1
|
Gualandi N, Minisini M, Bertozzo A, Brancolini C. Dissecting transposable elements and endogenous retroviruses upregulation by HDAC inhibitors in leiomyosarcoma cells: Implications for the interferon response. Genomics 2024; 116:110909. [PMID: 39103003 DOI: 10.1016/j.ygeno.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Transposable elements (TEs) are of interest as immunomodulators for cancer therapies. TEs can fold into dsRNAs that trigger the interferon response. Here, we investigated the effect of different HDAC inhibitors (HDACIs) on the expression of TEs in leiomyosarcoma cells. Our data show that endogenous retroviruses (ERVs), especially ERV1 elements, are upregulated after treatment with HDAC1/2/3-specific inhibitors. Surprisingly, the interferon response was not activated. We observed an increase in A-to-I editing of upregulated ERV1. This could have an impact on the stability of dsRNAs and the activation of the interferon response. We also found that H3K27ac levels are increased in the LTR12 subfamilies, which could be regulatory elements controlling the expression of proapoptotic genes such as TNFRSF10B. In summary, we provide a detailed characterization of TEs modulation in response to HDACIs and suggest the use of HDACIs in combination with ADAR inhibitors to induce cell death and support immunotherapy in cancer.
Collapse
Affiliation(s)
- Nicolò Gualandi
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Alessio Bertozzo
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
2
|
Di Stefano L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells 2022; 11:cells11162501. [PMID: 36010577 PMCID: PMC9406493 DOI: 10.3390/cells11162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
3
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
4
|
Gibel-Russo R, Benacom D, Di Nardo AA. Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods. Front Neural Circuits 2022; 16:875873. [PMID: 35601531 PMCID: PMC9115720 DOI: 10.3389/fncir.2022.875873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
From birth to adolescence, the brain adapts to its environmental stimuli through structural and functional remodeling of neural circuits during critical periods of heightened plasticity. They occur across modalities for proper sensory, motor, linguistic, and cognitive development. If they are disrupted by early-life adverse experiences or genetic deficiencies, lasting consequences include behavioral changes, physiological and cognitive deficits, or psychiatric illness. Critical period timing is orchestrated not only by appropriate neural activity but also by a multitude of signals that participate in the maturation of fast-spiking parvalbumin interneurons and the consolidation of neural circuits. In this review, we describe the various signaling factors that initiate critical period onset, such as BDNF, SPARCL1, or OTX2, which originate either from local neurons or glial cells or from extracortical sources such as the choroid plexus. Critical period closure is established by signals that modulate extracellular matrix and myelination, while timing and plasticity can also be influenced by circadian rhythms and by hormones and corticosteroids that affect brain oxidative stress levels or immune response. Molecular outcomes include lasting epigenetic changes which themselves can be considered signals that shape downstream cross-modal critical periods. Comprehensive knowledge of how these signals and signaling factors interplay to influence neural mechanisms will help provide an inclusive perspective on the effects of early adversity and developmental defects that permanently change perception and behavior.
Collapse
|
5
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
6
|
Xu Y, Yang F, Hu Z, He Y, Zhang Q, Xu Q, Weng Y, Bernhardt BC, Xie X, Xiao J, Peled N, Stufflebeam SM, Lu G, Zhang Z. Anti-seizure medication correlated changes of cortical morphology in childhood epilepsy with centrotemporal spikes. Epilepsy Res 2021; 173:106621. [PMID: 33873105 DOI: 10.1016/j.eplepsyres.2021.106621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/02/2021] [Accepted: 03/20/2021] [Indexed: 12/01/2022]
Abstract
To investigate the morphological changes of cerebral cortex correlating with anti-seizure medication in Childhood Epilepsy with Centrotemporal Spikes (CECTS), and their relationships with seizure control. This study included a total of 188 children, including 62 patients with CECTS taking anti-seizure drugs, 56 patients with drug-naive, and 70 healthy controls. A portion of cases were also followed-up for longitudinal analysis. Cortical morphological parameters were quantitatively measured by applying surface-based morphometry analysis to high-resolution three-dimension T1 weighted images. Among the three groups, the morphological indices were compared to quantify any cortical changes affected by seizures and medication. The relationships among anti-seizure medication, seizure controls and cortical morphometry were investigated using causal mediator analysis. The Rolandic cortex of the drug-naive patients showed abnormal cortical thickness by comparing with that of healthy controls, and thinning by comparing with that of patients with medication. The cortical thickness in the Rolandic regions was negatively correlated with duration of medication and duration of seizure-free. Longitudinal analysis further demonstrated that the thickness of Rolandic cortex thinned in post-medication state relative to the pre-medication state. Mediation analysis revealed that morphological alteration of the Rolandic cortex might act as a mediator in the path of anti-seizure medication on seizure control. Our findings highlighted that anti-seizure medication was associated with regression of abnormal increment of cortical thickness in the Rolandic regions in CECTS. The neuroanatomical alteration might be a mediating factor in the process of seizure control by anti-seizure medication.
