1
|
Kittayapong P, Ninphanomchai S, Thayanukul P, Yongyai J, Limohpasmanee W. Comparison on the quality of sterile Aedes aegypti mosquitoes produced by either radiation-based sterile insect technique or Wolbachia-induced incompatible insect technique. PLoS One 2025; 20:e0314683. [PMID: 39937795 PMCID: PMC11819552 DOI: 10.1371/journal.pone.0314683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2024] [Indexed: 02/14/2025] Open
Abstract
Novel and alternative vector control approaches using a sterile male-based release to suppress Aedes aegypti mosquito vectors have recently been tested in the field in many countries. These approaches included the sterile insect technique (SIT), incompatible insect technique (IIT), and a combination of both techniques. In this study, we conducted a series of experiments to compare the quality between radiation-based and Wolbachia-induced sterile males in terms of flight ability, sterility, mating competitiveness, survival rate, and longevity. Aedes aegypti mosquitoes irradiated at 50 Gy (SIT) and those trans-infected with wAlbB Wolbachia (IIT) were used for quality comparison. Our results showed that irradiated and Wolbachia trans-infected males were not significantly different in flight ability (p > 0.05) and both could induce sterility in wild-type females. In addition, although irradiation at 50 Gy or Wolbachia trans-infection reduced male mating competitiveness, combined irradiation and Wolbachia wAlbB trans-infection increased male competitiveness at the one-to-one ratio. Increasing the number of sterile males released could compensate for reduced competitiveness but it does not make them more competitive. Irradiation did not affect the survival and longevity of irradiated males, but it showed significant negative impacts on females (p < 0.05); while the opposite was observed in the case of Wolbachia infection, i.e., with significant increase in the survival rate of Wolbachia trans-infected males (p < 0.05), but both survival and longevity were reduced in Wolbachia trans-infected females with no significant impacts (p > 0.05). In conclusion, neither irradiation nor Wolbachia trans-infection significantly affected the quality of sterile males except their mating competitiveness; but this could compensate by increasing the number of sterile males released. Sterility could be induced by either 50 Gy irradiation or wAlbB trans-infection. Mating competitiveness results showed that a higher number of sterile males produced by irradiation need to be released in comparison to those produced by Wolbachia trans-infection. Our results should be useful for planning SIT, IIT, or a combination for Ae. aegypti vector control.
Collapse
Affiliation(s)
- Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Suwannapa Ninphanomchai
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Parinda Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jiraporn Yongyai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wanitch Limohpasmanee
- Thailand Institute of Nuclear Technology, Ministry of Higher Education, Science, Research and Innovation, Nakhon Nayok, Thailand
| |
Collapse
|
2
|
Poda BS, Cribellier A, Feugère L, Fatou M, Nignan C, Hien DFDS, Müller P, Gnankiné O, Dabiré RK, Diabaté A, Muijres FT, Roux O. Spatial and temporal characteristics of laboratory-induced Anopheles coluzzii swarms: Shape, structure, and flight kinematics. iScience 2024; 27:111164. [PMID: 39524359 PMCID: PMC11546533 DOI: 10.1016/j.isci.2024.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Malaria mosquitoes mate in swarms, but how these swarms are formed and maintained remains poorly understood. We characterized three-dimensional spatiotemporal flight kinematics of Anopheles coluzzii males swarming at sunset above a ground marker. The location, shape, and volume of swarms were highly stereotypic, consistent over the complete swarming duration. Swarms have an elliptical cone shape; mean flight kinematics varies spatially within the swarm, but remain rather consistent throughout swarming duration. Using a sensory system-informed model, we show that swarming mosquitoes use visual perception of both the ground marker and sunset horizon to display the swarming behavior. To control their height, swarming individuals maintain an optical angle of the marker ranging from 24° to 55°. Limiting the viewing angle deviation to 4.5% of the maximum value results in the observed elliptical cone swarm shape. We discuss the implications of these finding on malaria mosquito mating success, speciation and for vector control.
