1
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
2
|
Ghafar A, Davies N, Tadepalli M, Breidahl A, Death C, Haros P, Li Y, Dann P, Cabezas-Cruz A, Moutailler S, Foucault-Simonin A, Gauci CG, Stenos J, Hufschmid J, Jabbar A. Unravelling the Diversity of Microorganisms in Ticks from Australian Wildlife. Pathogens 2023; 12:153. [PMID: 36839425 PMCID: PMC9967841 DOI: 10.3390/pathogens12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Ticks and tick-borne pathogens pose a significant threat to the health and welfare of humans and animals. Our knowledge about pathogens carried by ticks of Australian wildlife is limited. This study aimed to characterise ticks and tick-borne microorganisms from a range of wildlife species across six sites in Victoria, Australia. Following morphological and molecular characterisation (targeting 16S rRNA and cytochrome c oxidase I), tick DNA extracts (n = 140) were subjected to microfluidic real-time PCR-based screening for the detection of microorganisms and Rickettsia-specific real-time qPCRs. Five species of ixodid ticks were identified, including Aponomma auruginans, Ixodes (I.) antechini, I. kohlsi, I. tasmani and I. trichosuri. Phylogenetic analyses of 16S rRNA sequences of I. tasmani revealed two subclades, indicating a potential cryptic species. The microfluidic real-time PCR detected seven different microorganisms as a single (in 13/45 ticks) or multiple infections (27/45). The most common microorganisms detected were Apicomplexa (84.4%, 38/45) followed by Rickettsia sp. (55.6%, 25/45), Theileria sp. (22.2% 10/45), Bartonella sp. (17.8%, 8/45), Coxiella-like sp. (6.7%, 3/45), Hepatozoon sp. (2.2%, 1/45), and Ehrlichia sp. (2.2%, 1/45). Phylogenetic analyses of four Rickettsia loci showed that the Rickettsia isolates detected herein potentially belonged to a novel species of Rickettsia. This study demonstrated that ticks of Australian wildlife carry a diverse array of microorganisms. Given the direct and indirect human-wildlife-livestock interactions, there is a need to adopt a One Health approach for continuous surveillance of tick-associated pathogens/microorganisms to minimise the associated threats to animal and human health.
Collapse
Affiliation(s)
- Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Nick Davies
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Mythili Tadepalli
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC 3220, Australia
| | - Amanda Breidahl
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Clare Death
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Philip Haros
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Yuting Li
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Peter Dann
- Research Department, Phillip Island Nature Park, P.O. Box 97, Cowes, VIC 3922, Australia
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Charles G. Gauci
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC 3220, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| |
Collapse
|
3
|
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals (Basel) 2022; 12:1719. [PMID: 35804619 PMCID: PMC9265025 DOI: 10.3390/ani12131719] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decades, wildlife diseases and the health status of animal populations have gained increasing attention from the scientific community as part of a One Health framework. Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has become paramount in complying with modern ethical standards and regulations, and to collect high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in wildlife health and disease research and offer a comprehensive review on the different samples that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases, 58% on other health-related topics, and 3% on both. Stress and other physiological parameters were the most addressed research topics, followed by viruses, helminths, and bacterial infections. Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used sample. Our review of the sampling materials and collection methods highlights that, although the use of some types of samples for specific applications is now consolidated, others are perhaps still underutilised and new technologies may offer future opportunities for an even wider use of non-invasively collected samples.
Collapse
Affiliation(s)
- Anna-Katarina Schilling
- Previously Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, USA;
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
4
|
Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100036. [PMID: 35284884 PMCID: PMC8906078 DOI: 10.1016/j.crpvbd.2021.100036] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The main importance of ticks resides in their ability to harbor pathogens that can be transmitted to terrestrial vertebrates including humans. Recently, studies have focused on the taxonomic and functional composition of the tick microbiome, its microbial diversity and variation under different factors including tick species, sex, and environment among others. Of special interest are the interactions between the tick, the microbiome and pathogens since tick microbiome can influence pathogen colonization within the tick vector, and potentially, transmission to the vertebrate host. In this review, we tackled a synthesis on the growing field of tick microbiomes. We focus on the current state of tick microbiome research, addressing controversial and hotly debated topics and advances in the precise manipulation of tick microbiome. Furthermore, we discuss the innovative anti-tick microbiota vaccines as a possible tool for microbiome modulation and thus, control of tick-borne diseases. Deciphering tick-microbiome pathogen interactions can spur new strategies to control tick-borne diseases via modulation of tick microbiome. Whether the diversity observed in tick microbiomes concerns the biology or the methodology remains an open question. Tick immunity must play a major role in selecting ‘who stays and who leaves’ the microbiome. Anti-tick microbiota vaccines can target specific bacteria and subsequently modulate tick microbiome.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | | | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13400-970, Brazil
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Corresponding author.