Collapse
Affiliation(s)
- Yin Xu
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Institute of Neurology, Anhui University of Traditional Chinese Medicine, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Zheng Hu
- Department of Neurology, Children's Hospital of Nanjing Medical University, China
| | - Yan He
- Department of Neurology, Children's Hospital of Nanjing Medical University, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Xinyu Xie
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Junhao Xiao
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Noam Peled
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
7
|
Wakam GK, Biesterveld BE, Pai MP, Kemp MT, O'Connell RL, Williams AM, Srinivasan A, Chtraklin K, Siddiqui AZ, Bhatti UF, Vercruysse CA, Alam HB. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury. J Trauma Acute Care Surg 2021; 90:346-352. [PMID: 33230090 DOI: 10.1097/ta.0000000000003036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) and hemorrhage remain the leading causes of death after trauma. We have previously shown that a dose of valproic acid (VPA) at (150 mg/kg) can decrease brain lesion size and hasten neurologic recovery. The current Food and Drug Administration-approved dose of VPA is 60 mg/kg. We evaluate neurologic outcomes and brain lesion size of a single dose of VPA at a level currently within Food and Drug Administration-approved dose in swine subjected to TBI and hemorrhagic shock. METHODS Swine (n = 5/group) were subjected to TBI and 40% blood volume hemorrhage. Animals remained in shock for 2 hours before randomization to normal saline (NS) resuscitation alone (control), NS-VPA 150 mg/kg (VPA 150), or NS-VPA 50 mg/kg (VPA 50). Neurologic severity scores (range, 0-32) were assessed daily for 14 days, and brain lesion size was measured via magnetic resonance imaging on postinjury day (PID) 3. RESULTS Shock severity and laboratory values were similar in all groups. Valproic acid-treated animals demonstrated significantly less neurologic impairment on PID 1 and returned to baseline faster (PID 1 mean neurologic severity score, control = 22 ± 3 vs. VPA 150 mg/kg = 8 ± 7 or VPA 50 mg/kg = 6 ± 6; p = 0.02 and 0.003). Valproic acid-treated animals had significantly smaller brain lesion sizes (mean volume in mm3, control = 1,268.0 ± 241.2 vs. VPA 150 mg/kg = 620.4 ± 328.0 or VPA 50 mg/kg = 438.6 ± 234.8; p = 0.007 and 0.001). CONCLUSION In swine subjected to TBI and hemorrhagic shock, VPA treatment, in a dose that is approved for clinical use, decreases brain lesion size and reduces neurologic impairment compared with resuscitation alone.