Collapse
Affiliation(s)
- Bèwadéyir Serge Poda
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Lionel Feugère
- Natural Resources Institute, University of Greenwich, Chatham, UK
- L2TI, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Mathurin Fatou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Charles Nignan
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Unité de Formation et de Recherche en Sciences Appliquées et Technologies, Université de Dédougou, Dédougou, Burkina Faso
| | | | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Gnankiné
- Laboratoire d’Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Roch Kounbobr Dabiré
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Olivier Roux
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Abdelhafiz I, Gerth S, Claussen J, Weule M, Hufnagel E, Vilcinskas A, Lee KZ. Radioactivity and GMO-Free Sterile Insect Technology for the Sustainable Control of the Invasive Pest Drosophila suzukii. Adv Biol (Weinh) 2024; 8:e2400100. [PMID: 38797923 DOI: 10.1002/adbi.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Drosophila suzukii (D. suzukii), commonly known as the spotted wing drosophila, is a highly invasive crop pest that is difficult to control using chemical insecticides. To address the urgent need for alternative and more sustainable control strategies, the sterile insect technique (SIT) is improved, which involves the release of sterilized male insects to mate with fertile conspecifics, thereby reducing the size of the pest population in the subsequent generation. The three critical aspects that influence the success of SIT programs in D. suzukii are addressed. First, an accurate and nondestructive method is established to determine the sex of individual insects based on the differential weight of male and female pupae. Second, conditions for X-ray sterilization are systematically tested and an optimal dose (90 kV/40 Gy) is identified that ensures the efficient production of sterile D. suzukii for release. Finally, the inherent thermosensitivity of D. suzukii males is exploited to develop a temperature-based sterilization technique, offering an alternative or additional SIT method for this pest. These advances will contribute to the development of a comprehensive and effective strategy for the management of D. suzukii populations, reducing their impact on agriculture and helping to safeguard crop yields.
Collapse
Affiliation(s)
- Ibrahim Abdelhafiz
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
| | - Stefan Gerth
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Joelle Claussen
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Mareike Weule
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Eva Hufnagel
- Fraunhofer Institute for Integrated Circuits, Flugplatzstrasse 75, D-90768, Fuerth, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany
| |
Collapse
|
4
|
Gnambani EJ, Bilgo E, Dabiré RK, Belem AMG, Diabaté A. Infection of the malaria vector Anopheles coluzzii with the entomopathogenic bacteria Chromobacterium anophelis sp. nov. IRSSSOUMB001 reduces larval survival and adult reproductive potential. Malar J 2023; 22:122. [PMID: 37055834 PMCID: PMC10103495 DOI: 10.1186/s12936-023-04551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Vector control tools are urgently needed to control malaria transmission in Africa. A native strain of Chromobacterium sp. from Burkina Faso was recently isolated and preliminarily named Chromobacterium anophelis sp. nov. IRSSSOUMB001. In bioassays, this bacterium showed a promising virulence against adult mosquitoes and reduces their blood feeding propensity and fecundity. The current study assessed the entomopathogenic effects of C. anophelis IRSSSOUMB001 on larval stages of mosquitoes, as well as its impacts on infected mosquitoes reproductive capacity and trans-generational effects. METHODS Virulence on larvae and interference with insemination were assayed by co-incubation with C. anophelis IRSSSOUMB001 at a range of 104 to 108 cfu/ml. Trans-generational effects were determined by measuring body size differences of progeny from infected vs. uninfected parent mosquitoes using wing size as a proxy. RESULTS Chromobacterium anophelis IRSSSOUMB001 killed larvae of the pyrethroid-resistant Anopheles coluzzii with LT80 of ~ 1.75 ± 0.14 days at 108 cfu/ml in larval breeding trays. Reproductive success was reduced as a measure of insemination rate from 95 ± 1.99% to 21 ± 3.76% for the infected females. There was a difference in wing sizes between control and infected mosquito offsprings from 2.55 ± 0.17 mm to 2.1 ± 0.21 mm in infected females, and from 2.43 ± 0.13 mm to 1.99 ± 0.15 mm in infected males. CONCLUSIONS This study showed that C. anophelis IRSSSOUMB001 was highly virulent against larvae of insecticide-resistant Anopheles coluzzii, and reduced both mosquito reproduction capacity and offspring fitness. Additional laboratory, field, safety and social acceptance studies are needed to draw firm conclusions about the practical utility of this bacterial strain for malaria vector control.
Collapse
Affiliation(s)
- Edounou Jacques Gnambani
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP), Centre Muraz, Bobo Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques Pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV)/Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso
| | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo-Dioulasso, Burkina Faso.
- Institut National de Santé Publique (INSP), Centre Muraz, Bobo Dioulasso, Burkina Faso.
- Centre d'Excellence Africain en Innovations Biotechnologiques Pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV)/Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso.
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP), Centre Muraz, Bobo Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques Pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV)/Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso
| | | | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo-Dioulasso, Burkina Faso.
- Institut National de Santé Publique (INSP), Centre Muraz, Bobo Dioulasso, Burkina Faso.
