1
|
Rivory P, Lee R, Šlapeta J. Isolate-specific rat brain transcriptional responses to rat lungworm (Angiostrongylus cantonensis). Pathog Dis 2025; 83:ftaf003. [PMID: 39971741 PMCID: PMC11895509 DOI: 10.1093/femspd/ftaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025] Open
Abstract
The rat lungworm (Angiostrongylus cantonensis) is an invasive parasite of rats that in accidental hosts, such as dogs and humans, causes eosinophilic meningitis. In Australia, only two distinct rat lungworm cox1 haplotypes have been detected in clinically affected dogs, with haplotype Ac13 implicated in most cases. Using locally sourced isolates, we enquired whether the brain migrating larvae elicit different host response in its natural host. We examined brain transcriptome, faecal shedding rates, and adult worm of A. cantonensis isolates representing two distinct cox1 haplotypes, SYD.1 and Ac13 (represented by isolate SYD.2), in experimentally infected Wistar rats. For SYD.1-infected rats, only one differentially expressed gene (DEG) was upregulated in the compared to controls. In contrast, the transcriptome of SYD.2-infected rats included 100 DEGs, with enrichment of functional terms related to immune response, neuroactivity, and signalling. Faecal shedding did not differ between SYD.1- and SYD.2-infected rats, but adult worm burdens were higher in the SYD.1 group. The increased immune response in SYD.2-infected rats provides evidence that there is strain specific virulence that is pronounced in its natural host. This study provides initial parasite-specific evidence explaining why clinically affected dogs are more frequently presented with A. cantonensis haplotype Ac13.
Collapse
Affiliation(s)
- Phoebe Rivory
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Rogan Lee
- NSW Health Pathology, Centre for Infectious Diseases and Microbiology Lab Services, Level 3 ICPMR, Westmead Hospital, Westmead, NSW 2145, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Xiong L, Chen L, Chen Y, Shen N, Hua R, Yang G. Evaluation of the immunoprotective effects of eight recombinant proteins from Baylisascaris schroederi in mice model. Parasit Vectors 2023; 16:254. [PMID: 37501169 PMCID: PMC10375773 DOI: 10.1186/s13071-023-05886-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Baylisascaris schroederi is the most common and harmful intestinal parasitic nematode of giant pandas, causing ascariasis. Although drug deworming is the main measure to control ascariasis in captive giant pandas, prolonged and repeated use of deworming drugs might induce resistance in nematodes and drug residues in giant pandas. Therefore, developing a safe and effective vaccine might provide a novel strategy to prevent ascariasis in captive giant pandas. METHODS Four highly expressed secretome genes encoding excretory and secretory proteins of B. schroederi, including transthyretin-like protein 46 (BsTLP), uncharacterized protein (BsUP), hypothetical protein 1 (BsHP1), and hypothetical protein 2 (BsHP2) and four functional genes [(encoding Galectin (BsGAL), glutathione S-transferase (BsGST), fatty acid-binding protein (BsFABP), and thioredoxin peroxidase (BsTPX)] were identified based on genome and transcriptome databases of B. schroederi and used to construct recombinant proteins via prokaryotic expression. Kunming mice were vaccinated subcutaneously twice with the recombinant proteins (50 μg/mouse) mixed with Quil A adjuvant with a 2-week interval and then orally challenged with 3000 infective eggs. The immunoprotective effects of the eight recombinant proteins on mice were assessed comprehensively using surface lesion histology scores of the mouse liver and lung, larval worm reduction, serum antibody levels (IgG, IgE, IgA, IgG1, and IgG2a), and cytokine production [interferon gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-5, and IL-10]. RESULTS Mice vaccinated with recombinant (r)BsUP (76.5%), rBsGAL (74.7%), and rBsHP2 (71.5%) showed a significant (P < 0.001) reduction in the larval worm rate compared with that in the adjuvant control. Besides, the surface lesions in the liver and lung of the vaccinated mice were alleviated. Serum levels of total IgG, IgE, IgA, IgG1, IgG2a, and cytokines, including IL-10, IL-5, and IFN-γ, were significantly higher (P < 0.001) than those in the control group. CONCLUSIONS The results showed that candidate three vaccines (rBsUP, rBsGAL, and rBsHP2) could provide effective protection against egg infection in mice associated with a mixed Th1/2-type immune response.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Donskow-Łysoniewska K, Maruszewska-Cheruiyot M, Stear M. The interaction of host and nematode galectins influences the outcome of gastrointestinal nematode infections. Parasitology 2021; 148:648-654. [PMID: 33461629 PMCID: PMC11010190 DOI: 10.1017/s003118202100007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Galectins are a family of proteins that bind β-galactosides and play key roles in a variety of cellular processes including host defence. They have been well studied in hosts but less so in gastrointestinal nematodes. Both host and parasite galectins are present in the gastrointestinal tract following infection. Parasite galectins can both bind antibody, especially highly glycosylated IgE and be bound by antibody. Parasite galectins may act as molecular sponges that soak up antibody. Host galectins promote mast cell degranulation while parasite galectins inhibit degranulation. Host and parasite galectins can also bind mucins and influence mucus viscosity. As the protective response against gastrointestinal nematode infection is partly dependent on IgE mediated mast cell degranulation and mucus, the interactions between host and parasite galectins play key roles in determining the outcome of infection.