Collapse
Affiliation(s)
- Glenn K Wakam
- From the Department of Surgery (G.K.W., B.E.B., M.T.K., R.L.O., A.M.W., K.C., A.Z.S., U.F.B., C.A.V., H.B.A.), Department of Clinical Pharmacy (M.P.P.), and Section of Neuroradiology, Department of Radiology (A.S.), Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kasamatsu T, Imamura K. Ocular dominance plasticity: Molecular mechanisms revisited. J Comp Neurol 2020; 528:3039-3074. [PMID: 32737874 DOI: 10.1002/cne.25001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Ocular dominance plasticity (ODP) is a type of cortical plasticity operating in visual cortex of mammals that are endowed with binocular vision based on the competition-driven disparity. Earlier, a molecular mechanism was proposed that catecholamines play an important role in the maintenance of ODP in kittens. Having survived the initial test, the hypothesis was further advanced to identify noradrenaline (NA) as a key factor that regulates ODP in the immature cortex. Later, the ODP-promoting effect of NA is extended to the adult with age-related limitations. Following the enhanced NA availability, the chain events downstream lead to the β-adrenoreceptor-induced cAMP accumulation, which in turn activates the protein kinase A. Eventually, the protein kinase translocates to the cell nucleus to activate cAMP responsive element binding protein (CREB). CREB is a cellular transcription factor that controls the transcription of various genes, underpinning neuronal plasticity and long-term memory. In the advent of molecular genetics in that various types of new tools have become available with relative ease, ODP research has lightly adopted in the rodent model the original concepts and methodologies. Here, after briefly tracing the strategic maturation of our quest, the review moves to the later development of the field, with the emphasis placed around the following issues: (a) Are we testing ODP per se? (b) What does monocular deprivation deprive of the immature cortex? (c) The critical importance of binocular competition, (d) What is the adult plasticity? (e) Excitation-Inhibition balance in local circuits, and (f) Species differences in the animal models.
Collapse
Affiliation(s)
- Takuji Kasamatsu
- Smith-Kettlewell Eye Research Institute, San Francisco, California, USA
| | - Kazuyuki Imamura
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi-shi, Gunma, Japan
| |
Collapse
|
9
|
Gomes FV, Zhu X, Grace AA. The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability. Mol Psychiatry 2020; 25:3278-3291. [PMID: 31488866 PMCID: PMC7056584 DOI: 10.1038/s41380-019-0514-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022]
Abstract
Unregulated stress during critical periods of development is proposed to drive deficits consistent with schizophrenia in adults. If accurate, reopening the critical period could make the adult susceptible to pathology. We evaluated the impact of early adolescent and adult stress exposure (combination of daily footshock for 10 days and 3 restraint sessions) on (1) midbrain dopamine (DA) neuron activity, (2) ventral hippocampal (vHipp) pyramidal neuron activity, and (3) the number of parvalbumin (PV) interneurons in the vHipp and their associated perineuronal nets (PNNs). Ventral tegmental area (VTA) DA neuron population activity and vHipp activity was increased 1-2 and 5-6 weeks post-adolescent stress, along with a decrease in the number of PV+, PNN+, PV + /PNN + cells in the vHipp, which are consistent with the MAM model of schizophrenia. In contrast, adult stress decreased VTA DA neuron population activity only at 1-2 weeks post stress, which is consistent with what has been observed in animal models of depression, without impacting vHipp activity and PV/PNN expression. Administration of valproate (VPA), which can re-instate the critical period of plasticity via histone deacetylase (HDAC) inhibition, caused adult stress to produce changes similar to those induced by adolescent stress, presumably by increasing stress vulnerability to early adolescent levels. Our findings indicate that timing of stress is a critical determinant of the pathology produced in the adult: adolescent stress led to circuit deficits that recapitulates schizophrenia, whereas adult stress induced a depression-like hypodopaminergic state. Reopening the critical period in the adult restores vulnerability to stress-induced pathology resembling schizophrenia.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, PA, USA
| | - Xiyu Zhu
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, PA, USA
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
10
|
Apulei J, Kim N, Testa D, Ribot J, Morizet D, Bernard C, Jourdren L, Blugeon C, Di Nardo AA, Prochiantz A. Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g. Cereb Cortex 2020; 29:2384-2395. [PMID: 29771284 DOI: 10.1093/cercor/bhy108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/19/2018] [Indexed: 11/14/2022] Open
Abstract
The non-cell autonomous transfer of OTX2 homeoprotein transcription factor into juvenile mouse cerebral cortex regulates parvalbumin interneuron maturation and critical period timing. By analyzing gene expression in primary visual cortex of wild-type and Otx2+/GFP mice at plastic and nonplastic ages, we identified several putative genes implicated in Otx2-dependent visual cortex plasticity for ocular dominance. Cortical OTX2 infusion in juvenile mice induced Gadd45b/g expression through direct regulation of transcription. Intriguingly, a reverse effect was found in the adult, where reducing cortical OTX2 resulted in Gadd45b/g upregulation. Viral expression of Gadd45b in adult visual cortex directly induced ocular dominance plasticity with concomitant changes in MeCP2 foci within parvalbumin interneurons and in methylation states of several plasticity gene promoters, suggesting epigenetic regulation. This interaction provides a molecular mechanism for OTX2 to trigger critical period plasticity yet suppress adult plasticity.
