determining invasive species habitats? Modelling the climatic niche of Aedes japonicus japonicus (Diptera, Culicidae) in Germany. Parasitol Res 2019; 119:31-42. [PMID: 31773308 PMCID: PMC6942025 DOI: 10.1007/s00436-019-06513-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
Invasive mosquito species and the pathogens they transmit represent a serious health risk to both humans and animals. Thus, predictions on their potential geographic distribution are urgently needed. In the case of a recently invaded region, only a small number of occurrence data is typically available for analysis, and absence data are not reliable. To overcome this problem, we have tested whether it is possible to determine the climatic ecological niche of an invasive mosquito species by using both the occurrence data of other, native species and machine learning. The approach is based on a support vector machine and in this scenario applied to the Asian bush mosquito (Aedes japonicus japonicus) in Germany. Presence data for this species (recorded in the Germany since 2008) as well as for three native mosquito species were used to model the potential distribution of the invasive species. We trained the model with data collected from 2011 to 2014 and compared our predicted occurrence probabilities for 2015 with observations found in the field throughout 2015 to evaluate our approach. The prediction map showed a high degree of concordance with the field data. We applied the model to medium climate conditions at an early stage of the invasion (2011–2015), and developed an explanation for declining population densities in an area in northern Germany. In addition to the already known distribution areas, our model also indicates a possible spread to Saarland, southwestern Rhineland-Palatinate and in 2015 to southern Bavaria, where the species is now being increasingly detected. However, there is also evidence that the possible distribution area under the mean climate conditions was underestimated.
Collapse
Affiliation(s)
- Antje Kerkow
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany. .,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany. .,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Ralf Wieland
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Linus Früh
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Franz Hölker
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Jonathan M Jeschke
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195, Berlin, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| |
Collapse
|
29
|
Marini G, Arnoldi D, Baldacchino F, Capelli G, Guzzetta G, Merler S, Montarsi F, Rizzoli A, Rosà R. First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasit Vectors 2019; 12:524. [PMID: 31694685 PMCID: PMC6833271 DOI: 10.1186/s13071-019-3772-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Aedes koreicus was detected in northern Italy for the first time in 2011, and it is now well established in several areas as a new invasive mosquito species. Data regarding the influence of temperature on mosquito survival and development are not available yet for this species. METHODS We experimentally investigated the influence of different constant rearing temperatures (between 4 and 33 °C) on the survival rates and developmental times of different life stages of Ae. koreicus under laboratory conditions. The resulting data were subsequently used to inform a mathematical model reproducing the Ae. koreicus life-cycle calibrated to counts of adult females captured in the field in the autonomous province of Trento (northern Italy) between 2016 and 2018. RESULTS We found that temperatures above 28 °C are not optimal for the survival of pupae and adults, whereas temperate conditions of 23-28 °C seem to be very favorable, explaining the recent success of Ae. koreicus at establishing into new specific areas. Our results indicate that Ae. koreicus is less adapted to local climatic conditions compared to Ae. albopictus, another invasive species which has been invading the area for the last three decades. Warmer seasons, which are more likely to occur in the future because of climate change, might extend the breeding time and therefore increase the abundance of Ae. koreicus in the study region. CONCLUSIONS Our findings provide, to our knowledge, the first evidence on how temperature influences the bionomics and dynamics of Ae. koreicus and highlight the need for further studies on the phenology of this species in temperate areas of Europe.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Frederic Baldacchino
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Direction départementale de la protection des population du Nord, Lille, France
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD Italy
| | - Giorgio Guzzetta
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy
- Center for Information Technology, Bruno Kessler Foundation, Trento, Italy
| | - Stefano Merler
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy
- Center for Information Technology, Bruno Kessler Foundation, Trento, Italy
| | - Fabrizio Montarsi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento Italy
| |
Collapse
|
30
|
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019; 11:E1013. [PMID: 31683823 PMCID: PMC6893470 DOI: 10.3390/v11111013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses. Vector competence is affected by both direct and indirect effects of temperature, and generally increases with increasing temperature, but results may vary by vector species, population, and viral strain. Temperature additionally has a significant influence on life history traits of vectors at both immature and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector competence, temperature effects on life history traits can vary by species and population. Vector, host, and viral distributions are all affected by temperature, and are generally expected to change with increased temperatures predicted under climate change. Arboviruses are generally expected to shift poleward and to higher elevations under climate change, yet significant variability on fine geographic scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an optimum, and then decreases at high temperatures. Improved vector distribution information could facilitate future distribution modeling. A wide variety of approaches have been used to model viral distributions, although most research has focused on the West Nile virus. Direct temperature effects are frequently observed, as are indirect effects, such as through droughts, where temperature interacts with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors, and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of evolving biological systems.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| | - Alexander C Keyel