| |
Collapse
|
5
|
Belkhir S, Hamede R, Thomas F, Ujvari B, Dujon AM. Season, weight, and age, but not transmissible cancer, affect tick loads in the endangered Tasmanian devil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105221. [PMID: 35065301 DOI: 10.1016/j.meegid.2022.105221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial threatened by a transmissible cancer, devil facial tumour disease (DFTD). While we have a good understanding of the effect of the transmissible cancer on its host, little information is available about its potential interactions with ectoparasites. With this study, we aimed to determine the factors driving tick loads in a DFTD affected Tasmanian devil population, using long-term mark-recapture data. We investigated the effect of a range of life history traits (age, weight, sex, body condition) and of DFTD (time since DFTD arrival and presence of tumours) on the ectoparasitic tick load of the devils. Mixed effect models revealed that tick load in Tasmanian devils was primarily driven by season, weight, body condition and age. Young devils had more ticks compared to older or healthier devils. The reduction in Tasmanian devil population size over the past 14 years at the studied site had little effect on tick infestation. We also found that devils infected by DFTD had a similar tick load compared to those free of observable tumours, suggesting no interaction between the transmissible cancer and tick load. Our study highlights seasonality and life cycle as primary drivers of tick infestation in Tasmanian devils and the need for further investigations to integrate devil stress and immune dynamics with ectoparasite counts.
Collapse
Affiliation(s)
- Sophia Belkhir
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia; École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Frédéric Thomas
- CREEC, MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia; CREEC, MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Kisten D, Brinkerhoff J, Tshilwane SI, Mukaratirwa S. A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae. Pathogens 2021; 10:941. [PMID: 34451405 PMCID: PMC8398150 DOI: 10.3390/pathogens10080941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Variation in tick microbiota may affect pathogen acquisition and transmission but for many vector species, including Amblyomma hebraeum, components and determinants of the microbiome are unidentified. This pilot study aimed to determine baseline microbial community within A. hebraeum nymphs infected- and non-infected with Rickettsia africae from the environment, and within adult ticks infected- and non-infected with R. africae collected from cattle sampled from two locations in the Eastern Cape province of South Africa. Adult A. hebraeum ticks (N = 13) and A. hebraeum nymph (N = 15) preliminary screened for R. africae were randomly selected and subjected to Illumina sequencing targeting the v3-v4 hypervariable regions of the 16S rRNA gene. No significant difference in microbial community composition, as well as rarefied OTU richness and diversity were detected between adults and nymphs. Nymphs showed a higher richness of bacterial taxa indicating blood-feeding could have resulted in loss of microbial diversity during the moulting stage from nymph to adult. Core OTUs that were in at least 50% of nymphs and adults negative and positive for Rickettsia at 1% minimum relative abundance were Rickettsia, Coxiella and Ruminococcaceae UCG-005 with a single genus Arsenophonus occurring only in nymphs negative for Rickettsia. Ehrlichia spp. was present in only four nymphal ticks positive for Rickettsia. Interestingly, Rickettsia aeschlimannii was found in one nymph and one adult, indicating the first ever detection of the species in A. hebraeum. Furthermore, A. hebraeum harboured a Coxiella-like endosymbiont, which should be investigated further as Coxiella may affect the viability and transmission of other organisms.
Collapse
Affiliation(s)
- Dalicia Kisten
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
| | - Jory Brinkerhoff
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Selaelo Ivy Tshilwane
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
| | - Samson Mukaratirwa
- School of Life Sciences, Biological Sciences Section, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (D.K.); (J.B.); (S.I.T.)
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|