Collapse
Affiliation(s)
- Jessica Apulei
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Namsuk Kim
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Jérôme Ribot
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - David Morizet
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Laurent Jourdren
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Corinne Blugeon
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| |
Collapse
|
11
|
Luke MPS, Brown RE, Clarke DB. Polysialylated - neural cell adhesion molecule (PSA-NCAM) promotes recovery of vision after the critical period. Mol Cell Neurosci 2020; 107:103527. [PMID: 32634575 DOI: 10.1016/j.mcn.2020.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Vision loss has long since been considered irreversible after a critical period; however, there is potential to restore limited vision, even in adulthood. This phenomenon is particularly pronounced following complete loss of vision in the dominant eye. Adult neural cell adhesion molecule (NCAM) knockout mice have an age-related impairment of visual acuity. The underlying cause of early deterioration in visual function remains unknown. Polysialylated (PSA) NCAM is involved in different forms of neural plasticity in the adult brain, raising the possibility that NCAM plays a role in the plasticity of the visual cortex, and therefore, in visual ability. Here, we examined whether PSA-NCAM is required for visual cortical plasticity in adult C57Bl/6J mice following deafferentation and long-term monocular deprivation. Our results show that elevated PSA in the contralateral visual cortex of the reopened eye is accompanied by changes in other markers of neural plasticity: increased brain-derived neurotrophic factor (BDNF) levels and degradation of perineuronal nets (PNNs). The removal of PSA-NCAM in the visual cortex of these mice reduced BDNF expression, decreased PNN degradation, and resulted in impaired recovery of visual acuity after optic nerve transection and chronic monocular deprivation. Collectively, our results demonstrate that PSA-NCAM is necessary for the reactivation of visual cortical plasticity and recovery of visual function in adult mice. It also offers a potential molecular target for the therapeutic treatment of cortically based visual impairments.
Collapse
Affiliation(s)
- Margaret Po-Shan Luke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax B3H 4R2, NS, Canada.
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Life Science Centre, 1355 Oxford Street, PO Box 15000, Halifax B3H 4R2, NS, Canada.
| | - David B Clarke
- Departments of Surgery (Neurosurgery), Medical Neuroscience, and Ophthalmology & Visual Sciences, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax B3H 4R2, NS, Canada.
| |
Collapse
|
12
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Gomes FV, Zhu X, Grace AA. Stress during critical periods of development and risk for schizophrenia. Schizophr Res 2019; 213:107-113. [PMID: 30711313 PMCID: PMC6667322 DOI: 10.1016/j.schres.2019.01.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder with genetic predisposition, and stress has long been linked to its etiology. While stress affects all stages of the illness, increasing evidence suggests that stress during critical periods of development may be particularly detrimental, increasing individual's vulnerability to psychosis. To thoroughly understand the potential causative role of stress, our group has been focusing on the prenatal methylazoxymethanol acetate (MAM) rodent model, and discovered that MAM offspring display abnormal stress reactivity and heightened anxiety prepubertally, prior to the manifestation of a hyperdopaminergic state. Furthermore, pharmacologically treating anxiety during prepuberty prevented the emergence of the dopamine dysfunction in adulthood. Interestingly, sufficiently strong stressors applied to normal rats selectively during early development can recapitulate multiple schizophrenia-related phenotypes of MAM rats, whereas the same stress paradigm during adulthood only produced short-term depression-related deficits. Altogether, the evidence is thus converging: developmental disruption (genetic or environmental) might render animals more susceptible to the deleterious effects of stress during critical time windows, during which unregulated stress can lead to the emergence of psychosis later in life. As an important region regulating the midbrain dopamine system, the ventral hippocampus is particularly vulnerable to stress, and the distinct maturational profile of its fast-spiking parvalbumin interneurons may largely underlie such vulnerability. In this review, by discussing emerging evidence spanning clinical and basic science studies, we propose developmental stress vulnerability as a novel link between early predispositions and environmental triggering events in the pathophysiology of schizophrenia. This promising line of research can potentially provide not only insights into the etiology, but also a "roadmap" for disease prevention.