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
31
|
Ballardini M, Ferretti S, Chiaranz G, Pautasso A, Riina MV, Triglia G, Verna F, Bellavia V, Radaelli MC, Berio E, Accorsi A, De Camilli M, Cardellino U, Fiorino N, Acutis PL, Casalone C, Mignone W. First report of the invasive mosquito Aedes koreicus (Diptera: Culicidae) and of its establishment in Liguria, northwest Italy. Parasit Vectors 2019; 12:334. [PMID: 31277680 PMCID: PMC6610922 DOI: 10.1186/s13071-019-3589-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Invasive mosquito species (IMS) of the genus Aedes are a cause of increasing concern in Europe owing to their ability to vector important human viral diseases. Entomological surveillance to early detect alien mosquito and flavivirus circulation in Liguria, northwest Italy, has been carried out since 2011. RESULTS The invasive species Aedes koreicus was first detected in Genoa in September 2015, when a male specimen was caught near the international airport; species identity was confirmed by genetic analysis. Over the next three years, 86 more adult specimens were trapped at sites throughout the city, accounting for 0.50% of all mosquitoes and 1.04% of Aedes sp. mosquitoes trapped in Genova in the four-year period 2015-2018. So far, no other monitored sites in Liguria have revealed the presence of this species. Ovitraps at two sites became positive for the species in July-August 2017. All female Ae. koreicus pools analysed were negative in biomolecular assays for Flavivirus. CONCLUSIONS Our findings of Ae. koreicus in Genoa constitute, to the best of our knowledge, the first report of the species in northwest Italy and in a Mediterranean port city. The species appears to be established; trapping and climatic data support survival of Ae. koreicus in the area through three consecutive winters. Monitoring of adult mosquitoes detected the species two years before its discovery with ovitraps; trapping for adult specimens appears to be a more effective tool for the early detection of IMS. The airport (located near the commercial port area) and the flower market are the most probable sites of introduction; however, the exact time and place of arrival of this IMS in Liguria remain unknown. Based on morphological and genetic data, a common origin for most of the Ae. koreicus populations established in Europe is suspected. So far, no control measures have been adopted in Genoa and the species will probably colonize an even wider area in the next few years.
Collapse
Affiliation(s)
- Marco Ballardini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | | | | | - Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Maria Vittoria Riina
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Giorgia Triglia
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| | - Federica Verna
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Veronica Bellavia
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Maria Cristina Radaelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Enrica Berio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| | - Annalisa Accorsi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| | | | | | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle dʼAosta (IZSPLV), Turin, Italy
| | - Walter Mignone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), Imperia, Italy
| |
Collapse
|
32
|
Byrd BD, Sither CB, Goggins JA, Kunze-Garcia S, Pesko KN, Bustamante DM, Sither JM, Vonesh JR, O'Meara GF. Aquatic thermal conditions predict the presence of native and invasive rock pool Aedes (Diptera: Culicidae) in the southern Appalachians, U.S.A. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:30-39. [PMID: 31124245 DOI: 10.1111/jvec.12326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The native rock pool mosquito, Aedes atropalpus (Coquillett), and the invasive Aedes japonicus (Theobald) have been found in many types of artificial and natural containers throughout North America. Little is known about the ecology of these two species in habitats where they co-occur, although multiple investigators have reported the decline of the native species concurrent with the introduction and spread of the invasive species. Here we report the results of riverine rock pool collections (n=503) in the southern Appalachian Mountains between 2009-2015. Surface water temperatures strongly predicted the presence of each species across a broad range of observed temperatures (11-39.8° C). For every unit of increase in temperature (°C) the odds of collecting Ae. atropalpus larvae increased by 0.34 while the odds of collecting Ae. japonicus larvae decreased by 0.28. No Ae. japonicus larvae or pupae were collected at temperatures greater than 36° C; however, immature Ae. atropalpus were found in rock pools with temperatures up to 39.8° C. In contrast, Ae. japonicus were highly abundant in cooler rock pools (<17° C) where Ae. atropalpus were infrequent or absent. Our findings suggest that in spite of the successful invasion by Ae. japonicus, Ae. atropalpus remains well established in the southern Appalachian Mountains. Given the strong correlation of temperature with the presence of the two species and the contrasting absence of each species at observed temperature extremes, the role of thermal conditions should be carefully explored in the context of other ecological factors likely influencing the range and abundance of these mosquitoes.