- Centre d'Excellence Africain en Innovations Biotechnologiques Pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV)/Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
5
|
Hasaballah AI. Impact of paternal transmission of gamma radiation on reproduction, oogenesis, and spermatogenesis of the housefly, Musca domestica L. (Diptera: Muscidae). Int J Radiat Biol 2021; 97:376-385. [PMID: 33320767 DOI: 10.1080/09553002.2021.1864046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to investigate the impact of gamma radiation of Musca domestica males (resulted from irradiated pupae) crossed with unirradiated females on fecundity, egg hatchability, adult emergence, sex ratio, sterility, in addition to reproductive development at the level of oogenesis and spermatogenesis compared to unirradiated group. MATERIAL AND METHODS The housefly, M. domestica pupae were exposed to three sublethal doses of 5, 10, and 15 Gy. RESULTS Fecundity was severely reduced particularly in F2 (11.33 ± 1.528; 7.33 ± 1.115 eggs/♀) and F3 (9.0 ± 1.00; 4.67 ± 1.115 eggs/♀) for doses of 10 and 15 Gy, respectively, compared with (52.0 ± 1.4 eggs/♀) for the control. Data revealed latent dose- and generation-dependent reduction in egg hatchability. Hatchability percentages reduced from 93.59 for the control to 10.07 (F1), 8.09 (F2), and 8.34 (F3) when the highest radiation dose 15 Gy was applied. Irradiation induced paternal deleterious substerility effects. Irradiation with 15 Gy induced substerility that reached about 97.0% in F2 and F3 generations. A significant (P < 0.05) reduction of the mean numbers of adult emergence was remarkably detected in the F1, F2, and F3 generations. Applied gamma doses did not affect the male to female ratio in the Parental or F1 generations. However, the F2 and F3 generations did show changes to the sex ratio with males occurring more frequently than females. This trend became more pronounced as dose increased. Ultrastructural examinations exhibited unusual damage and malformation either for males or female reproductive organs. CONCLUSION The obtained results clearly show that gamma radiation of M. domestica irradiated as pupae induced considerably visible impact on tested biological aspects and reproductive potential.
Collapse
Affiliation(s)
- Ahmed I Hasaballah
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
6
|
Guissou E, Poda S, de Sales Hien DF, Yerbanga SR, Da DF, Cohuet A, Fournet F, Roux O, Maiga H, Diabaté A, Gilles J, Bouyer J, Ouédraogo AG, Rayaissé JB, Lefèvre T, Dabiré KR. Effect of irradiation on the survival and susceptibility of female Anopheles arabiensis to natural isolates of Plasmodium falciparum. Parasit Vectors 2020; 13:266. [PMID: 32434542 PMCID: PMC7238563 DOI: 10.1186/s13071-020-04135-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released females to transmit pathogens. This study aimed to assess the effect of irradiation on the survival and competence of Anopheles arabiensis females for Plasmodium falciparum in laboratory conditions. METHODS Pupae were irradiated at 95 Gy of gamma-rays, and emerging females were challenged with one of 14 natural isolates of P. falciparum. Seven days post-blood meal (dpbm), irradiated and unirradiated-control females were dissected to assess the presence of oocysts, using 8 parasite isolates. On 14 dpbm, sporozoite dissemination in the head/thorax was also examined, using 10 parasites isolates including 4 in common with the 7 dpbm dissection (oocyst data). The survivorship of irradiated and unirradiated-control mosquitoes was monitored. RESULTS Overall, irradiation reduced the proportion of mosquitoes infected with the oocyst stages by 17% but this effect was highly inconsistent among parasite isolates. Secondly, there was no significant effect of irradiation on the number of developing oocysts. Thirdly, there was no significant difference in both the sporozoite infection rate and load between the irradiated and unirradiated-control mosquitoes. Fourthly, irradiation had varying effects on female survival with either a negative effect or no effect. CONCLUSIONS The effect of irradiation on mosquito competence strongly varied among parasite isolates. Because of such isolate variability and, the fact that different parasite isolates were used to collect oocyst and sporozoite data, the irradiation-mediated reduction of oocyst prevalence was not confirmed for the sporozoite stages. Our data indicate that irradiated female An. arabiensis could contribute to malaria transmission, and highlight the need for perfect sexing tools, which would prevent the release of females as part of SIT programmes.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Université Nazi Boni, Bobo Dioulasso, Burkina Faso
| | - Serge Poda
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Serge Rakiswende Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Dari Frédéric Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Florence Fournet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Olivier Roux
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Hamidou Maiga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Jeremie Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Jean-Baptiste Rayaissé
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| |
Collapse
|