Collapse
Affiliation(s)
| | | | - Anthony A. Grace
- Corresponding author: Dr. Anthony A. Grace - Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA, 15260, USA. Phone: +1 412 624 4609.
| |
Collapse
|
14
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Sakai A, Sugiyama S. Experience-dependent transcriptional regulation in juvenile brain development. Dev Growth Differ 2019; 60:473-482. [PMID: 30368782 DOI: 10.1111/dgd.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
During brain development, once primary neural networks are formed, they are largely sculpted by environmental stimuli. The juvenile brain has a unique time window termed the critical period, in which neuronal circuits are remodeled by experience. Accumulating evidence indicates that abnormal rewiring of circuits in early life contributes to various neurodevelopmental disorders at later stages of life. Recent studies implicate two important aspects for activation of the critical period, both of which are experience-dependent: (a) proper excitatory/inhibitory (E/I) balance of neural circuit achieved during developmental trajectory of inhibitory interneurons, and (b) epigenetic regulation allowing flexible gene expression for neuronal plasticity. In this review, we discuss the molecular mechanisms of juvenile brain plasticity from the viewpoints of transcriptional and chromatin regulation, with a focus on Otx2 homeoprotein. Depending on experience, Otx2 is transported into cortical parvalbumin-positive interneurons (PV cells), where it induces PV cell maturation to activate the critical period. Understanding the unique behavior and function of Otx2 as a "messenger" of experience should therefore provide insights into mechanisms of juvenile brain development. Recently identified downstream targets of Otx2 suggest novel roles of Otx2 in homeostasis of PV cells, and, moreover, in regulation of chromatin state, which is important for neuronal plasticity. We further discuss epigenetic changes during postnatal brain development spanning the critical period. Different aspects of chromatin regulation may underlie experience-dependent neuronal development and plasticity.
Collapse
Affiliation(s)
- Akiko Sakai
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
16
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
17
|
|
18
|
Kyrke-Smith M, Williams JM. Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram. Front Mol Neurosci 2018; 11:369. [PMID: 30344478 PMCID: PMC6182070 DOI: 10.3389/fnmol.2018.00369] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
How memories are maintained, and how memories are lost during aging or disease, are intensely investigated issues. Arguably, the reigning theory is that synaptic modifications allow for the formation of engrams during learning, and sustaining engrams sustains memory. Activity-regulated gene expression profiles have been shown to be critical to these processes, and their control by the epigenome has begun to be investigated in earnest. Here, we propose a novel theory as to how engrams are sustained. We propose that many of the genes that are currently believed to underlie long-term memory are actually part of a “plasticity transcriptome” that underpins structural and functional modifications to neuronal connectivity during the hours to days following learning. Further, we hypothesize that a “maintenance transcriptome” is subsequently induced that includes epigenetic negative regulators of gene expression, particularly histone deacetylases. The maintenance transcriptome negatively regulates the plasticity transcriptome, and thus the plastic capability of a neuron, after learning. In this way, the maintenance transcriptome would act as a metaplasticity mechanism that raises the threshold for change in neurons within an engram, helping to ensure the connectivity is stabilized and memory is maintained.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Psychology, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Joanna M Williams
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
King HW, Fursova NA, Blackledge NP, Klose RJ. Polycomb repressive complex 1 shapes the nucleosome landscape but not accessibility at target genes. Genome Res 2018; 28:1494-1507. [PMID: 30154222 PMCID: PMC6169895 DOI: 10.1101/gr.237180.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that play important roles in regulating gene expression during animal development. In vitro experiments have shown that PcG protein complexes can compact chromatin to limit the activity of chromatin remodeling enzymes and access of the transcriptional machinery to DNA. In fitting with these ideas, gene promoters associated with PcG proteins have been reported to be less accessible than other gene promoters. However, it remains largely untested in vivo whether PcG proteins define chromatin accessibility or other chromatin features. To address this important question, we examine the chromatin accessibility and nucleosome landscape at PcG protein-bound promoters in mouse embryonic stem cells using the assay for transposase accessible chromatin (ATAC)-seq. Combined with genetic ablation strategies, we unexpectedly discover that although PcG protein-occupied gene promoters exhibit reduced accessibility, this does not rely on PcG proteins. Instead, the Polycomb repressive complex 1 (PRC1) appears to play a unique role in driving elevated nucleosome occupancy and decreased nucleosomal spacing in Polycomb chromatin domains. Our new genome-scale observations argue, in contrast to the prevailing view, that PcG proteins do not significantly affect chromatin accessibility and highlight an underappreciated complexity in the relationship between chromatin accessibility, the nucleosome landscape, and PcG-mediated transcriptional repression.