Collapse
Affiliation(s)
- Brian D Byrd
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - Charlie B Sither
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - J Alan Goggins
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - Samantha Kunze-Garcia
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - Kendra N Pesko
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, U.S.A
| | - Dulce M Bustamante
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, U.S.A
| | - John M Sither
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - James R Vonesh
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - George F O'Meara
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, U.S.A
| |
Collapse
|
33
|
Do we know how mosquito disease vectors will respond to climate change? Emerg Top Life Sci 2019; 3:115-132. [DOI: 10.1042/etls20180125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/15/2023]
Abstract
Abstract
Mosquito-borne diseases are on the rise globally. Besides invasion processes and the increasing connectivity between distant regions through the trade of goods and human mobility, climate change is seen as an important driver for changing the likelihood of occurrence of vectors and diseases, respectively. Ectothermic insects respond directly to thermal conditions and thus we can expect them to follow climatic trends. However, a variety of species and different stages in their life cycles need to be considered. Here, we review the current literature in this field and disentangle the state of knowledge and the challenges and open questions for future research. The integration of diurnal temperature ranges in prospective experimental studies will strongly improve the knowledge of mosquitoes’ ecology and mosquito-borne disease transmission for temperate regions in particular. In addition, invasive mosquitoes are known to rapidly adapt to the climatic conditions, but the underlying processes are not yet fully understood.
Collapse
|
34
|
Montarsi F, Martini S, Michelutti A, Da Rold G, Mazzucato M, Qualizza D, Di Gennaro D, Di Fant M, Dal Pont M, Palei M, Capelli G. The invasive mosquito Aedes japonicus japonicus is spreading in northeastern Italy. Parasit Vectors 2019; 12:120. [PMID: 30909981 PMCID: PMC6434805 DOI: 10.1186/s13071-019-3387-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The invasive mosquito species, Aedes japonicus japonicus, was detected in northeastern Italy for the first time in 2015, at the border with Austria. After this finding, a more intensive monitoring was carried out to assess its distribution and to collect biological data. Herein, we report the results of four years (2015-2018) of activity. METHODS The presence of Ae. j. japonicus was checked in all possible breeding sites through collections of larvae. The monitoring started from the site of the first detection at the Austrian border and then was extended in all directions. The mosquitoes were identified morphologically and molecularly. RESULTS Aedes j. japonicus was found in 58 out of 73 municipalities monitored (79.5%). In total (2015-2018), 238 sampling sites were monitored and 90 were positive for presence of Ae. j. japonicus larvae (37.8%). The mosquito was collected mainly in artificial containers located in small villages and in rural areas. Cohabitation with other mosquito species was observed in 55.6% of the samplings. CONCLUSIONS Aedes j. japonicus is well established in Italy and in only four years has colonised two Italian Regions, displaying rapid spreading throughout hilly and mountainous areas. Colonization towards the south seems limited by climatic conditions and the occurrence of a large population of the larval competitor, Ae. albopictus. The further spread of Ae. j. japonicus has the potential to pose new threats of zoonotic agents (i.e. Dirofilaria spp. and West Nile virus) within areas at altitudes previously considered at negligible risk in Italy.
Collapse
Affiliation(s)
| | | | - Alice Michelutti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Davide Qualizza
- Azienda per l’Assistenza Sanitaria A.A.S. 3-Alto Friuli, Collinare e Medio Friuli, S.O.C. Igiene e Sanità Pubblica, Gemona del Friuli, Udine, Italy
| | - Domenico Di Gennaro
- Azienda per l’Assistenza Sanitaria A.A.S. 3-Alto Friuli, Collinare e Medio Friuli, S.O.C. Igiene e Sanità Pubblica, Gemona del Friuli, Udine, Italy
| | - Marcella Di Fant
- Azienda per l’Assistenza Sanitaria A.A.S. 3-Alto Friuli, Collinare e Medio Friuli, S.O.C. Igiene e Sanità Pubblica, Gemona del Friuli, Udine, Italy
| | - Marco Dal Pont
- Azienda Sanitaria Universitaria Integrata di Udine-Dipartimento di Prevenzione A.S.S. 4-Medio Friuli, Udine, Italy
| | - Manlio Palei
- Regione Autonoma Friuli Venezia Giulia, Direzione Centrale Salute, Integrazione Sociosanitaria e Politiche Sociali-Servizio Sanità Pubblica Veterinaria, Trieste, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
35
|