Collapse
Affiliation(s)
- Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Michael Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
5
|
Shi X, Xiao M, Xie Z, Shi Q, Zhang Y, Leavenworth JW, Yan B, Huang H. Angiostrongylus cantonensis Galectin-1 interacts with Annexin A2 to impair the viability of macrophages via activating JNK pathway. Parasit Vectors 2020; 13:183. [PMID: 32268913 PMCID: PMC7140382 DOI: 10.1186/s13071-020-04038-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis can cause severe symptoms of central nervous system infections. In the host, this parasite localizes in the blood and cerebrospinal fluid, and its secreted components can impact immune responses. Our previous study demonstrated that immune responses were inhibited in A. cantonensis-infected mice immunized with Ac-Galectin-1 (AcGal-1). However, the mechanisms by which AcGal-1 regulates the immune responses remain unclear. Macrophages are innate immune cells that rapidly respond to infection. The direct impact of AcGal-1 on macrophages may affect the immune responses. METHODS AcGal-1 protein was purified by nickel ion affinity chromatography. The effect of AcGal-1 on the apoptosis of macrophages was detected using CCK-8 assay, flow cytometry and western blot. Macrophage membrane proteins bound to AcGal-1 were obtained using the His-tag-based pull-down assay and identified via mass spectrometry. Co-localization of AcGal-1 and the macrophage membrane protein Annexin A2 was observed by immunofluorescence microscopy, and their interaction was validated by co-immunoprecipitation experiments. SiRNA-mediated knockdown of Annexin A2 was used to determine if AcGal-1-induced macrophage apoptosis required interaction with Annexin A2. The phosphorylation level of apoptotic signal pathway protein was detected by phospho-antibody microarray and western blot. RESULTS Our study showed that AcGal-1 caused apoptosis of the macrophages. AcGal-1 increased the expression of apoptosis proteins caspase-3, caspase-9, Bax, but reduced the expression of anti-apoptosis protein Bcl-2. AcGal-1 interacted with the membrane protein Annexin A2, and knockdown of Annexin A2 expression increased Bcl-2 but decreased Bax levels in AcGal-1-treated cells. Moreover, AcGal-1 increased JNK phosphorylation and the inhibition of JNK phosphorylation in AcGal-1-treated cells decreased the expression of caspase-3, -9, Bax and almost restored Bcl-2 to the level observed in control cells. CONCLUSIONS AcGal-1 can induce the apoptosis of macrophages by binding to Annexin A2 and activating JNK downstream the apoptotic signaling pathway.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
- The First Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Mengran Xiao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Zhiyue Xie
- The First Clinical College, Southern Medical University, Guangzhou, 510515 Guangdong People’s Republic of China
| | - Qing Shi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Yuanjiao Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Baolong Yan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Huicong Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| |
Collapse
|
6
|
Zhou H, Chen Z, Limpanont Y, Hu Y, Ma Y, Huang P, Dekumyoy P, Zhou M, Cheng Y, Lv Z. Necroptosis and Caspase-2-Mediated Apoptosis of Astrocytes and Neurons, but Not Microglia, of Rat Hippocampus and Parenchyma Caused by Angiostrongylus cantonensis Infection. Front Microbiol 2020; 10:3126. [PMID: 32038563 PMCID: PMC6989440 DOI: 10.3389/fmicb.2019.03126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/24/2019] [Indexed: 01/18/2023] Open
Abstract
Infection with the roundworm Angiostrongylus cantonensis is the main cause of eosinophilic meningitis worldwide. The underlying molecular basis of the various pathological outcomes in permissive and non-permissive hosts infected with A. cantonensis remains poorly defined. In the present study, the histology of neurological disorders in the central nervous system (CNS) of infected rats was assessed by using hematoxylin and eosin staining. Quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot and immunofluorescence (IF) were used in evolutions of the transcription and translation levels of the apoptosis-, necroptosis-, autophagy-, and pyroptosis-related genes. The distribution of apoptotic and necroptotic cells in the rat hippocampus and parenchyma was further detected using flow cytometry, and the features of the ultrastructure of the cells were examined by transmission electron microscopy (TEM). The inflammatory response upon CNS infection with A. cantonensis evolved, as characterized by the accumulation of a small number of inflammatory cells under the thickened meninges, which peaked at 21 days post-infection (dpi) and returned to normal by 35 dpi. The transcription levels and translation of caspase-2, caspase-8, RIP1 and RIP3 increased significantly at 21 and 28 dpi but decreased sharply at 35 dpi compared to those in the normal control group. However, the changes in the expression of caspase-1, caspase-3, caspase-11, Beclin-1 and LC3B were not obvious, suggesting that apoptosis and necroptosis but not autophagy or pyroptosis occurred in the brains of infected animals at 21 and 28 dpi. The results of RT-qPCR, western blot analysis, IF, flow cytometry and TEM further illustrated that necroptosis and caspase-2-mediated apoptosis occurred in astrocytes and neurons but not in microglia in the parenchyma and hippocampus of infected animals. This study provides the first evidence that neuronal and astrocytic necroptosis and caspase-2-mediated apoptosis are induced by A. cantonensis infection in the parenchymal and hippocampal regions of rats at 21 and 28 dpi but these processes are negligible at 35 dpi. These findings enhance our understanding of the pathogenesis of A. cantonensis infection and provide new insights into therapeutic approaches targeting the occurrence of cell death in astrocytes and neurons in infected patients.
Collapse
Affiliation(s)
- Hongli Zhou
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhe Chen
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yue Hu
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Paron Dekumyoy
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Minyu Zhou
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yixin Cheng
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhiyue Lv
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|