Collapse
Affiliation(s)
- Hamish W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
20
|
Abstract
The shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular 'brakes'. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.
Collapse
|
21
|
Sgadò P, Rosa-Salva O, Versace E, Vallortigara G. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Sci Rep 2018; 8:5919. [PMID: 29650996 PMCID: PMC5897402 DOI: 10.1038/s41598-018-24202-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.
Collapse
Affiliation(s)
- Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.,Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| |
Collapse
|
22
|
Nikolian VC, Pan B, Mesar T, Dennahy IS, Georgoff PE, Duan X, Liu B, Wu X, Duggan MJ, Alam HB, Li Y. Lung Protective Effects of Low-Volume Resuscitation and Pharmacologic Treatment of Swine Subjected to Polytrauma and Hemorrhagic Shock. Inflammation 2018; 40:1264-1274. [PMID: 28493077 DOI: 10.1007/s10753-017-0569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hemorrhage is a common cause of death in the battlefield. Valproic acid (VPA) has been associated with improved outcomes in multiple models of trauma, when combined with isotonic fluid resuscitation. However, isotonic fluid administered in this setting is logistically impractical and may be associated with complications. In this study, we sought to evaluate the feasibility and immunologic impact of combining VPA treatment with low-volume hypertonic saline (HTS). In vivo: female Yorkshire swine were subjected to hemorrhage (40% total blood volume) and polytrauma (rib fracture and delayed liver injury). Animals were kept in shock for 30 minutes and resuscitated with (1) normal saline (NS, 3× hemorrhaged volume), (2) HTS (7.5% saline, 4 mL/kg), or (3) HTS + VPA (4 mg/kg; 150 mg/kg; n = 3/cohort). After 18 hours of observation, animals were euthanized and the lungs evaluated for acute injury and expression of myeloperoxidase (MPO) and caveolin-1 (Cav-1). In vitro: human umbilical vein endothelial cells (HUVECs) were exposed to anoxic conditions (5% CO2, 95% N2) for 16 hours in (1) normosmotic, (2) hyperosmotic (400 mOsm), or (3) hyperosmotic + VPA (4 mM) media. Immunohistochemistry and Western blots were performed to determine Cav-1 expression. Lungs from VPA-treated animals demonstrated decreased acute injury, MPO expression, and endothelial expression of Cav-1 when compared to lungs from animals resuscitated with NS or HTS alone. Similarly, HUVECs cultured in hyperosmotic media containing VPA demonstrated decreased expression of Cav-1. This study demonstrates that combined treatment with VPA and HTS is a viable strategy in hemorrhagic shock and polytrauma. Attenuation of lung injury following VPA treatment may be related to modulation of the inflammatory response.