Wieser A, Reuss F, Niamir A, Müller R, O'Hara RB, Pfenninger M. Modelling seasonal dynamics, population stability, and pest control in Aedes japonicus japonicus (Diptera: Culicidae). Parasit Vectors 2019; 12:142. [PMID: 30909930 PMCID: PMC6434845 DOI: 10.1186/s13071-019-3366-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The invasive temperate mosquito Aedes japonicus japonicus is a potential vector for various infectious diseases and therefore a target of vector control measures. Even though established in Germany, it is unclear whether the species has already reached its full distribution potential. The possible range of the species, its annual population dynamics, the success of vector control measures and future expansions due to climate change still remain poorly understood. While numerous studies on occurrence have been conducted, they used mainly presence data from relatively few locations. In contrast, we used experimental life history data to model the dynamics of a continuous stage-structured population to infer potential seasonal densities and ask whether stable populations are likely to establish over a period of more than one year. In addition, we used climate change models to infer future ranges. Finally, we evaluated the effectiveness of various stage-specific vector control measures. RESULTS Aedes j. japonicus has already established stable populations in the southwest and west of Germany. Our models predict a spread of Ae. j. japonicus beyond the currently observed range, but likely not much further eastwards under current climatic conditions. Climate change models, however, will expand this range substantially and higher annual densities can be expected. Applying vector control measures to oviposition, survival of eggs, larvae or adults showed that application of adulticides for 30 days between late spring and early autumn, while ambient temperatures are above 9 °C, can reduce population density by 75%. Continuous application of larvicide showed similar results in population reduction. Most importantly, we showed that with the consequent application of a mixed strategy, it should be possible to significantly reduce or even extinguish existing populations with reasonable effort. CONCLUSION Our study provides valuable insights into the mechanisms concerning the establishment of stable populations in invasive species. In order to minimise the hazard to public health, we recommend vector control measures to be applied in 'high risk areas' which are predicted to allow establishment of stable populations to establish.
Collapse
Affiliation(s)
- Andreas Wieser
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany. .,Centre for Biodiversity Dynamics, and Department of Mathematical Sciences, Norwegian University of Science and Technology NTNU, Sentralbygg 2, Gløshaugen, 7491, Trondheim, Norway.
| | - Friederike Reuss
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Ruth Müller
- Faculty of Medicine, Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Unit of Entomology, Institute of Tropical Medicine, Nationalenstraat 155, 2000, Antwerp, Belgium
| | - Robert B O'Hara
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Centre for Biodiversity Dynamics, and Department of Mathematical Sciences, Norwegian University of Science and Technology NTNU, Sentralbygg 2, Gløshaugen, 7491, Trondheim, Norway
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| |
Collapse
|
36
|
Mamai W, Lobb LN, Bimbilé Somda NS, Maiga H, Yamada H, Lees RS, Bouyer J, Gilles JRL. Optimization of Mass-Rearing Methods for Anopheles arabiensis Larval Stages: Effects of Rearing Water Temperature and Larval Density on Mosquito Life-History Traits. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2383-2390. [PMID: 30020467 DOI: 10.1093/jee/toy213] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Insect mass-rearing is an essential requirement for the sterile insect technique. Production at a large scale requires the development of standardized rearing procedures to produce good quality males able to compete with wild males to mate with wild females. Three sets of experiments (using trays placed on the table, the whole tray-rack system, and climate-controlled chambers) have been conducted aiming to determine the optimal water temperature and number of eggs to aliquot into each larval rearing tray to achieve the highest production of pupae. No difference was found in time to pupation, sex ratio, or male body size as a result of altering larval density. However, higher larval densities resulted in decreased emergence rate and female body size. A constant water temperature of 22°C delayed hatching and did not allow Anopheles arabiensis to complete larval development. Hatching eggs in water at 22°C and then increasing water temperature to 27°C resulted in decreased pupae production compared to eggs hatched and larvae maintained at a water temperature of 27°C throughout. Water temperature and larval density affected the production parameters of An. arabiensis mosquitoes, which has implications for mass release programs. We conclude that 4,000 eggs per 4 liter and a water temperature of 27°C were the optimal conditions for mass-rearing this mosquito species which yielded 105,000 pupae/larval rearing unit. These results are valuable information in the development of standard operation procedures for the efficient large-scale rearing of An. arabiensis mosquitoes.
Collapse
Affiliation(s)
- Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Institut de Recherche Agricole pour le Développement (IRAD), Yaoundé, Cameroun
| | - Leanne N Lobb
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa/Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Nanwintoum S Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Université Ouaga 1 Joseph Ki Zerbo, Ouagadougou, Burkina Faso
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), Bobo-Dioulasso, Burkina Faso
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Rosemary Susan Lees
- LITE (Liverpool Insect Testing Establishment), Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jeremie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|