Collapse
Affiliation(s)
- Vahagn C Nikolian
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Baihong Pan
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tomaz Mesar
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Patrick E Georgoff
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Xiuzhen Duan
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Baoling Liu
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Xizi Wu
- Emergency Department, The First Hospital of China Medical University, Shenyang, China
| | - Michael J Duggan
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, NCRC Building 26 Room 363N, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Sfera A, Fayard L, Osorio C, Price A. Epigenetic interventions for brain rejuvenation: anchoring age-related transposons. Neural Regen Res 2018; 13:635-636. [PMID: 29722308 PMCID: PMC5950666 DOI: 10.4103/1673-5374.230283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Patton State Hospital, Patton, CA, USA
| | - Lisa Fayard
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, USA
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, USA
| | - Amy Price
- Evidence-Based Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. J Trauma Acute Care Surg 2017; 83:1066-1073. [PMID: 28697014 DOI: 10.1097/ta.0000000000001612] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have previously shown that treatment with valproic acid (VPA) decreases brain lesion size in swine models of traumatic brain injury (TBI) and controlled hemorrhage. To translate this treatment into clinical practice, validation of drug efficacy and evaluation of pharmacologic properties in clinically realistic models of injury are necessary. In this study, we evaluate neurologic outcomes and perform pharmacokinetic analysis of a single dose of VPA in swine subjected to TBI, hemorrhagic shock, and visceral hemorrhage. METHODS Yorkshire swine (n = 5/cohort) were subjected to TBI, hemorrhagic shock, and polytrauma (liver and spleen injury, rib fracture, and rectus abdominis crush). Animals remained in hypovolemic shock for 2 hours before resuscitation with isotonic sodium chloride solution (ISCS; volume = 3× hemorrhage) or ISCS + VPA (150 mg/kg). Neurologic severity scores were assessed daily for 30 days, and brain lesion size was measured via magnetic resonance imaging on postinjury days (PID) 3 and 10. Serum samples were collected for pharmacokinetic analysis. RESULTS Shock severity and response to resuscitation were similar in both groups. Valproic acid-treated animals demonstrated significantly less neurologic impairment between PID 1 to 5 and smaller brain lesions on PID 3 (mean lesion size ± SEM, mm: ISCS = 4,956 ± 1,511 versus ISCS + VPA = 828 ± 279; p = 0.047). No significant difference in lesion size was identified between groups at PID 10 and all animals recovered to baseline neurologic function during the 30-day observation period. Animals treated with VPA had faster neurocognitive recovery (days to initiation of testing, mean ± SD: ISCS = 6.2 ± 1.6 vs ISCS + VPA = 3.6 ± 1.5; p = 0.002; days to task mastery: ISCS = 7.0 ± 1.0 vs ISCS + VPA = 4.8 ± 0.5; p = 0.03). The mean ± SD maximum VPA concentrations, area under the curve, and half-life were 145 ± 38.2 mg/L, 616 ± 150 hour·mg/L, and 1.70 ± 0.12 hours. CONCLUSIONS In swine subjected to TBI, hemorrhagic shock, and polytrauma, VPA treatment is safe, decreases brain lesion size, and reduces neurologic injury compared to resuscitation with ISCS alone. These benefits are achieved at clinically translatable serum concentrations of VPA. LEVEL OF EVIDENCE Therapeutic (preclinical study).
Collapse
|
25
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
26
|
Post RM. Epigenetic basis of sensitization to stress, affective episodes, and stimulants: implications for illness progression and prevention. Bipolar Disord 2016; 18:315-24. [PMID: 27346321 DOI: 10.1111/bdi.12401] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The process of sensitization (increased responsivity) to the recurrence of stressors, affective episodes, and bouts of substance abuse that can drive illness progression in the recurrent affective disorders requires a memory of and increased reactivity to the prior exposures. A wealth of studies now supports the postulate that epigenetic mechanisms underlie both normal and pathological memory processes. METHODS We selectively reviewed the literature pertinent to the role of epigenetics in behavioral sensitization phenomena and discuss its clinical implications. RESULTS Epigenetics means above genetics and refers to environmental effects on the chemistry of DNA, histones (around which DNA is wound), and microRNA that change how easily genes are turned on and off. The evidence supports that sensitization to repeated stressor, affective episodes, and substance is likely based on epigenetic mechanisms and that these environmentally based processes can then become targets for prevention, early intervention, and ongoing treatment. Sensitization processes are remediable or preventable risk factors for a poor illness outcome and deserve increased clinical, public health, and research attention in the hopes of making the recurrent unipolar and bipolar affective disorders less impairing, disabling, and lethal by suicide and increased medical mortality. CONCLUSIONS The findings that epigenetic chemical marks, which change in the most fundamental way how genes are regulated, mediate the long-term increased responsivity to recurrent stressors, mood episodes, and bouts of substance abuse should help change how the affective disorders are conceptualized and move treatment toward earlier, more comprehensive, and sustained pharmacoprophylaxis.
Collapse
Affiliation(s)
- Robert M Post
- George Washington University School of Medicine, Bipolar Collaborative Network, Bethesda, MD, USA
| |
Collapse
|